{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['浙江秀舟', '武乡西山', '邯郸东郊', '建投遵化'])"
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"daily_data = pd.read_excel('data/电厂日数据.xlsx', sheet_name=None)\n",
"daily_data.keys()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"zjxz_daily = daily_data.get('浙江秀舟')\n",
"wxxs_daily = daily_data.get('武乡西山')\n",
"hddj_daily = daily_data.get('邯郸东郊')\n",
"jtzh_daily = daily_data.get('建投遵化')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 4,
"outputs": [
{
"data": {
"text/plain": " days 发电量(千瓦时) 供热量(吉焦) 燃料消耗量(吨) 流量 (m3/h) 氮氧化物浓度(mg/m3) \\\n0 2018-10-01 156796.0 6536.83 323 162345.192917 24.515087 \n1 2018-10-02 133984.0 2484.64 218 140175.330833 18.829456 \n2 2018-10-03 134023.0 3020.83 212 154686.184167 20.891797 \n3 2018-10-04 124765.0 5599.23 223 120345.545833 18.641687 \n4 2018-10-05 134414.0 4702.65 243 162533.103542 22.031219 \n\n 含氧量(%) 温度(℃) 二氧化硫浓度(mg/m3) 烟尘浓度(mg/m3) 发电量(万千瓦时) \n0 9.900000 51.250000 4.721475 0.176932 15.6796 \n1 9.400000 50.679167 3.698115 0.161356 13.3984 \n2 8.550000 52.808333 6.381178 0.117507 13.4023 \n3 10.202083 48.854167 2.393757 0.761287 12.4765 \n4 11.497917 45.783333 0.338422 1.842860 13.4414 ",
"text/html": "
\n\n
\n \n \n | \n days | \n 发电量(千瓦时) | \n 供热量(吉焦) | \n 燃料消耗量(吨) | \n 流量 (m3/h) | \n 氮氧化物浓度(mg/m3) | \n 含氧量(%) | \n 温度(℃) | \n 二氧化硫浓度(mg/m3) | \n 烟尘浓度(mg/m3) | \n 发电量(万千瓦时) | \n
\n \n \n \n 0 | \n 2018-10-01 | \n 156796.0 | \n 6536.83 | \n 323 | \n 162345.192917 | \n 24.515087 | \n 9.900000 | \n 51.250000 | \n 4.721475 | \n 0.176932 | \n 15.6796 | \n
\n \n 1 | \n 2018-10-02 | \n 133984.0 | \n 2484.64 | \n 218 | \n 140175.330833 | \n 18.829456 | \n 9.400000 | \n 50.679167 | \n 3.698115 | \n 0.161356 | \n 13.3984 | \n
\n \n 2 | \n 2018-10-03 | \n 134023.0 | \n 3020.83 | \n 212 | \n 154686.184167 | \n 20.891797 | \n 8.550000 | \n 52.808333 | \n 6.381178 | \n 0.117507 | \n 13.4023 | \n
\n \n 3 | \n 2018-10-04 | \n 124765.0 | \n 5599.23 | \n 223 | \n 120345.545833 | \n 18.641687 | \n 10.202083 | \n 48.854167 | \n 2.393757 | \n 0.761287 | \n 12.4765 | \n
\n \n 4 | \n 2018-10-05 | \n 134414.0 | \n 4702.65 | \n 243 | \n 162533.103542 | \n 22.031219 | \n 11.497917 | \n 45.783333 | \n 0.338422 | \n 1.842860 | \n 13.4414 | \n
\n \n
\n
"
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"zjxz_daily['发电量(万千瓦时)'] = zjxz_daily['发电量(千瓦时)'] / 10000\n",
"zjxz_daily.head()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 5,
"outputs": [],
"source": [
"zjxz_daily.rename(columns={'流量 (m3/h)': 'flow', '温度(℃)': 'temperature', '含氧量(%)': 'r_O2'}, inplace=True)\n",
"zjxz_daily['c_smoke'] = zjxz_daily['flow'] * zjxz_daily['烟尘浓度(mg/m3)']\n",
"zjxz_daily['c_NO2'] = zjxz_daily['flow'] * zjxz_daily['氮氧化物浓度(mg/m3)']\n",
"zjxz_daily['c_SO2'] = zjxz_daily['flow'] * zjxz_daily['二氧化硫浓度(mg/m3)']\n",
"zjxz_daily['企业名称'] = '浙江秀舟热电有限公司'"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 6,
"outputs": [],
"source": [
"zjxz_daily_final = zjxz_daily[\n",
" ['days', '企业名称', 'r_O2', 'temperature', '发电量(万千瓦时)', '供热量(吉焦)', 'c_smoke', 'c_NO2', 'c_SO2', 'flow', '燃料消耗量(吨)']].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [],
"source": [
"wxxs_daily.rename(columns={'Unnamed: 0': 'days'}, inplace=True)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 8,
