{ "cells": [ { "cell_type": "code", "execution_count": 1, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "import matplotlib.pyplot as plt\n", "#新增加的两行\n", "from pylab import mpl\n", "\n", "# 设置显示中文字体\n", "\n", "mpl.rcParams[\"font.sans-serif\"] = [\"SimHei\"]\n", "\n", "mpl.rcParams[\"axes.unicode_minus\"] = False" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 2, "outputs": [ { "data": { "text/plain": " 日期 企业名称 地址 省份 经度 纬度 烟囱高度(m) \\\n0 2018-10-01 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°51′5.54″ 30°39′14.76″ 80 \n1 2018-10-02 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°51′5.54″ 30°39′14.76″ 80 \n2 2018-10-03 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°51′5.54″ 30°39′14.76″ 80 \n3 2018-10-04 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°51′5.54″ 30°39′14.76″ 80 \n4 2018-10-05 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°51′5.54″ 30°39′14.76″ 80 \n\n 脱硝工艺 脱硝剂名称 脱硝设备数量 ... 供热量(吉焦) 产渣量(吨) 机组运行时间(小时) 硫分(%) 脱硫副产品产量(吨) \\\n0 SNCR SCR 氨水 3 ... 6536.83 NaN 24.0 0.51 NaN \n1 SNCR SCR 氨水 3 ... 2484.64 NaN 24.0 0.51 NaN \n2 SNCR SCR 氨水 3 ... 3020.83 NaN 24.0 0.51 NaN \n3 SNCR SCR 氨水 3 ... 5599.23 NaN 24.0 0.51 72.52 \n4 SNCR SCR 氨水 3 ... 4702.65 NaN 24.0 0.51 NaN \n\n 脱硫剂使用量(吨) 脱硫设施运行时间(小时) 脱硝还原剂消耗量(吨) 脱硝运行时间(小时) 燃料消耗量(吨) \n0 5.06 24.0 2.98 24.0 323 \n1 5.04 24.0 2.97 24.0 218 \n2 5.04 24.0 2.95 24.0 212 \n3 5.03 24.0 2.98 24.0 223 \n4 5.06 24.0 3.01 24.0 243 \n\n[5 rows x 44 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
日期企业名称地址省份经度纬度烟囱高度(m)脱硝工艺脱硝剂名称脱硝设备数量...供热量(吉焦)产渣量(吨)机组运行时间(小时)硫分(%)脱硫副产品产量(吨)脱硫剂使用量(吨)脱硫设施运行时间(小时)脱硝还原剂消耗量(吨)脱硝运行时间(小时)燃料消耗量(吨)
02018-10-01浙江秀舟热电有限公司嘉兴市南湖区凤桥镇浙江省120°51′5.54″30°39′14.76″80SNCR SCR氨水3...6536.83NaN24.00.51NaN5.0624.02.9824.0323
12018-10-02浙江秀舟热电有限公司嘉兴市南湖区凤桥镇浙江省120°51′5.54″30°39′14.76″80SNCR SCR氨水3...2484.64NaN24.00.51NaN5.0424.02.9724.0218
22018-10-03浙江秀舟热电有限公司嘉兴市南湖区凤桥镇浙江省120°51′5.54″30°39′14.76″80SNCR SCR氨水3...3020.83NaN24.00.51NaN5.0424.02.9524.0212
32018-10-04浙江秀舟热电有限公司嘉兴市南湖区凤桥镇浙江省120°51′5.54″30°39′14.76″80SNCR SCR氨水3...5599.23NaN24.00.5172.525.0324.02.9824.0223
42018-10-05浙江秀舟热电有限公司嘉兴市南湖区凤桥镇浙江省120°51′5.54″30°39′14.76″80SNCR SCR氨水3...4702.65NaN24.00.51NaN5.0624.03.0124.0243
\n

5 rows × 44 columns

\n
" }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "zjxz_daily = pd.read_excel('./data/机器学习样表.xlsx', sheet_name=0, header=[0, 1])\n", "old_cols = zjxz_daily.columns\n", "new_cols = [x[0].strip() if 'Unnamed' in x[1] else x[0] + '_' + x[1] for x in old_cols]\n", "zjxz_daily.columns = new_cols\n", "zjxz_daily.head()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 3, "outputs": [], "source": [ "zjxz_daily_data = zjxz_daily[['日期', '企业名称', '发电量(千瓦时)', '供热量(吉焦)', '燃料消耗量(吨)']].copy()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 49, "outputs": [ { "data": { "text/plain": " 日期 企业名称 发电量(千瓦时) 供热量(吉焦) 燃料消耗量(吨)\n0 2018-10-01 浙江秀舟热电有限公司 156796.00 6536.83 323\n1 2018-10-02 浙江秀舟热电有限公司 133984.00 2484.64 218\n2 2018-10-03 浙江秀舟热电有限公司 134023.00 3020.83 212\n3 2018-10-04 浙江秀舟热电有限公司 124765.00 5599.23 223\n4 2018-10-05 浙江秀舟热电有限公司 134414.00 4702.65 243\n... ... ... ... ... ...\n1173 2022-01-22 浙江秀舟热电有限公司 52.24 12472.00 822\n1174 2022-01-23 浙江秀舟热电有限公司 51.36 12051.00 790\n1175 2022-01-24 浙江秀舟热电有限公司 51.12 11276.00 751\n1176 2022-01-25 浙江秀舟热电有限公司 49.32 11007.00 672\n1177 2022-01-26 浙江秀舟热电有限公司 29.64 8132.00 484\n\n[1178 rows x 5 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
日期企业名称发电量(千瓦时)供热量(吉焦)燃料消耗量(吨)
02018-10-01浙江秀舟热电有限公司156796.006536.83323
12018-10-02浙江秀舟热电有限公司133984.002484.64218
22018-10-03浙江秀舟热电有限公司134023.003020.83212
32018-10-04浙江秀舟热电有限公司124765.005599.23223
42018-10-05浙江秀舟热电有限公司134414.004702.65243
..................
11732022-01-22浙江秀舟热电有限公司52.2412472.00822
11742022-01-23浙江秀舟热电有限公司51.3612051.00790
11752022-01-24浙江秀舟热电有限公司51.1211276.00751
11762022-01-25浙江秀舟热电有限公司49.3211007.00672
11772022-01-26浙江秀舟热电有限公司29.648132.00484
\n

1178 rows × 5 columns

\n
" }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "zjxz_daily_data" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 52, "outputs": [ { "data": { "text/plain": " days 发电量(千瓦时) 供热量(吉焦) 机组运行时间(小时) 硫分(%) 脱硫剂使用量(吨) \\\n0 2018-10-01 156796.00 6536.83 24.0 0.51 5.06 \n1 2018-10-02 133984.00 2484.64 24.0 0.51 5.04 \n2 2018-10-03 134023.00 3020.83 24.0 0.51 5.04 \n3 2018-10-04 124765.00 5599.23 24.0 0.51 5.03 \n4 2018-10-05 134414.00 4702.65 24.0 0.51 5.06 \n... ... ... ... ... ... ... \n1082 2022-01-22 52.24 12472.00 24.0 0.59 8.46 \n1083 2022-01-23 51.36 12051.00 24.0 0.59 8.46 \n1084 2022-01-24 51.12 11276.00 24.0 0.59 8.43 \n1085 2022-01-25 49.32 11007.00 24.0 0.59 8.43 \n1086 2022-01-26 29.64 8132.00 24.0 0.59 8.44 \n\n 脱硫设施运行时间(小时) 脱硝还原剂消耗量(吨) 脱硝运行时间(小时) 燃料消耗量(吨) ... cSO2 \\\n0 24.0 2.98 24.0 323 ... 2.148473e+07 \n1 24.0 2.97 24.0 218 ... 1.587722e+07 \n2 24.0 2.95 24.0 212 ... 2.829086e+07 \n3 24.0 2.98 24.0 223 ... 1.030569e+07 \n4 24.0 3.01 24.0 243 ... 1.830254e+06 \n... ... ... ... ... ... ... \n1082 24.0 4.56 24.0 822 ... 3.626034e+06 \n1083 24.0 4.58 24.0 790 ... 4.074431e+06 \n1084 24.0 4.57 24.0 751 ... 4.928013e+06 \n1085 24.0 4.56 24.0 672 ... 4.584759e+06 \n1086 24.0 4.57 24.0 484 ... 5.701371e+06 \n\n cO2 csmoke flow rNOx rO2 \\\n0 3.745944e+07 6.519466e+05 162345.192917 28.981417 9.900000 \n1 2.832146e+07 3.656575e+05 140175.330833 22.220750 9.400000 \n2 3.174159e+07 5.181773e+05 154686.184167 24.816708 8.550000 \n3 2.511504e+07 2.299438e+06 120345.545833 21.875125 10.202083 \n4 4.106346e+07 6.230433e+06 162533.103542 25.605917 11.497917 \n... ... ... ... ... ... \n1082 4.149625e+07 6.512159e+06 218349.604167 2.603662 7.921417 \n1083 4.422277e+07 6.203422e+06 210121.608333 6.638867 8.756333 \n1084 4.655727e+07 6.101480e+06 211378.329167 12.277371 9.110167 \n1085 7.959093e+07 6.326125e+06 240801.208333 5.684492 13.636042 \n1086 9.866431e+07 6.632631e+06 263197.579167 1.672292 15.621583 \n\n temp rSO2 rsmoke day_of_year \n0 51.250000 5.581667 0.209167 273 \n1 50.679167 4.364167 0.190417 274 \n2 52.808333 7.580000 0.139583 275 \n3 48.854167 2.808958 0.893333 276 \n4 45.783333 0.393333 2.141875 277 \n... ... ... ... ... \n1082 55.441542 0.690904 1.242762 21 \n1083 54.574333 0.810112 1.230213 22 \n1084 53.031042 0.973396 1.203483 23 \n1085 42.908458 0.807300 1.098229 24 \n1086 36.412917 0.904429 1.050008 25 \n\n[1087 rows x 165 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
days发电量(千瓦时)供热量(吉焦)机组运行时间(小时)硫分(%)脱硫剂使用量(吨)脱硫设施运行时间(小时)脱硝还原剂消耗量(吨)脱硝运行时间(小时)燃料消耗量(吨)...cSO2cO2csmokeflowrNOxrO2temprSO2rsmokeday_of_year
02018-10-01156796.006536.8324.00.515.0624.02.9824.0323...2.148473e+073.745944e+076.519466e+05162345.19291728.9814179.90000051.2500005.5816670.209167273
12018-10-02133984.002484.6424.00.515.0424.02.9724.0218...1.587722e+072.832146e+073.656575e+05140175.33083322.2207509.40000050.6791674.3641670.190417274
22018-10-03134023.003020.8324.00.515.0424.02.9524.0212...2.829086e+073.174159e+075.181773e+05154686.18416724.8167088.55000052.8083337.5800000.139583275
32018-10-04124765.005599.2324.00.515.0324.02.9824.0223...1.030569e+072.511504e+072.299438e+06120345.54583321.87512510.20208348.8541672.8089580.893333276
42018-10-05134414.004702.6524.00.515.0624.03.0124.0243...1.830254e+064.106346e+076.230433e+06162533.10354225.60591711.49791745.7833330.3933332.141875277
..................................................................
10822022-01-2252.2412472.0024.00.598.4624.04.5624.0822...3.626034e+064.149625e+076.512159e+06218349.6041672.6036627.92141755.4415420.6909041.24276221
10832022-01-2351.3612051.0024.00.598.4624.04.5824.0790...4.074431e+064.422277e+076.203422e+06210121.6083336.6388678.75633354.5743330.8101121.23021322
10842022-01-2451.1211276.0024.00.598.4324.04.5724.0751...4.928013e+064.655727e+076.101480e+06211378.32916712.2773719.11016753.0310420.9733961.20348323
10852022-01-2549.3211007.0024.00.598.4324.04.5624.0672...4.584759e+067.959093e+076.326125e+06240801.2083335.68449213.63604242.9084580.8073001.09822924
10862022-01-2629.648132.0024.00.598.4424.04.5724.0484...5.701371e+069.866431e+076.632631e+06263197.5791671.67229215.62158336.4129170.9044291.05000825
\n

1087 rows × 165 columns

\n
" }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "zjxz_emiss_data = pd.read_csv('data/train_data.csv')\n", "zjxz_emiss_data" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 60, "outputs": [ { "data": { "text/plain": " days 发电量(千瓦时) 供热量(吉焦) 燃料消耗量(吨) flow rNOx \\\n0 2018-10-01 156796.00 6536.83 323 162345.192917 28.981417 \n1 2018-10-02 133984.00 2484.64 218 140175.330833 22.220750 \n2 2018-10-03 134023.00 3020.83 212 154686.184167 24.816708 \n3 2018-10-04 124765.00 5599.23 223 120345.545833 21.875125 \n4 2018-10-05 134414.00 4702.65 243 162533.103542 25.605917 \n... ... ... ... ... ... ... \n1082 2022-01-22 52.24 12472.00 822 218349.604167 2.603662 \n1083 2022-01-23 51.36 12051.00 790 210121.608333 6.638867 \n1084 2022-01-24 51.12 11276.00 751 211378.329167 12.277371 \n1085 2022-01-25 49.32 11007.00 672 240801.208333 5.684492 \n1086 2022-01-26 29.64 8132.00 484 263197.579167 1.672292 \n\n rO2 temp rSO2 rsmoke \n0 9.900000 51.250000 5.581667 0.209167 \n1 9.400000 50.679167 4.364167 0.190417 \n2 8.550000 52.808333 7.580000 0.139583 \n3 10.202083 48.854167 2.808958 0.893333 \n4 11.497917 45.783333 0.393333 2.141875 \n... ... ... ... ... \n1082 7.921417 55.441542 0.690904 1.242762 \n1083 8.756333 54.574333 0.810112 1.230213 \n1084 9.110167 53.031042 0.973396 1.203483 \n1085 13.636042 42.908458 0.807300 1.098229 \n1086 15.621583 36.412917 0.904429 1.050008 \n\n[1087 rows x 10 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
days发电量(千瓦时)供热量(吉焦)燃料消耗量(吨)flowrNOxrO2temprSO2rsmoke
02018-10-01156796.006536.83323162345.19291728.9814179.90000051.2500005.5816670.209167
12018-10-02133984.002484.64218140175.33083322.2207509.40000050.6791674.3641670.190417
22018-10-03134023.003020.83212154686.18416724.8167088.55000052.8083337.5800000.139583
32018-10-04124765.005599.23223120345.54583321.87512510.20208348.8541672.8089580.893333
42018-10-05134414.004702.65243162533.10354225.60591711.49791745.7833330.3933332.141875
.................................
10822022-01-2252.2412472.00822218349.6041672.6036627.92141755.4415420.6909041.242762
10832022-01-2351.3612051.00790210121.6083336.6388678.75633354.5743330.8101121.230213
10842022-01-2451.1211276.00751211378.32916712.2773719.11016753.0310420.9733961.203483
10852022-01-2549.3211007.00672240801.2083335.68449213.63604242.9084580.8073001.098229
10862022-01-2629.648132.00484263197.5791671.67229215.62158336.4129170.9044291.050008
\n