"outputs": [],
"source": [
"num_cols = [x for x in wxxs_daily.columns if x not in ['days', '企业名称', '机组1_状态', '机组2_状态']]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 9,
"outputs": [
{
"data": {
"text/plain": "(112, 23)"
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wxxs_daily.dropna(inplace=True)\n",
"wxxs_daily = wxxs_daily[~((wxxs_daily['机组1_状态'] == '停运') & (wxxs_daily['机组2_状态'] == '停运'))].copy()\n",
"wxxs_daily.shape"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [
{
"data": {
"text/plain": "Index(['days', '发电量_1(万千瓦时)', '供热量_1(吉焦)', '燃料消耗量_1(吨)', '发电量_2(万千瓦时)',\n '供热量_2(吉焦)', '燃料消耗量_2(吨)', '企业名称', '发电量(万千瓦时)', '供热量(吉焦)', '燃料消耗量(吨)',\n '机组1_二氧化硫浓度(mg/m3)', '机组1_氮氧化物浓度(mg/m3)', '机组1_烟尘浓度(mg/m3)',\n '机组1_流速(m/s)', '机组1_流量(m3/h)', '机组1_状态', '机组2_二氧化硫浓度(mg/m3)',\n '机组2_氮氧化物浓度(mg/m3)', '机组2_烟尘浓度(mg/m3)', '机组2_流速(m/s)', '机组2_流量(m3/h)',\n '机组2_状态'],\n dtype='object')"
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wxxs_daily.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 11,
"outputs": [],
"source": [
"wxxs_unit_1 = wxxs_daily[['days', '企业名称']].copy()\n",
"wxxs_unit_2 = wxxs_daily[['days', '企业名称']].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 12,
"outputs": [],
"source": [
"wxxs_unit_1['c_smoke'] = wxxs_daily['机组1_流量(m3/h)'] * wxxs_daily['机组1_烟尘浓度(mg/m3)']\n",
"wxxs_unit_1['c_NO2'] = wxxs_daily['机组1_流量(m3/h)'] * wxxs_daily['机组1_氮氧化物浓度(mg/m3)']\n",
"wxxs_unit_1['c_SO2'] = wxxs_daily['机组1_流量(m3/h)'] * wxxs_daily['机组1_二氧化硫浓度(mg/m3)']\n",
"wxxs_unit_1['flow'] = wxxs_daily['机组1_流量(m3/h)']\n",
"wxxs_unit_1['r_O2'] = np.nan\n",
"wxxs_unit_1['temperature'] = np.nan\n",
"wxxs_unit_1['发电量(万千瓦时)'] = wxxs_daily['发电量_1(万千瓦时)']\n",
"wxxs_unit_1['供热量(吉焦)'] = wxxs_daily['供热量_1(吉焦)']\n",
"wxxs_unit_1['燃料消耗量(吨)'] = wxxs_daily['燃料消耗量_1(吨)']\n",
"\n",
"wxxs_unit_2['c_smoke'] = wxxs_daily['机组2_流量(m3/h)'] * wxxs_daily['机组2_烟尘浓度(mg/m3)']\n",
"wxxs_unit_2['c_NO2'] = wxxs_daily['机组2_流量(m3/h)'] * wxxs_daily['机组2_氮氧化物浓度(mg/m3)']\n",
"wxxs_unit_2['c_SO2'] = wxxs_daily['机组2_流量(m3/h)'] * wxxs_daily['机组2_二氧化硫浓度(mg/m3)']\n",
"wxxs_unit_2['flow'] = wxxs_daily['机组2_流量(m3/h)']\n",
"wxxs_unit_2['r_O2'] = np.nan\n",
"wxxs_unit_2['temperature'] = np.nan\n",
"wxxs_unit_2['发电量(万千瓦时)'] = wxxs_daily['发电量_2(万千瓦时)']\n",
"wxxs_unit_2['供热量(吉焦)'] = wxxs_daily['供热量_2(吉焦)']\n",
"wxxs_unit_2['燃料消耗量(吨)'] = wxxs_daily['燃料消耗量_2(吨)']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 13,
"outputs": [],
"source": [
"wxxs_daily_final = pd.concat([wxxs_unit_1, wxxs_unit_2], axis=0)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 14,
"outputs": [
{
"data": {
"text/plain": "(59, 28)"
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hddj_daily.rename(columns={'Unnamed: 0': 'days'}, inplace=True)\n",
"hddj_daily.shape"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 15,
"outputs": [
{
"data": {
"text/plain": "Index(['days', '发电量_1(万千瓦时)', '供热量_1(吉焦)', '燃料消耗量_1(吨)', '发电量_2(万千瓦时)',\n '供热量_2(吉焦)', '燃料消耗量_2(吨)', '企业名称', '机组1_流量 (m3/h)', '机组1_NOx浓度(mg/m3)',\n '机组1_SO2浓度(mg/m3)', '机组1_烟尘浓度(mg/m3)', '机组1_含氧量(%)', '机组1_温度(℃)',\n '机组1_烟气湿度(%)', '机组1_烟气压力(千帕)', '机组1_烟气流速(m/s)', '机组1_状态',\n '机组2_流量 (m3/h)', '机组2_NOx浓度(mg/m3)', '机组2_SO2浓度(mg/m3)',\n '机组2_烟尘浓度(mg/m3)', '机组2_含氧量(%)', '机组2_温度(℃)', '机组2_烟气湿度(%)',\n '机组2_烟气压力(千帕)', '机组2_烟气流速(m/s)', '机组2_状态'],\n dtype='object')"
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hddj_daily.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 16,
"outputs": [],
"source": [
"hddj_unit_1 = hddj_daily[['days', '企业名称']].copy()\n",
"hddj_unit_2 = hddj_daily[['days', '企业名称']].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 17,
"outputs": [],
"source": [
"hddj_unit_1['c_smoke'] = hddj_daily['机组1_流量 (m3/h)'] * hddj_daily['机组1_烟尘浓度(mg/m3)']\n",
"hddj_unit_1['c_NO2'] = hddj_daily['机组1_流量 (m3/h)'] * hddj_daily['机组1_NOx浓度(mg/m3)']\n",
"hddj_unit_1['c_SO2'] = hddj_daily['机组1_流量 (m3/h)'] * hddj_daily['机组1_SO2浓度(mg/m3)']\n",
"hddj_unit_1['flow'] = hddj_daily['机组1_流量 (m3/h)']\n",
"hddj_unit_1['r_O2'] = hddj_daily['机组1_含氧量(%)']\n",
"hddj_unit_1['发电量(万千瓦时)'] = hddj_daily['发电量_1(万千瓦时)']\n",
"hddj_unit_1['供热量(吉焦)'] = hddj_daily['供热量_1(吉焦)']\n",
"hddj_unit_1['temperature'] = hddj_daily['机组1_温度(℃)']\n",
"hddj_unit_1['燃料消耗量(吨)'] = hddj_daily['燃料消耗量_1(吨)']\n",
"\n",
"hddj_unit_2['c_smoke'] = hddj_daily['机组2_流量 (m3/h)'] * hddj_daily['机组2_烟尘浓度(mg/m3)']\n",
"hddj_unit_2['c_NO2'] = hddj_daily['机组2_流量 (m3/h)'] * hddj_daily['机组2_NOx浓度(mg/m3)']\n",
"hddj_unit_2['c_SO2'] = hddj_daily['机组2_流量 (m3/h)'] * hddj_daily['机组2_SO2浓度(mg/m3)']\n",
"hddj_unit_2['flow'] = hddj_daily['机组2_流量 (m3/h)']\n",
"hddj_unit_2['r_O2'] = hddj_daily['机组2_含氧量(%)']\n",
"hddj_unit_2['发电量(万千瓦时)'] = hddj_daily['发电量_2(万千瓦时)']\n",
"hddj_unit_2['供热量(吉焦)'] = hddj_daily['供热量_2(吉焦)']\n",
"hddj_unit_2['temperature'] = hddj_daily['机组2_温度(℃)']\n",
"hddj_unit_2['燃料消耗量(吨)'] = hddj_daily['燃料消耗量_2(吨)']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 18,
"outputs": [],
"source": [
"hddj_daily_final = pd.concat([hddj_unit_1, hddj_unit_2], axis=0)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 19,
"outputs": [
{
"data": {
"text/plain": "(31, 26)"
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jtzh_daily.rename(columns={'Unnamed: 0': 'days'}, inplace=True)\n",
"jtzh_daily['机组1_状态'] = (jtzh_daily['机组1_状态'] == '正常运行') * 1\n",
"jtzh_daily['机组2_状态'] = (jtzh_daily['机组2_状态'] == '正常运行') * 1\n",
"jtzh_daily.shape"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 20,
"outputs": [
{
"data": {
"text/plain": "Index(['days', '发电量_1(万千瓦时)', '供热量_1(吉焦)', '燃料消耗量_1(吨)', '发电量_2(万千瓦时)',\n '供热量_2(吉焦)', '燃料消耗量_2(吨)', '企业名称', '机组1_流量 (m3/h)', '机组1_NOx浓度(mg/m3)',\n '机组1_SO2浓度(mg/m3)', '机组1_烟尘浓度(mg/m3)', '机组1_含氧量(%)', '机组1_温度(℃)',\n '机组1_烟气湿度(%)', '机组1_烟气流速(m/s)', '机组1_状态', '机组2_流量 (m3/h)',\n '机组2_NOx浓度(mg/m3)', '机组2_SO2浓度(mg/m3)', '机组2_烟尘浓度(mg/m3)', '机组2_含氧量(%)',\n '机组2_温度(℃)', '机组2_烟气湿度(%)', '机组2_烟气流速(m/s)', '机组2_状态'],\n dtype='object')"
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jtzh_daily.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 21,
"outputs": [],
"source": [
"jtzh_unit_1 = jtzh_daily[['days', '企业名称']].copy()\n",
"jtzh_unit_2 = jtzh_daily[['days', '企业名称']].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 22,
"outputs": [],
"source": [
"jtzh_unit_1['c_smoke'] = jtzh_daily['机组1_流量 (m3/h)'] * jtzh_daily['机组1_烟尘浓度(mg/m3)']\n",
"jtzh_unit_1['c_NO2'] = jtzh_daily['机组1_流量 (m3/h)'] * jtzh_daily['机组1_NOx浓度(mg/m3)']\n",
"jtzh_unit_1['c_SO2'] = jtzh_daily['机组1_流量 (m3/h)'] * jtzh_daily['机组1_SO2浓度(mg/m3)']\n",
"jtzh_unit_1['flow'] = jtzh_daily['机组1_流量 (m3/h)']\n",