1087 rows × 10 columns

\n
" }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "zjxz_save_cols = zjxz_emiss_data.columns[:3].tolist() + ['燃料消耗量(吨)'] + zjxz_emiss_data.columns[-7:-1].tolist()\n", "zjxz_save_data = zjxz_emiss_data[zjxz_save_cols].copy()\n", "zjxz_save_data" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 61, "outputs": [], "source": [ "for col in ['rNOx', 'rSO2', 'rsmoke']:\n", " zjxz_save_data[col] = zjxz_save_data[col]*101800*273 / (101325 * (273 + zjxz_save_data.temp))" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 62, "outputs": [ { "data": { "text/plain": " days 发电量(千瓦时) 供热量(吉焦) 燃料消耗量(吨) flow rNOx \\\n0 2018-10-01 156796.00 6536.83 323 162345.192917 24.515087 \n1 2018-10-02 133984.00 2484.64 218 140175.330833 18.829456 \n2 2018-10-03 134023.00 3020.83 212 154686.184167 20.891797 \n3 2018-10-04 124765.00 5599.23 223 120345.545833 18.641687 \n4 2018-10-05 134414.00 4702.65 243 162533.103542 22.031219 \n... ... ... ... ... ... ... \n1082 2022-01-22 52.24 12472.00 822 218349.604167 2.174305 \n1083 2022-01-23 51.36 12051.00 790 210121.608333 5.558760 \n1084 2022-01-24 51.12 11276.00 751 211378.329167 10.328571 \n1085 2022-01-25 49.32 11007.00 672 240801.208333 4.935421 \n1086 2022-01-26 29.64 8132.00 484 263197.579167 1.482407 \n\n rO2 temp rSO2 rsmoke \n0 9.900000 51.250000 4.721475 0.176932 \n1 9.400000 50.679167 3.698115 0.161356 \n2 8.550000 52.808333 6.381178 0.117507 \n3 10.202083 48.854167 2.393757 0.761287 \n4 11.497917 45.783333 0.338422 1.842860 \n... ... ... ... ... \n1082 7.921417 55.441542 0.576970 1.037824 \n1083 8.756333 54.574333 0.678312 1.030064 \n1084 9.110167 53.031042 0.818888 1.012453 \n1085 13.636042 42.908458 0.700918 0.953511 \n1086 15.621583 36.412917 0.801733 0.930782 \n\n[1087 rows x 10 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
days发电量(千瓦时)供热量(吉焦)燃料消耗量(吨)flowrNOxrO2temprSO2rsmoke
02018-10-01156796.006536.83323162345.19291724.5150879.90000051.2500004.7214750.176932
12018-10-02133984.002484.64218140175.33083318.8294569.40000050.6791673.6981150.161356
22018-10-03134023.003020.83212154686.18416720.8917978.55000052.8083336.3811780.117507
32018-10-04124765.005599.23223120345.54583318.64168710.20208348.8541672.3937570.761287
42018-10-05134414.004702.65243162533.10354222.03121911.49791745.7833330.3384221.842860
.................................
10822022-01-2252.2412472.00822218349.6041672.1743057.92141755.4415420.5769701.037824
10832022-01-2351.3612051.00790210121.6083335.5587608.75633354.5743330.6783121.030064
10842022-01-2451.1211276.00751211378.32916710.3285719.11016753.0310420.8188881.012453
10852022-01-2549.3211007.00672240801.2083334.93542113.63604242.9084580.7009180.953511
10862022-01-2629.648132.00484263197.5791671.48240715.62158336.4129170.8017330.930782
\n