"jtzh_unit_1['r_O2'] = jtzh_daily['机组1_含氧量(%)']\n",
"jtzh_unit_1['temperature'] = jtzh_daily['机组1_温度(℃)']\n",
"jtzh_unit_1['发电量(万千瓦时)'] = jtzh_daily['发电量_2(万千瓦时)']\n",
"jtzh_unit_1['供热量(吉焦)'] = jtzh_daily['供热量_2(吉焦)']\n",
"jtzh_unit_1['燃料消耗量(吨)'] = jtzh_daily['燃料消耗量_1(吨)']\n",
"\n",
"jtzh_unit_2['c_smoke'] = jtzh_daily['机组2_流量 (m3/h)'] * jtzh_daily['机组2_烟尘浓度(mg/m3)']\n",
"jtzh_unit_2['c_NO2'] = jtzh_daily['机组2_流量 (m3/h)'] * jtzh_daily['机组2_NOx浓度(mg/m3)']\n",
"jtzh_unit_2['c_SO2'] = jtzh_daily['机组2_流量 (m3/h)'] * jtzh_daily['机组2_SO2浓度(mg/m3)']\n",
"jtzh_unit_2['flow'] = jtzh_daily['机组2_流量 (m3/h)']\n",
"jtzh_unit_2['r_O2'] = jtzh_daily['机组2_含氧量(%)']\n",
"jtzh_unit_2['temperature'] = jtzh_daily['机组2_温度(℃)']\n",
"jtzh_unit_2['发电量(万千瓦时)'] = jtzh_daily['发电量_2(万千瓦时)']\n",
"jtzh_unit_2['供热量(吉焦)'] = jtzh_daily['供热量_2(吉焦)']\n",
"jtzh_unit_2['燃料消耗量(吨)'] = jtzh_daily['燃料消耗量_2(吨)']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 23,
"outputs": [
{
"data": {
"text/plain": " days 企业名称 c_smoke c_NO2 c_SO2 \\\n0 2022-05-01 建投遵化热电有限责任公司 1.467475e+06 1.063321e+07 1.055453e+07 \n1 2022-05-02 建投遵化热电有限责任公司 1.558803e+06 1.328556e+07 1.074905e+07 \n2 2022-05-03 建投遵化热电有限责任公司 1.427659e+06 1.111851e+07 9.591219e+06 \n3 2022-05-04 建投遵化热电有限责任公司 1.499975e+06 1.164537e+07 1.007516e+07 \n4 2022-05-05 建投遵化热电有限责任公司 1.724199e+06 1.227060e+07 1.193453e+07 \n.. ... ... ... ... ... \n26 2022-05-27 建投遵化热电有限责任公司 1.020390e+06 1.173919e+07 1.101318e+07 \n27 2022-05-28 建投遵化热电有限责任公司 1.169393e+06 1.393048e+07 1.335698e+07 \n28 2022-05-29 建投遵化热电有限责任公司 1.124243e+06 1.267043e+07 1.129934e+07 \n29 2022-05-30 建投遵化热电有限责任公司 1.296293e+06 1.442430e+07 1.434195e+07 \n30 2022-05-31 建投遵化热电有限责任公司 1.554891e+06 1.758048e+07 1.593381e+07 \n\n flow r_O2 temperature 发电量(万千瓦时) 供热量(吉焦) 燃料消耗量(吨) \n0 820965 7.795833 52.320833 0.000 0 1889 \n1 907380 7.295833 53.145833 0.000 0 2622 \n2 771360 7.650000 51.841667 0.000 0 2233 \n3 780390 7.462500 51.808333 0.000 0 2203 \n4 870075 7.195833 52.354167 0.000 0 2524 \n.. ... ... ... ... ... ... \n26 836100 6.329167 44.741667 467.106 0 2401 \n27 895515 6.183333 45.587500 504.900 0 2611 \n28 837945 6.425000 45.545833 462.822 0 2846 \n29 915030 6.162500 45.175000 528.960 0 2981 \n30 992220 5.570833 46.100000 672.180 0 3560 \n\n[62 rows x 11 columns]",
"text/html": "\n\n
\n \n \n | \n days | \n 企业名称 | \n c_smoke | \n c_NO2 | \n c_SO2 | \n flow | \n r_O2 | \n temperature | \n 发电量(万千瓦时) | \n 供热量(吉焦) | \n 燃料消耗量(吨) | \n
\n \n \n \n 0 | \n 2022-05-01 | \n 建投遵化热电有限责任公司 | \n 1.467475e+06 | \n 1.063321e+07 | \n 1.055453e+07 | \n 820965 | \n 7.795833 | \n 52.320833 | \n 0.000 | \n 0 | \n 1889 | \n
\n \n 1 | \n 2022-05-02 | \n 建投遵化热电有限责任公司 | \n 1.558803e+06 | \n 1.328556e+07 | \n 1.074905e+07 | \n 907380 | \n 7.295833 | \n 53.145833 | \n 0.000 | \n 0 | \n 2622 | \n
\n \n 2 | \n 2022-05-03 | \n 建投遵化热电有限责任公司 | \n 1.427659e+06 | \n 1.111851e+07 | \n 9.591219e+06 | \n 771360 | \n 7.650000 | \n 51.841667 | \n 0.000 | \n 0 | \n 2233 | \n
\n \n 3 | \n 2022-05-04 | \n 建投遵化热电有限责任公司 | \n 1.499975e+06 | \n 1.164537e+07 | \n 1.007516e+07 | \n 780390 | \n 7.462500 | \n 51.808333 | \n 0.000 | \n 0 | \n 2203 | \n
\n \n 4 | \n 2022-05-05 | \n 建投遵化热电有限责任公司 | \n 1.724199e+06 | \n 1.227060e+07 | \n 1.193453e+07 | \n 870075 | \n 7.195833 | \n 52.354167 | \n 0.000 | \n 0 | \n 2524 | \n