1087 rows × 10 columns

\n
" }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "zjxz_save_data" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 4, "outputs": [ { "data": { "text/plain": "Index(['企业名称', '地址', '省份', '经度', '纬度', '烟囱高度(m)', '机组数量', '单机容量(MW)', '生产设备类型',\n '锅炉额定蒸发量 t/h ', '汽轮机类型', '压力参数', '冷却方式', '脱硝工艺', '脱硫工艺', '除尘工艺',\n 'Unnamed: 16', '日期', '机组编号', '投产日期', '燃煤干燥无灰基挥发分vda(%)',\n '入炉煤低位发热量(GJ/t)', '入炉煤消耗量发电(吨)', '入炉煤消耗量供热(吨)', '脱硝还原剂使用量a侧(吨)',\n '脱硝还原剂使用量b侧(吨)', '脱硝设施运行时间a侧(小时)', '脱硝设施运行时间b侧(小时)', '发电量', '供热量(吉焦)',\n '机组运行时间', '硫分(%)', '脱硫副产品产量(吨)', '脱硫剂使用量(吨)', '脱硫设施运行时间(小时)',\n '脱硝还原剂消耗量(吨)', '燃料消耗量(吨)', '石灰石总量(吨)', 'Unnamed: 38', 'Unnamed: 39',\n '日期.1', '机组编号.1', '投产日期.1', '燃煤干燥无灰基挥发分vda(%).1', '入炉煤低位发热量(GJ/t).1',\n '入炉煤消耗量发电(吨).1', '入炉煤消耗量供热(吨).1', '脱硝还原剂使用量a侧(吨).1', '脱硝还原剂使用量b侧(吨).1',\n '脱硝设施运行时间a侧(小时).1', '脱硝设施运行时间b侧(小时).1', '发电量(万千瓦时)', '供热量(吉焦)',\n '机组运行时间(小时)', '硫分(%).1', '脱硫副产品产量(吨).1', '脱硫剂使用量(吨).1',\n '脱硫设施运行时间(小时).1', '脱硝还原剂消耗量(吨).1', '燃料消耗量(吨).1', '石灰石总量(吨).1'],\n dtype='object')" }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xswx_daily = pd.read_excel('./data/机器学习样表.xlsx', sheet_name=3)\n", "xswx_daily.columns" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 5, "outputs": [ { "data": { "text/plain": " days 发电量_2(万千瓦时) 供热量_2(吉焦) 燃料消耗量_2(吨)\n149 2021-05-30 1033 0.0 4763.4\n150 2021-05-31 909 0.0 4516.5", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
days发电量_2(万千瓦时)供热量_2(吉焦)燃料消耗量_2(吨)
1492021-05-3010330.04763.4
1502021-05-319090.04516.5
\n
" }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xswx_daily_unit_1 = xswx_daily[xswx_daily['日期'] >= '2021-01-01'][['日期', '发电量', '供热量(吉焦)', '燃料消耗量(吨)']].copy()\n", "xswx_daily_unit_1.columns = ['days', \"发电量_1(万千瓦时)\", '供热量_1(吉焦)', '燃料消耗量_1(吨)']\n", "xswx_daily_unit_2 = xswx_daily[xswx_daily['日期.1'] >= '2021-01-01'][\n", " ['日期.1', '发电量(万千瓦时)', '供热量(吉焦)', '燃料消耗量(吨).1']].copy()\n", "xswx_daily_unit_2.columns = ['days', \"发电量_2(万千瓦时)\", '供热量_2(吉焦)', '燃料消耗量_2(吨)']\n", "xswx_daily_unit_2.tail(2)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 6, "outputs": [ { "data": { "text/plain": "DatetimeIndex(['2021-01-01', '2021-01-02', '2021-01-03', '2021-01-04',\n '2021-01-05', '2021-01-06', '2021-01-07', '2021-01-08',\n '2021-01-09', '2021-01-10',\n ...\n '2021-05-22', '2021-05-23', '2021-05-24', '2021-05-25',\n '2021-05-26', '2021-05-27', '2021-05-28', '2021-05-29',\n '2021-05-30', '2021-05-31'],\n dtype='datetime64[ns]', length=151, freq='D')" }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "min_start = min(xswx_daily_unit_1.days.min(), xswx_daily_unit_2.days.min())\n", "max_end = max(xswx_daily_unit_1.days.max(), xswx_daily_unit_2.days.max())\n", "date_range = pd.date_range(min_start, max_end, freq='D')\n", "date_range" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 7, "outputs": [], "source": [ "xswx_daily_unit_1 = xswx_daily_unit_1.set_index('days').reindex(date_range).fillna(0)\n", "xswx_daily_unit_2 = xswx_daily_unit_2.set_index('days').reindex(date_range).fillna(0)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 8, "outputs": [], "source": [ "xswx_daily_data = pd.concat([xswx_daily_unit_1, xswx_daily_unit_2], axis=1)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 9, "outputs": [], "source": [ "xswx_daily_data['企业名称'] = '武乡西山发电有限责任公司'\n", "xswx_daily_data['发电量(万千瓦时)'] = xswx_daily_data['发电量_1(万千瓦时)'] + xswx_daily_data['发电量_2(万千瓦时)']\n", "xswx_daily_data['供热量(吉焦)'] = xswx_daily_data['供热量_1(吉焦)'] + xswx_daily_data['供热量_2(吉焦)']\n", "xswx_daily_data['燃料消耗量(吨)'] = xswx_daily_data['燃料消耗量_1(吨)'] + xswx_daily_data['燃料消耗量_2(吨)']" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 10, "outputs": [ { "data": { "text/plain": " 发电量_1(万千瓦时) 供热量_1(吉焦) 燃料消耗量_1(吨) 发电量_2(万千瓦时) 供热量_2(吉焦) \\\n2021-01-01 952.0 11032.5 5478.8 893 0.0 \n2021-01-02 1127.0 11180.5 6125.4 1061 0.0 \n2021-01-03 1051.0 11197.7 5717.6 1053 0.0 \n2021-01-04 1179.0 11146.6 6172.5 1237 0.0 \n2021-01-05 1142.0 10922.4 6053.3 1082 0.0 \n... ... ... ... ... ... \n2021-05-27 0.0 0.0 0.0 1192 0.0 \n2021-05-28 0.0 0.0 0.0 1159 0.0 \n2021-05-29 0.0 0.0 0.0 998 0.0 \n2021-05-30 0.0 0.0 0.0 1033 0.0 \n2021-05-31 0.0 0.0 0.0 909 0.0 \n\n 燃料消耗量_2(吨) 企业名称 发电量(万千瓦时) 供热量(吉焦) 燃料消耗量(吨) \n2021-01-01 4689.7 武乡西山发电有限责任公司 1845.0 11032.5 10168.5 \n2021-01-02 5455.5 武乡西山发电有限责任公司 2188.0 11180.5 11580.9 \n2021-01-03 4060.5 武乡西山发电有限责任公司 2104.0 11197.7 9778.1 \n2021-01-04 5574.7 武乡西山发电有限责任公司 2416.0 11146.6 11747.2 \n2021-01-05 6363.9 武乡西山发电有限责任公司 2224.0 10922.4 12417.2 \n... ... ... ... ... ... \n2021-05-27 5684.3 武乡西山发电有限责任公司 1192.0 0.0 5684.3 \n2021-05-28 5349.3 武乡西山发电有限责任公司 1159.0 0.0 5349.3 \n2021-05-29 4851.2 武乡西山发电有限责任公司 998.0 0.0 4851.2 \n2021-05-30 4763.4 武乡西山发电有限责任公司 1033.0 0.0 4763.4 \n2021-05-31 4516.5 武乡西山发电有限责任公司 909.0 0.0 4516.5 \n\n[151 rows x 10 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
发电量_1(万千瓦时)供热量_1(吉焦)燃料消耗量_1(吨)发电量_2(万千瓦时)供热量_2(吉焦)燃料消耗量_2(吨)企业名称发电量(万千瓦时)供热量(吉焦)燃料消耗量(吨)
2021-01-01952.011032.55478.88930.04689.7武乡西山发电有限责任公司1845.011032.510168.5
2021-01-021127.011180.56125.410610.05455.5武乡西山发电有限责任公司2188.011180.511580.9
2021-01-031051.011197.75717.610530.04060.5武乡西山发电有限责任公司2104.011197.79778.1
2021-01-041179.011146.66172.512370.05574.7武乡西山发电有限责任公司2416.011146.611747.2
2021-01-051142.010922.46053.310820.06363.9武乡西山发电有限责任公司2224.010922.412417.2
.................................
2021-05-270.00.00.011920.05684.3武乡西山发电有限责任公司1192.00.05684.3
2021-05-280.00.00.011590.05349.3武乡西山发电有限责任公司1159.00.05349.3
2021-05-290.00.00.09980.04851.2武乡西山发电有限责任公司998.00.04851.2
2021-05-300.00.00.010330.04763.4武乡西山发电有限责任公司1033.00.04763.4
2021-05-310.00.00.09090.04516.5武乡西山发电有限责任公司909.00.04516.5
\n