\n \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n
\n \n 26 | \n 2022-05-27 | \n 建投遵化热电有限责任公司 | \n 1.020390e+06 | \n 1.173919e+07 | \n 1.101318e+07 | \n 836100 | \n 6.329167 | \n 44.741667 | \n 467.106 | \n 0 | \n 2401 | \n
\n \n 27 | \n 2022-05-28 | \n 建投遵化热电有限责任公司 | \n 1.169393e+06 | \n 1.393048e+07 | \n 1.335698e+07 | \n 895515 | \n 6.183333 | \n 45.587500 | \n 504.900 | \n 0 | \n 2611 | \n
\n \n 28 | \n 2022-05-29 | \n 建投遵化热电有限责任公司 | \n 1.124243e+06 | \n 1.267043e+07 | \n 1.129934e+07 | \n 837945 | \n 6.425000 | \n 45.545833 | \n 462.822 | \n 0 | \n 2846 | \n
\n \n 29 | \n 2022-05-30 | \n 建投遵化热电有限责任公司 | \n 1.296293e+06 | \n 1.442430e+07 | \n 1.434195e+07 | \n 915030 | \n 6.162500 | \n 45.175000 | \n 528.960 | \n 0 | \n 2981 | \n
\n \n 30 | \n 2022-05-31 | \n 建投遵化热电有限责任公司 | \n 1.554891e+06 | \n 1.758048e+07 | \n 1.593381e+07 | \n 992220 | \n 5.570833 | \n 46.100000 | \n 672.180 | \n 0 | \n 3560 | \n
\n \n
\n
62 rows × 11 columns
\n
"
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jtzh_daily_final = pd.concat([jtzh_unit_1, jtzh_unit_2], axis=0)\n",
"jtzh_daily_final"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 24,
"outputs": [],
"source": [
"all_daily_data = pd.concat([zjxz_daily_final, wxxs_daily_final, hddj_daily_final, jtzh_daily_final])"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 25,
"outputs": [],
"source": [
"unit_features = pd.read_excel('data/电厂特征表.xlsx', header=None).T"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 26,
"outputs": [
{
"data": {
"text/plain": " 企业名称 地址 省份 经度 纬度 \\\n1 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°51′5.54″ 30°39′14.76″ \n2 武乡西山发电有限责任公司 山西省武乡县丰州镇下城村 山西省 112°51′11″ 36°50′0″ \n3 国电电力邯郸东郊热电有限责任公司 河北肥乡经济开发区光明西路11号 河北省 114°39'0\" 36°34'0\" \n4 建投遵化热电有限责任公司 河北省遵化市新店子镇程庄子村 河北省 117°58'40\" 40°4'33\" \n\n 烟囱高度(m) 脱硝工艺 脱硝剂名称 脱硝设备数量 脱硫工艺 ... 发电机组1_单机容量(MW) \\\n1 80 SNCR SCR 氨水 3 石灰石-石膏湿法 ... 15 \n2 240 SCR 尿素 2 石灰石--石膏湿法 ... 600 \n3 NaN 采用高效低氮燃烧器+SCR NaN NaN 石灰石-石膏湿法 ... 350 \n4 NaN 采用高效低氮燃烧器+SCR NaN NaN 石灰石-石膏湿法 ... 350 \n\n 发电机组1_投产日期 发电机组1_汽轮机类型 发电机组1_压力参数 发电机组1_冷却方式 发电机组2_单机容量(MW) \\\n1 2014-07-01 00:00:00 背压式 高压 水冷-闭式循环 15 \n2 2006-10-07 00:00:00 抽凝式 亚临界 空冷-直接空冷 600 \n3 2019-06-08 00:00:00 抽凝式 超超临界 水冷-闭式循环 350 \n4 2019-07-09 00:00:00 抽凝式 超临界 水冷-闭式循环 350 \n\n 发电机组2_投产日期 发电机组2_汽轮机类型 发电机组2_压力参数 发电机组2_冷却方式 \n1 2018-08-01 00:00:00 抽背式 高压 水冷-闭式循环 \n2 2007-01-07 00:00:00 抽凝式 亚临界 空冷-直接空冷 \n3 2019-06-08 00:00:00 抽凝式 超超临界 水冷-闭式循环 \n4 2020-05-02 00:00:00 抽凝式 超临界 水冷-闭式循环 \n\n[4 rows x 33 columns]",
"text/html": "\n\n
\n \n \n | \n 企业名称 | \n 地址 | \n 省份 | \n 经度 | \n 纬度 | \n 烟囱高度(m) | \n 脱硝工艺 | \n 脱硝剂名称 | \n 脱硝设备数量 | \n 脱硫工艺 | \n ... | \n 发电机组1_单机容量(MW) | \n 发电机组1_投产日期 | \n 发电机组1_汽轮机类型 | \n 发电机组1_压力参数 | \n 发电机组1_冷却方式 | \n 发电机组2_单机容量(MW) | \n 发电机组2_投产日期 | \n 发电机组2_汽轮机类型 | \n 发电机组2_压力参数 | \n 发电机组2_冷却方式 | \n
\n \n \n \n 1 | \n 浙江秀舟热电有限公司 | \n 嘉兴市南湖区凤桥镇 | \n 浙江省 | \n 120°51′5.54″ | \n 30°39′14.76″ | \n 80 | \n SNCR SCR | \n 氨水 | \n 3 | \n 石灰石-石膏湿法 | \n ... | \n 15 | \n 2014-07-01 00:00:00 | \n 背压式 | \n 高压 | \n 水冷-闭式循环 | \n 15 | \n 2018-08-01 00:00:00 | \n 抽背式 | \n 高压 | \n 水冷-闭式循环 | \n
\n \n 2 | \n 武乡西山发电有限责任公司 | \n 山西省武乡县丰州镇下城村 | \n 山西省 | \n 112°51′11″ | \n 36°50′0″ | \n 240 | \n SCR | \n 尿素 | \n 2 | \n 石灰石--石膏湿法 | \n ... | \n 600 | \n 2006-10-07 00:00:00 | \n 抽凝式 | \n 亚临界 | \n 空冷-直接空冷 | \n 600 | \n 2007-01-07 00:00:00 | \n 抽凝式 | \n 亚临界 | \n 空冷-直接空冷 | \n