151 rows × 10 columns

\n
" }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xswx_daily_data" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 11, "outputs": [ { "data": { "text/plain": " Unnamed: 0 Unnamed: 1 监控点名称 二氧化硫浓度(mg/m3) 氮氧化物浓度(mg/m3) \\\n0 2021.1.1 武乡西山发电有限责任公司 1号炉废气排放口 20.15 31.49 \n1 2021.1.2 武乡西山发电有限责任公司 1号炉废气排放口 20.27 31.65 \n2 2021.1.3 武乡西山发电有限责任公司 1号炉废气排放口 19.72 31.68 \n3 2021.1.4 武乡西山发电有限责任公司 1号炉废气排放口 17.64 31.51 \n4 2021.1.5 武乡西山发电有限责任公司 1号炉废气排放口 18.66 31.72 \n.. ... ... ... ... ... \n113 2021.4.26 武乡西山发电有限责任公司 1号炉废气排放口 0.22 0.01 \n114 2021.4.27 武乡西山发电有限责任公司 1号炉废气排放口 0.00 0.01 \n115 2021.4.28 武乡西山发电有限责任公司 1号炉废气排放口 0.01 0.00 \n116 2021.4.29 武乡西山发电有限责任公司 1号炉废气排放口 0.00 0.01 \n117 2021.4.30 武乡西山发电有限责任公司 1号炉废气排放口 0.00 0.02 \n\n 烟尘浓度(mg/m3) 流速(m/s) 流量(m3/h) Unnamed: 8 Unnamed: 9 ... \\\n0 2.49 11.24 1558502.96 NaN NaN ... \n1 2.51 12.03 1648629.50 NaN NaN ... \n2 2.50 12.11 1656682.63 NaN NaN ... \n3 2.52 11.79 1610496.46 NaN NaN ... \n4 2.50 11.97 1652330.08 NaN NaN ... \n.. ... ... ... ... ... ... \n113 0.19 0.00 0.00 NaN NaN ... \n114 0.21 0.00 0.00 NaN NaN ... \n115 0.25 0.00 0.00 NaN NaN ... \n116 0.26 0.00 0.00 NaN NaN ... \n117 0.56 0.00 0.00 NaN NaN ... \n\n Unnamed: 14 监控点名称.1 二氧化硫浓度(mg/m3).1 氮氧化物浓度(mg/m3).1 烟尘浓度(mg/m3).1 \\\n0 武乡西山发电有限责任公司 2号炉废气排放口 22.00 33.09 2.25 \n1 武乡西山发电有限责任公司 2号炉废气排放口 20.45 34.37 2.37 \n2 武乡西山发电有限责任公司 2号炉废气排放口 19.82 33.55 2.38 \n3 武乡西山发电有限责任公司 2号炉废气排放口 20.18 32.47 2.39 \n4 武乡西山发电有限责任公司 2号炉废气排放口 21.07 33.73 2.42 \n.. ... ... ... ... ... \n113 武乡西山发电有限责任公司 2号炉废气排放口 18.31 35.41 2.03 \n114 武乡西山发电有限责任公司 2号炉废气排放口 0.14 0.43 0.08 \n115 武乡西山发电有限责任公司 2号炉废气排放口 0.00 0.01 0.09 \n116 武乡西山发电有限责任公司 2号炉废气排放口 0.01 0.05 0.07 \n117 武乡西山发电有限责任公司 2号炉废气排放口 3.96 22.90 0.68 \n\n 流速(m/s).1 流量(m3/h).1 Unnamed: 21 Unnamed: 22 状态.1 \n0 5.00 731609.00 NaN NaN 正常运行 \n1 9.18 1326387.42 NaN NaN 正常运行 \n2 9.85 1417186.13 NaN NaN 正常运行 \n3 9.07 1304455.88 NaN NaN 正常运行 \n4 9.71 1390566.88 NaN NaN 正常运行 \n.. ... ... ... ... ... \n113 9.59 1316204.83 NaN NaN 正常运行 \n114 1.44 193474.61 NaN NaN 停运 \n115 2.69 467356.96 NaN NaN 停运 \n116 2.30 401366.08 NaN NaN 停运 \n117 6.09 932694.63 NaN NaN 停运 \n\n[118 rows x 24 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0Unnamed: 1监控点名称二氧化硫浓度(mg/m3)氮氧化物浓度(mg/m3)烟尘浓度(mg/m3)流速(m/s)流量(m3/h)Unnamed: 8Unnamed: 9...Unnamed: 14监控点名称.1二氧化硫浓度(mg/m3).1氮氧化物浓度(mg/m3).1烟尘浓度(mg/m3).1流速(m/s).1流量(m3/h).1Unnamed: 21Unnamed: 22状态.1
02021.1.1武乡西山发电有限责任公司1号炉废气排放口20.1531.492.4911.241558502.96NaNNaN...武乡西山发电有限责任公司2号炉废气排放口22.0033.092.255.00731609.00NaNNaN正常运行
12021.1.2武乡西山发电有限责任公司1号炉废气排放口20.2731.652.5112.031648629.50NaNNaN...武乡西山发电有限责任公司2号炉废气排放口20.4534.372.379.181326387.42NaNNaN正常运行
22021.1.3武乡西山发电有限责任公司1号炉废气排放口19.7231.682.5012.111656682.63NaNNaN...武乡西山发电有限责任公司2号炉废气排放口19.8233.552.389.851417186.13NaNNaN正常运行
32021.1.4武乡西山发电有限责任公司1号炉废气排放口17.6431.512.5211.791610496.46NaNNaN...武乡西山发电有限责任公司2号炉废气排放口20.1832.472.399.071304455.88NaNNaN正常运行
42021.1.5武乡西山发电有限责任公司1号炉废气排放口18.6631.722.5011.971652330.08NaNNaN...武乡西山发电有限责任公司2号炉废气排放口21.0733.732.429.711390566.88NaNNaN正常运行
..................................................................
1132021.4.26武乡西山发电有限责任公司1号炉废气排放口0.220.010.190.000.00NaNNaN...武乡西山发电有限责任公司2号炉废气排放口18.3135.412.039.591316204.83NaNNaN正常运行
1142021.4.27武乡西山发电有限责任公司1号炉废气排放口0.000.010.210.000.00NaNNaN...武乡西山发电有限责任公司2号炉废气排放口0.140.430.081.44193474.61NaNNaN停运
1152021.4.28武乡西山发电有限责任公司1号炉废气排放口0.010.000.250.000.00NaNNaN...武乡西山发电有限责任公司2号炉废气排放口0.000.010.092.69467356.96NaNNaN停运
1162021.4.29武乡西山发电有限责任公司1号炉废气排放口0.000.010.260.000.00NaNNaN...武乡西山发电有限责任公司2号炉废气排放口0.010.050.072.30401366.08NaNNaN停运
1172021.4.30武乡西山发电有限责任公司1号炉废气排放口0.000.020.560.000.00NaNNaN...武乡西山发电有限责任公司2号炉废气排放口3.9622.900.686.09932694.63NaNNaN停运
\n

118 rows × 24 columns

\n
" }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xswx_emiss_data = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=2)\n", "xswx_emiss_data" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 12, "outputs": [ { "data": { "text/plain": " Unnamed: 0 二氧化硫浓度(mg/m3) 氮氧化物浓度(mg/m3) 烟尘浓度(mg/m3) 流速(m/s) \\\n0 2021.1.1 20.15 31.49 2.49 11.24 \n1 2021.1.2 20.27 31.65 2.51 12.03 \n2 2021.1.3 19.72 31.68 2.50 12.11 \n3 2021.1.4 17.64 31.51 2.52 11.79 \n4 2021.1.5 18.66 31.72 2.50 11.97 \n.. ... ... ... ... ... \n113 2021.4.26 0.22 0.01 0.19 0.00 \n114 2021.4.27 0.00 0.01 0.21 0.00 \n115 2021.4.28 0.01 0.00 0.25 0.00 \n116 2021.4.29 0.00 0.01 0.26 0.00 \n117 2021.4.30 0.00 0.02 0.56 0.00 \n\n 流量(m3/h) 状态 \n0 1558502.96 正常运行 \n1 1648629.50 正常运行 \n2 1656682.63 正常运行 \n3 1610496.46 正常运行 \n4 1652330.08 正常运行 \n.. ... ... \n113 0.00 停运 \n114 0.00 停运 \n115 0.00 停运 \n116 0.00 停运 \n117 0.00 停运 \n\n[118 rows x 7 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0二氧化硫浓度(mg/m3)氮氧化物浓度(mg/m3)烟尘浓度(mg/m3)流速(m/s)流量(m3/h)状态
02021.1.120.1531.492.4911.241558502.96正常运行
12021.1.220.2731.652.5112.031648629.50正常运行
22021.1.319.7231.682.5012.111656682.63正常运行
32021.1.417.6431.512.5211.791610496.46正常运行
42021.1.518.6631.722.5011.971652330.08正常运行
........................
1132021.4.260.220.010.190.000.00停运
1142021.4.270.000.010.210.000.00停运
1152021.4.280.010.000.250.000.00停运
1162021.4.290.000.010.260.000.00停运
1172021.4.300.000.020.560.000.00停运
\n

118 rows × 7 columns

\n
" }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xswx_emiss_data_1 = xswx_emiss_data[np.array(xswx_emiss_data.columns)[[0, 3, 4, 5, 6, 7, 10]]].copy()\n", "xswx_emiss_data_2 = xswx_emiss_data[np.array(xswx_emiss_data.columns)[[13, 16, 17, 18, 19, 20, 23]]].copy()\n", "xswx_emiss_data_1" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 13, "outputs": [], "source": [ "xswx_emiss_data_1.columns = ['days'] + xswx_emiss_data_1.columns[1:].tolist()\n", "xswx_emiss_data_2.columns = xswx_emiss_data_1.columns.tolist()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 14, "outputs": [], "source": [ "xswx_emiss_data_1.index = pd.to_datetime(xswx_emiss_data_1.days)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 15, "outputs": [], "source": [ "xswx_emiss_data_2.index = pd.to_datetime(xswx_emiss_data_2.days)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 16, "outputs": [], "source": [ "xswx_emiss_data_1.drop(columns=['days'], inplace=True)\n", "xswx_emiss_data_2.drop(columns=['days'], inplace=True)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 17, "outputs": [], "source": [ "xswx_emiss_data_1.columns = [f'机组1_{x}' for x in xswx_emiss_data_1.columns]\n", "xswx_emiss_data_2.columns = [f'机组2_{x}' for x in xswx_emiss_data_2.columns]" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 18, "outputs": [ { "data": { "text/plain": "2021-01-01 1\n2021-03-17 1\n2021-03-29 1\n2021-03-28 1\n2021-03-27 1\n ..\n2021-02-05 1\n2021-02-04 1\n2021-02-03 1\n2021-02-02 1\n2021-04-30 1\nName: days, Length: 118, dtype: int64" }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xswx_emiss_data_1.reset_index().days.value_counts()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 64, "outputs": [], "source": [ "wxxs_save_data = pd.concat([xswx_daily_data, xswx_emiss_data_1, xswx_emiss_data_2], axis=1)\n", "wxxs_save_data.index = wxxs_save_data.index.astype(str)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "### 邯郸东郊" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 20, "outputs": [ { "data": { "text/plain": "Index(['企业名称', '地址', '省份', '经度', '纬度', '机组数量', '单机容量(MW)', '生产设备类型',\n '锅炉额定蒸发量 t/h ', '汽轮机类型', '压力参数', '冷却方式', '脱硝工艺', '脱硫工艺', '除尘工艺', '日期',\n '机组编号', '投产日期', '燃料类型', '低位发热量(GJ/t)', '产灰量(吨)', '发电量(万千瓦时)', '供热量',\n '产渣量', '机组运行时间', '发电煤耗(克/千瓦时)', '燃料消耗量(吨)', 'Unnamed: 27', '日期.1',\n '机组编号.1', '投产日期.1', '燃料类型.1', '低位发热量(GJ/t).1', '产灰量(吨).1',\n '发电量(万千瓦时).1', '供热量.1', '产渣量.1', '机组运行时间.1', '发电煤耗(克/千瓦时).1',\n '燃料消耗量(吨).1'],\n dtype='object')" }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hddj_daily = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=5)\n", "hddj_daily.columns" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 21, "outputs": [], "source": [ "hddj_daily_1 = hddj_daily[['日期', '发电量(万千瓦时)', '供热量', '燃料消耗量(吨)']].copy()\n", "hddj_daily_1.columns = ['days', \"发电量_1(万千瓦时)\", '供热量_1(吉焦)', '燃料消耗量_1(吨)']\n", "hddj_daily_2 = hddj_daily[['日期.1', '发电量(万千瓦时).1', '供热量.1', '燃料消耗量(吨).1']].copy()\n", "hddj_daily_2.columns = ['days', \"发电量_2(万千瓦时)\", '供热量_2(吉焦)', '燃料消耗量_2(吨)']" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 22, "outputs": [ { "data": { "text/plain": "DatetimeIndex(['2022-01-01', '2022-01-02', '2022-01-03', '2022-01-04',\n '2022-01-05', '2022-01-06', '2022-01-07', '2022-01-08',\n '2022-01-09', '2022-01-10', '2022-01-11', '2022-01-12',\n '2022-01-13', '2022-01-14', '2022-01-15', '2022-01-16',\n '2022-01-17', '2022-01-18', '2022-01-19', '2022-01-20',\n '2022-01-21', '2022-01-22', '2022-01-23', '2022-01-24',\n '2022-01-25', '2022-01-26', '2022-01-27', '2022-01-28',\n '2022-01-29', '2022-01-30', '2022-01-31', '2022-02-01',\n '2022-02-02', '2022-02-03', '2022-02-04', '2022-02-05',\n '2022-02-06', '2022-02-07', '2022-02-08', '2022-02-09',\n '2022-02-10', '2022-02-11', '2022-02-12', '2022-02-13',\n '2022-02-14', '2022-02-15', '2022-02-16', '2022-02-17',\n '2022-02-18', '2022-02-19', '2022-02-20', '2022-02-21',\n '2022-02-22', '2022-02-23', '2022-02-24', '2022-02-25',\n '2022-02-26', '2022-02-27', '2022-02-28'],\n dtype='datetime64[ns]', freq='D')" }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "min_start = min(hddj_daily_1.days.min(), hddj_daily_2.days.min())\n", "max_end = max(hddj_daily_1.days.max(), hddj_daily_2.days.max())\n", "date_range = pd.date_range(min_start, max_end, freq='D')\n", "date_range" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 23, "outputs": [], "source": [ "hddj_daily_1 = hddj_daily_1.set_index('days').reindex(date_range).fillna(0)\n", "hddj_daily_2 = hddj_daily_2.set_index('days').reindex(date_range).fillna(0)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 24, "outputs": [ { "data": { "text/plain": " 发电量_1(万千瓦时) 供热量_1(吉焦) 燃料消耗量_1(吨)\n2022-01-01 494.20 30829 2861\n2022-01-02 554.30 32122 2536\n2022-01-03 558.30 33451 2911\n2022-01-04 529.70 33179 3023\n2022-01-05 563.90 29731 3191\n2022-01-06 561.00 32505 3357\n2022-01-07 570.00 33189 3231\n2022-01-08 526.80 31881 2765\n2022-01-09 517.10 30799 2574\n2022-01-10 512.80 29277 2512\n2022-01-11 521.20 32460 2757\n2022-01-12 543.32 33593 3132\n2022-01-13 512.52 