\n \n 3 | \n 国电电力邯郸东郊热电有限责任公司 | \n 河北肥乡经济开发区光明西路11号 | \n 河北省 | \n 114°39'0\" | \n 36°34'0\" | \n NaN | \n 采用高效低氮燃烧器+SCR | \n NaN | \n NaN | \n 石灰石-石膏湿法 | \n ... | \n 350 | \n 2019-06-08 00:00:00 | \n 抽凝式 | \n 超超临界 | \n 水冷-闭式循环 | \n 350 | \n 2019-06-08 00:00:00 | \n 抽凝式 | \n 超超临界 | \n 水冷-闭式循环 | \n
\n \n 4 | \n 建投遵化热电有限责任公司 | \n 河北省遵化市新店子镇程庄子村 | \n 河北省 | \n 117°58'40\" | \n 40°4'33\" | \n NaN | \n 采用高效低氮燃烧器+SCR | \n NaN | \n NaN | \n 石灰石-石膏湿法 | \n ... | \n 350 | \n 2019-07-09 00:00:00 | \n 抽凝式 | \n 超临界 | \n 水冷-闭式循环 | \n 350 | \n 2020-05-02 00:00:00 | \n 抽凝式 | \n 超临界 | \n 水冷-闭式循环 | \n
\n \n
\n
4 rows × 33 columns
\n
"
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"unit_features = unit_features.rename(columns=unit_features.iloc[0]).drop(unit_features.index[0])\n",
"unit_features.head()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 27,
"outputs": [],
"source": [
"unit_features.to_excel('data/机组特征表.xlsx')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 28,
"outputs": [],
"source": [
"unit_features_used = unit_features[['企业名称', '生产设备类型', '燃料类型', '低位发热量(GJ/t)']].copy()\n",
"unit_features_used['汽轮机类型'] = unit_features['发电机组1_汽轮机类型']\n",
"unit_features_used['冷却方式'] = unit_features['发电机组1_冷却方式']\n",
"unit_features_used['额定蒸发量'] = unit_features['锅炉1额定蒸发量 t/h'] + unit_features['锅炉2额定蒸发量 t/h']\n",
"unit_features_used['压力参数'] = unit_features['发电机组1_压力参数']\n",
"unit_features_used['单机容量'] = unit_features['发电机组1_单机容量(MW)'] + unit_features['发电机组2_单机容量(MW)']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 29,
"outputs": [],
"source": [
"for i in range(2, 5):\n",
" unit_features_used.loc[i, '额定蒸发量'] = unit_features_used.loc[i, '额定蒸发量'] / 2\n",
" unit_features_used.loc[i, '单机容量'] = unit_features_used.loc[i, '单机容量'] / 2"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 30,
"outputs": [
{
"data": {
"text/plain": " 企业名称 生产设备类型 燃料类型 低位发热量(GJ/t) 汽轮机类型 冷却方式 额定蒸发量 \\\n1 浙江秀舟热电有限公司 高温高压循环流化床锅炉 中高挥发分烟煤 20.501 背压式 水冷-闭式循环 230 \n2 武乡西山发电有限责任公司 煤粉锅炉 褐煤 18.643 抽凝式 空冷-直接空冷 2080.0 \n3 国电电力邯郸东郊热电有限责任公司 煤粉锅炉 低挥发分烟煤 19.087 抽凝式 水冷-闭式循环 1125.0 \n4 建投遵化热电有限责任公司 煤粉锅炉 一般烟煤 14.682 抽凝式 水冷-闭式循环 1172.0 \n\n 压力参数 单机容量 \n1 高压 30 \n2 亚临界 600.0 \n3 超超临界 350.0 \n4 超临界 350.0 ",
"text/html": "\n\n
\n \n \n | \n 企业名称 | \n 生产设备类型 | \n 燃料类型 | \n 低位发热量(GJ/t) | \n 汽轮机类型 | \n 冷却方式 | \n 额定蒸发量 | \n 压力参数 | \n 单机容量 | \n
\n \n \n \n 1 | \n 浙江秀舟热电有限公司 | \n 高温高压循环流化床锅炉 | \n 中高挥发分烟煤 | \n 20.501 | \n 背压式 | \n 水冷-闭式循环 | \n 230 | \n 高压 | \n 30 | \n
\n \n 2 | \n 武乡西山发电有限责任公司 | \n 煤粉锅炉 | \n 褐煤 | \n 18.643 | \n 抽凝式 | \n 空冷-直接空冷 | \n 2080.0 | \n 亚临界 | \n 600.0 | \n
\n \n 3 | \n 国电电力邯郸东郊热电有限责任公司 | \n 煤粉锅炉 | \n 低挥发分烟煤 | \n 19.087 | \n 抽凝式 | \n 水冷-闭式循环 | \n 1125.0 | \n 超超临界 | \n 350.0 | \n
\n \n 4 | \n 建投遵化热电有限责任公司 | \n 煤粉锅炉 | \n 一般烟煤 | \n 14.682 | \n 抽凝式 | \n 水冷-闭式循环 | \n 1172.0 | \n 超临界 | \n 350.0 | \n
\n \n
\n
"
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"unit_features_used"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 31,
"outputs": [],
"source": [
"final_data = all_daily_data.merge(unit_features_used, how='left', on='企业名称')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 32,
"outputs": [],
"source": [