33326 2950\n2022-01-14 495.42 31417 2755\n2022-01-15 500.06 32434 2834\n2022-01-16 527.93 31986 3182\n2022-01-17 496.50 32268 3121\n2022-01-18 529.31 31814 3241\n2022-01-19 552.01 30414 3274\n2022-01-20 544.00 32416 3594\n2022-01-21 561.29 34300 3891\n2022-01-22 574.00 38342 4276\n2022-01-23 534.94 37444 3767\n2022-01-24 543.91 34539 3175\n2022-01-25 538.31 36753 3860\n2022-01-26 529.59 34148 3749\n2022-01-27 525.88 33630 3725\n2022-01-28 545.06 34181 3866\n2022-01-29 522.68 30637 3395\n2022-01-30 509.69 34254 3101\n2022-01-31 516.51 32145 2985\n2022-02-01 500.46 25687 2662\n2022-02-02 477.03 29061 2821\n2022-02-03 439.93 29598 2779\n2022-02-04 452.76 28709 2523\n2022-02-05 508.35 30133 2884\n2022-02-06 485.41 27635 2902\n2022-02-07 469.75 28259 2939\n2022-02-08 452.87 26685 2556\n2022-02-09 470.87 26037 2691\n2022-02-10 490.75 25530 2901\n2022-02-11 467.50 24359 2790\n2022-02-12 446.31 24180 2766\n2022-02-13 466.12 25274 3054\n2022-02-14 464.96 29338 2533\n2022-02-15 466.40 27394 2611\n2022-02-16 493.26 27639 2905\n2022-02-17 495.53 30228 2894\n2022-02-18 524.59 28126 3030\n2022-02-19 466.49 27575 2470\n2022-02-20 503.46 27424 2799\n2022-02-21 521.02 26965 3098\n2022-02-22 528.08 26886 3317\n2022-02-23 533.95 25022 3174\n2022-02-24 505.76 26727 3079\n2022-02-25 445.43 21930 2580\n2022-02-26 491.01 16645 2733\n2022-02-27 465.33 17884 2862\n2022-02-28 487.21 15457 3029", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
发电量_1(万千瓦时)供热量_1(吉焦)燃料消耗量_1(吨)
2022-01-01494.20308292861
2022-01-02554.30321222536
2022-01-03558.30334512911
2022-01-04529.70331793023
2022-01-05563.90297313191
2022-01-06561.00325053357
2022-01-07570.00331893231
2022-01-08526.80318812765
2022-01-09517.10307992574
2022-01-10512.80292772512
2022-01-11521.20324602757
2022-01-12543.32335933132
2022-01-13512.52333262950
2022-01-14495.42314172755
2022-01-15500.06324342834
2022-01-16527.93319863182
2022-01-17496.50322683121
2022-01-18529.31318143241
2022-01-19552.01304143274
2022-01-20544.00324163594
2022-01-21561.29343003891
2022-01-22574.00383424276
2022-01-23534.94374443767
2022-01-24543.91345393175
2022-01-25538.31367533860
2022-01-26529.59341483749
2022-01-27525.88336303725
2022-01-28545.06341813866
2022-01-29522.68306373395
2022-01-30509.69342543101
2022-01-31516.51321452985
2022-02-01500.46256872662
2022-02-02477.03290612821
2022-02-03439.93295982779
2022-02-04452.76287092523
2022-02-05508.35301332884
2022-02-06485.41276352902
2022-02-07469.75282592939
2022-02-08452.87266852556
2022-02-09470.87260372691
2022-02-10490.75255302901
2022-02-11467.50243592790
2022-02-12446.31241802766
2022-02-13466.12252743054
2022-02-14464.96293382533
2022-02-15466.40273942611
2022-02-16493.26276392905
2022-02-17495.53302282894
2022-02-18524.59281263030
2022-02-19466.49275752470
2022-02-20503.46274242799
2022-02-21521.02269653098
2022-02-22528.08268863317
2022-02-23533.95250223174
2022-02-24505.76267273079
2022-02-25445.43219302580
2022-02-26491.01166452733
2022-02-27465.33178842862
2022-02-28487.21154573029
\n
" }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hddj_daily_1" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 25, "outputs": [], "source": [ "hddj_daily_data = pd.concat([hddj_daily_1, hddj_daily_2], axis=1)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 26, "outputs": [ { "data": { "text/plain": "Index(['时间', '企业名称', '监测点', '流量 (m3/h)', 'NOx浓度(mg/m3)', 'SO2浓度(mg/m3)',\n '烟尘浓度(mg/m3)', '含氧量(%)', '温度(℃)', '烟气湿度(%)', '烟气压力(千帕)', '烟气流速(m/s)',\n '状态', 'Unnamed: 13', '时间.1', '企业名称.1', '监测点.1', '流量 (m3/h).1',\n 'NOx浓度(mg/m3).1', 'SO2浓度(mg/m3).1', '烟尘浓度(mg/m3).1', '含氧量(%).1',\n '温度(℃).1', '烟气湿度(%).1', '烟气压力(千帕).1', '烟气流速(m/s).1', '状态.1'],\n dtype='object')" }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hddj_emiss_data = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=4)\n", "hddj_emiss_data.columns" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 27, "outputs": [ { "data": { "text/plain": " 时间 企业名称 监测点 流量 (m3/h) \\\n0 2022-01-01 00:00:00 国电电力邯郸东郊热电有限责任公司 1号机组排口DA002(DCS) 930582.0 \n1 2022-01-01 01:00:00 国电电力邯郸东郊热电有限责任公司 1号机组排口DA002(DCS) 891316.8 \n\n NOx浓度(mg/m3) SO2浓度(mg/m3) 烟尘浓度(mg/m3) 含氧量(%) 温度(℃) 烟气湿度(%) ... \\\n0 13.379 13.158 3.438 6.435 48.604 14.695 ... \n1 19.312 17.951 2.798 7.164 47.819 14.156 ... \n\n 流量 (m3/h).1 NOx浓度(mg/m3).1 SO2浓度(mg/m3).1 烟尘浓度(mg/m3).1 含氧量(%).1 温度(℃).1 \\\n0 1111474.8 18.171 18.171 0.476 7.065 48.307 \n1 1103194.8 20.524 22.773 0.479 7.130 48.887 \n\n 烟气湿度(%).1 烟气压力(千帕).1 烟气流速(m/s).1 状态.1 \n0 13.253 -0.012 13.693 停运 \n1 13.734 -0.021 13.691 停运 \n\n[2 rows x 27 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
时间企业名称监测点流量 (m3/h)NOx浓度(mg/m3)SO2浓度(mg/m3)烟尘浓度(mg/m3)含氧量(%)温度(℃)烟气湿度(%)...流量 (m3/h).1NOx浓度(mg/m3).1SO2浓度(mg/m3).1烟尘浓度(mg/m3).1含氧量(%).1温度(℃).1烟气湿度(%).1烟气压力(千帕).1烟气流速(m/s).1状态.1
02022-01-01 00:00:00国电电力邯郸东郊热电有限责任公司1号机组排口DA002(DCS)930582.013.37913.1583.4386.43548.60414.695...1111474.818.17118.1710.4767.06548.30713.253-0.01213.693停运
12022-01-01 01:00:00国电电力邯郸东郊热电有限责任公司1号机组排口DA002(DCS)891316.819.31217.9512.7987.16447.81914.156...1103194.820.52422.7730.4797.13048.88713.734-0.02113.691停运
\n