"import datetime as dt"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 33,
"outputs": [],
"source": [
"def cal_timedelta(x):\n",
" date = dt.datetime.strptime(x, '%Y-%m-%d')\n",
" date = dt.date(date.year, date.month, date.day)\n",
" start_date = dt.date(date.year, 1, 1)\n",
" time_delta = (date - start_date).days\n",
" return time_delta"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 34,
"outputs": [],
"source": [
"final_data['day_of_year'] = final_data.days.apply(cal_timedelta)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 35,
"outputs": [],
"source": [
"final_data['week_of_year'] = final_data['day_of_year'] // 7"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 36,
"outputs": [
{
"data": {
"text/plain": " days 企业名称 r_O2 temperature 发电量(万千瓦时) 供热量(吉焦) \\\n0 2018-10-01 浙江秀舟热电有限公司 9.900000 51.250000 15.6796 6536.83 \n1 2018-10-02 浙江秀舟热电有限公司 9.400000 50.679167 13.3984 2484.64 \n2 2018-10-03 浙江秀舟热电有限公司 8.550000 52.808333 13.4023 3020.83 \n3 2018-10-04 浙江秀舟热电有限公司 10.202083 48.854167 12.4765 5599.23 \n4 2018-10-05 浙江秀舟热电有限公司 11.497917 45.783333 13.4414 4702.65 \n... ... ... ... ... ... ... \n1486 2022-05-27 建投遵化热电有限责任公司 6.329167 44.741667 467.1060 0.00 \n1487 2022-05-28 建投遵化热电有限责任公司 6.183333 45.587500 504.9000 0.00 \n1488 2022-05-29 建投遵化热电有限责任公司 6.425000 45.545833 462.8220 0.00 \n1489 2022-05-30 建投遵化热电有限责任公司 6.162500 45.175000 528.9600 0.00 \n1490 2022-05-31 建投遵化热电有限责任公司 5.570833 46.100000 672.1800 0.00 \n\n c_smoke c_NO2 c_SO2 flow ... \\\n0 2.872405e+04 3.979907e+06 7.665088e+05 162345.192917 ... \n1 2.261807e+04 2.639425e+06 5.183845e+05 140175.330833 ... \n2 1.817677e+04 3.231672e+06 9.870800e+05 154686.184167 ... \n3 9.161746e+04 2.243444e+06 2.880779e+05 120345.545833 ... \n4 2.995257e+05 3.580802e+06 5.500482e+04 162533.103542 ... \n... ... ... ... ... ... \n1486 1.020390e+06 1.173919e+07 1.101318e+07 836100.000000 ... \n1487 1.169393e+06 1.393048e+07 1.335698e+07 895515.000000 ... \n1488 1.124243e+06 1.267043e+07 1.129934e+07 837945.000000 ... \n1489 1.296293e+06 1.442430e+07 1.434195e+07 915030.000000 ... \n1490 1.554891e+06 1.758048e+07 1.593381e+07 992220.000000 ... \n\n 生产设备类型 燃料类型 低位发热量(GJ/t) 汽轮机类型 冷却方式 额定蒸发量 压力参数 单机容量 \\\n0 高温高压循环流化床锅炉 中高挥发分烟煤 20.501 背压式 水冷-闭式循环 230 高压 30 \n1 高温高压循环流化床锅炉 中高挥发分烟煤 20.501 背压式 水冷-闭式循环 230 高压 30 \n2 高温高压循环流化床锅炉 中高挥发分烟煤 20.501 背压式 水冷-闭式循环 230 高压 30 \n3 高温高压循环流化床锅炉 中高挥发分烟煤 20.501 背压式 水冷-闭式循环 230 高压 30 \n4 高温高压循环流化床锅炉 中高挥发分烟煤 20.501 背压式 水冷-闭式循环 230 高压 30 \n... ... ... ... ... ... ... ... ... \n1486 煤粉锅炉 一般烟煤 14.682 抽凝式 水冷-闭式循环 1172.0 超临界 350.0 \n1487 煤粉锅炉 一般烟煤 14.682 抽凝式 水冷-闭式循环 1172.0 超临界 350.0 \n1488 煤粉锅炉 一般烟煤 14.682 抽凝式 水冷-闭式循环 1172.0 超临界 350.0 \n1489 煤粉锅炉 一般烟煤 14.682 抽凝式 水冷-闭式循环 1172.0 超临界 350.0 \n1490 煤粉锅炉 一般烟煤 14.682 抽凝式 水冷-闭式循环 1172.0 超临界 350.0 \n\n day_of_year week_of_year \n0 273 39 \n1 274 39 \n2 275 39 \n3 276 39 \n4 277 39 \n... ... ... \n1486 146 20 \n1487 147 21 \n1488 148 21 \n1489 149 21 \n1490 150 21 \n\n[1491 rows x 21 columns]",
"text/html": "\n\n
\n \n \n | \n days | \n 企业名称 | \n r_O2 | \n temperature | \n 发电量(万千瓦时) | \n 供热量(吉焦) | \n c_smoke | \n c_NO2 | \n c_SO2 | \n flow | \n ... | \n 生产设备类型 | \n 燃料类型 | \n 低位发热量(GJ/t) | \n 汽轮机类型 | \n 冷却方式 | \n 额定蒸发量 | \n 压力参数 | \n 单机容量 | \n day_of_year | \n week_of_year | \n
\n \n \n \n 0 | \n 2018-10-01 | \n 浙江秀舟热电有限公司 | \n 9.900000 | \n 51.250000 | \n 15.6796 | \n 6536.83 | \n 2.872405e+04 | \n 3.979907e+06 | \n 7.665088e+05 | \n 162345.192917 | \n ... | \n 高温高压循环流化床锅炉 | \n 中高挥发分烟煤 | \n 20.501 | \n 背压式 | \n 水冷-闭式循环 | \n 230 | \n 高压 | \n 30 | \n 273 | \n 39 | \n
\n \n 1 | \n 2018-10-02 | \n 浙江秀舟热电有限公司 | \n 9.400000 | \n 50.679167 | \n 13.3984 | \n 2484.64 | \n 2.261807e+04 | \n 2.639425e+06 | \n 5.183845e+05 | \n 140175.330833 | \n ... | \n 高温高压循环流化床锅炉 | \n 中高挥发分烟煤 | \n 20.501 | \n 背压式 | \n 水冷-闭式循环 | \n 230 | \n 高压 | \n 30 | \n 274 | \n 39 | \n
\n \n 2 | \n 2018-10-03 | \n 浙江秀舟热电有限公司 | \n 8.550000 | \n 52.808333 | \n 13.4023 | \n 3020.83 | \n 1.817677e+04 | \n 3.231672e+06 | \n 9.870800e+05 | \n 154686.184167 | \n ... | \n 高温高压循环流化床锅炉 | \n 中高挥发分烟煤 | \n 20.501 | \n 背压式 | \n 水冷-闭式循环 | \n 230 | \n 高压 | \n 30 | \n 275 | \n 39 | \n
\n \n 3 | \n 2018-10-04 | \n 浙江秀舟热电有限公司 | \n 10.202083 | \n 48.854167 | \n 12.4765 | \n 5599.23 | \n 9.161746e+04 | \n 2.243444e+06 | \n 2.880779e+05 | \n 120345.545833 | \n ... | \n 高温高压循环流化床锅炉 | \n 中高挥发分烟煤 | \n 20.501 | \n 背压式 | \n 水冷-闭式循环 | \n 230 | \n 高压 | \n 30 | \n 276 | \n 39 | \n
\n \n 4 | \n 2018-10-05 | \n 浙江秀舟热电有限公司 | \n 11.497917 | \n 45.783333 | \n 13.4414 | \n 4702.65 | \n 2.995257e+05 | \n 3.580802e+06 | \n 5.500482e+04 | \n 162533.103542 | \n ... | \n 高温高压循环流化床锅炉 | \n 中高挥发分烟煤 | \n 20.501 | \n 背压式 | \n 水冷-闭式循环 | \n 230 | \n 高压 | \n 30 | \n 277 | \n 39 | \n
\n \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n
\n \n 1486 | \n 2022-05-27 | \n 建投遵化热电有限责任公司 | \n 6.329167 | \n 44.741667 | \n 467.1060 | \n 0.00 | \n 1.020390e+06 | \n 1.173919e+07 | \n 1.101318e+07 | \n 836100.000000 | \n ... | \n 煤粉锅炉 | \n 一般烟煤 | \n 14.682 | \n 抽凝式 | \n 水冷-闭式循环 | \n 1172.0 | \n 超临界 | \n 350.0 | \n 146 | \n 20 | \n
\n \n 1487 | \n 2022-05-28 | \n 建投遵化热电有限责任公司 | \n 6.183333 | \n 45.587500 | \n 504.9000 | \n 0.00 | \n 1.169393e+06 | \n 1.393048e+07 | \n 1.335698e+07 | \n 895515.000000 | \n ... | \n 煤粉锅炉 | \n 一般烟煤 | \n 14.682 | \n 抽凝式 | \n 水冷-闭式循环 | \n 1172.0 | \n 超临界 | \n 350.0 | \n 147 | \n 21 | \n
\n \n 1488 | \n 2022-05-29 | \n 建投遵化热电有限责任公司 | \n 6.425000 | \n 45.545833 | \n 462.8220 | \n 0.00 | \n 1.124243e+06 | \n 1.267043e+07 | \n 1.129934e+07 | \n 837945.000000 | \n ... | \n 煤粉锅炉 | \n 一般烟煤 | \n 14.682 | \n 抽凝式 | \n 水冷-闭式循环 | \n 1172.0 | \n 超临界 | \n 350.0 | \n 148 | \n 21 | \n
\n \n 1489 | \n 2022-05-30 | \n 建投遵化热电有限责任公司 | \n 6.162500 | \n 45.175000 | \n 528.9600 | \n 0.00 | \n 1.296293e+06 | \n 1.442430e+07 | \n 1.434195e+07 | \n 915030.000000 | \n ... | \n 煤粉锅炉 | \n 一般烟煤 | \n 14.682 | \n 抽凝式 | \n 水冷-闭式循环 | \n 1172.0 | \n 超临界 | \n 350.0 | \n 149 | \n 21 | \n
\n \n 1490 | \n 2022-05-31 | \n 建投遵化热电有限责任公司 | \n 5.570833 | \n 46.100000 | \n 672.1800 | \n 0.00 | \n 1.554891e+06 | \n 1.758048e+07 | \n 1.593381e+07 | \n 992220.000000 | \n ... | \n 煤粉锅炉 | \n 一般烟煤 | \n 14.682 | \n 抽凝式 | \n 水冷-闭式循环 | \n 1172.0 | \n 超临界 | \n 350.0 | \n 150 | \n 21 | \n
\n \n
\n
1491 rows × 21 columns
\n
"
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"final_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 37,
"outputs": [],
"source": [
"final_data.to_csv('data/unit_train_data.csv', encoding='utf-8-sig', index=False)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 37,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}