2 rows × 27 columns

\n
" }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hddj_emiss_data.head(2)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 28, "outputs": [], "source": [ "hddj_emiss_data_1 = hddj_emiss_data[['时间', '流量 (m3/h)', 'NOx浓度(mg/m3)', 'SO2浓度(mg/m3)',\n", " '烟尘浓度(mg/m3)', '含氧量(%)', '温度(℃)', '烟气湿度(%)', '烟气压力(千帕)', '烟气流速(m/s)',\n", " '状态', ]].copy()\n", "hddj_emiss_data_2 = hddj_emiss_data[['时间.1', '流量 (m3/h).1',\n", " 'NOx浓度(mg/m3).1', 'SO2浓度(mg/m3).1', '烟尘浓度(mg/m3).1', '含氧量(%).1',\n", " '温度(℃).1', '烟气湿度(%).1', '烟气压力(千帕).1', '烟气流速(m/s).1', '状态.1']].copy()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 29, "outputs": [], "source": [ "hddj_emiss_data_1.columns = ['date'] + hddj_emiss_data_1.columns[1:].tolist()\n", "hddj_emiss_data_2.columns = hddj_emiss_data_1.columns.tolist()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 30, "outputs": [], "source": [ "hddj_emiss_data_1['days'] = hddj_emiss_data_1.date.apply(lambda x: str(x).split(' ')[0])\n", "hddj_emiss_data_2['days'] = hddj_emiss_data_2.date.apply(lambda x: str(x).split(' ')[0])" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 31, "outputs": [], "source": [ "num_cols = hddj_emiss_data_1.columns[1:-2]\n", "hddj_emiss_daily_1 = hddj_emiss_data_1.ffill().groupby('days')[num_cols].mean()\n", "hddj_emiss_daily_1['状态'] = '正常运行'\n", "hddj_emiss_daily_1.columns = [f\"机组1_{x}\" for x in hddj_emiss_daily_1.columns]\n", "hddj_emiss_daily_2 = hddj_emiss_data_2.ffill().groupby('days')[num_cols].mean()\n", "hddj_emiss_daily_2['状态'] = '正常运行'\n", "hddj_emiss_daily_2.columns = [f\"机组2_{x}\" for x in hddj_emiss_daily_2.columns]" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 32, "outputs": [], "source": [ "hddj_daily_data.index = hddj_daily_data.index.astype(str)\n", "hddj_daily_data['企业名称'] = \"国电电力邯郸东郊热电有限责任公司\"" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 33, "outputs": [ { "data": { "text/plain": " 发电量_1(万千瓦时) 供热量_1(吉焦) 燃料消耗量_1(吨) 发电量_2(万千瓦时) 供热量_2(吉焦) \\\n2022-01-01 494.20 30829 2861 536.50 324 \n2022-01-02 554.30 32122 2536 567.90 1008 \n2022-01-03 558.30 33451 2911 566.20 1296 \n2022-01-04 529.70 33179 3023 563.50 1248 \n2022-01-05 563.90 29731 3191 609.30 1362 \n2022-01-06 561.00 32505 3357 577.20 1236 \n2022-01-07 570.00 33189 3231 579.00 1035 \n2022-01-08 526.80 31881 2765 542.90 1323 \n2022-01-09 517.10 30799 2574 538.90 1305 \n2022-01-10 512.80 29277 2512 483.40 1335 \n2022-01-11 521.20 32460 2757 536.10 1299 \n2022-01-12 543.32 33593 3132 558.85 1368 \n2022-01-13 512.52 33326 2950 527.32 1398 \n2022-01-14 495.42 31417 2755 512.83 1536 \n2022-01-15 500.06 32434 2834 517.19 1242 \n2022-01-16 527.93 31986 3182 542.34 1116 \n2022-01-17 496.50 32268 3121 513.14 1362 \n2022-01-18 529.31 31814 3241 544.11 1305 \n2022-01-19 552.01 30414 3274 565.96 1161 \n2022-01-20 544.00 32416 3594 581.34 1329 \n2022-01-21 561.29 34300 3891 617.18 1383 \n2022-01-22 574.00 38342 4276 585.25 1368 \n2022-01-23 534.94 37444 3767 550.24 1242 \n2022-01-24 543.91 34539 3175 550.61 1362 \n2022-01-25 538.31 36753 3860 551.21 1131 \n2022-01-26 529.59 34148 3749 545.59 891 \n2022-01-27 525.88 33630 3725 537.33 777 \n2022-01-28 545.06 34181 3866 554.88 558 \n2022-01-29 522.68 30637 3395 544.47 399 \n2022-01-30 509.69 34254 3101 526.92 258 \n2022-01-31 516.51 32145 2985 528.13 210 \n2022-02-01 500.46 25687 2662 543.60 207 \n2022-02-02 477.03 29061 2821 534.40 186 \n2022-02-03 439.93 29598 2779 494.86 204 \n2022-02-04 452.76 28709 2523 493.99 282 \n2022-02-05 508.35 30133 2884 521.49 285 \n2022-02-06 485.41 27635 2902 503.13 363 \n2022-02-07 469.75 28259 2939 484.85 363 \n2022-02-08 452.87 26685 2556 481.92 603 \n2022-02-09 470.87 26037 2691 488.17 681 \n2022-02-10 490.75 25530 2901 508.89 591 \n2022-02-11 467.50 24359 2790 497.45 735 \n2022-02-12 446.31 24180 2766 474.04 621 \n2022-02-13 466.12 25274 3054 491.41 594 \n2022-02-14 464.96 29338 2533 491.96 651 \n2022-02-15 466.40 27394 2611 444.04 474 \n2022-02-16 493.26 27639 2905 420.10 1074 \n2022-02-17 495.53 30228 2894 469.32 1362 \n2022-02-18 524.59 28126 3030 531.28 1413 \n2022-02-19 466.49 27575 2470 497.11 1317 \n2022-02-20 503.46 27424 2799 460.91 1281 \n2022-02-21 521.02 26965 3098 482.89 1317 \n2022-02-22 528.08 26886 3317 490.45 1314 \n2022-02-23 533.95 25022 3174 494.54 1407 \n2022-02-24 505.76 26727 3079 527.43 1200 \n2022-02-25 445.43 21930 2580 473.06 1368 \n2022-02-26 491.01 16645 2733 509.18 1341 \n2022-02-27 465.33 17884 2862 500.18 1269 \n2022-02-28 487.21 15457 3029 497.76 1236 \n\n 燃料消耗量_2(吨) 企业名称 机组1_流量 (m3/h) 机组1_NOx浓度(mg/m3) \\\n2022-01-01 2752 国电电力邯郸东郊热电有限责任公司 941229.60 18.200375 \n2022-01-02 3086 国电电力邯郸东郊热电有限责任公司 992216.10 19.536458 \n2022-01-03 2914 国电电力邯郸东郊热电有限责任公司 1016053.05 20.577917 \n2022-01-04 2847 国电电力邯郸东郊热电有限责任公司 979135.35 20.397917 \n2022-01-05 3014 国电电力邯郸东郊热电有限责任公司 996159.15 17.955417 \n2022-01-06 3353 国电电力邯郸东郊热电有限责任公司 970119.15 20.292250 \n2022-01-07 3252 国电电力邯郸东郊热电有限责任公司 998681.85 18.996333 \n2022-01-08 2548 国电电力邯郸东郊热电有限责任公司 974497.65 19.103583 \n2022-01-09 2394 国电电力邯郸东郊热电有限责任公司 957560.55 19.974542 \n2022-01-10 2303 国电电力邯郸东郊热电有限责任公司 956263.20 20.450042 \n2022-01-11 2819 国电电力邯郸东郊热电有限责任公司 955973.40 18.979875 \n2022-01-12 2612 国电电力邯郸东郊热电有限责任公司 987528.75 18.116542 \n2022-01-13 2820 国电电力邯郸东郊热电有限责任公司 971672.85 18.861125 \n2022-01-14 2820 国电电力邯郸东郊热电有限责任公司 956458.65 18.336958 \n2022-01-15 2986 国电电力邯郸东郊热电有限责任公司 950168.55 20.059333 \n2022-01-16 3132 国电电力邯郸东郊热电有限责任公司 973078.80 19.974500 \n2022-01-17 2912 国电电力邯郸东郊热电有限责任公司 956802.15 18.879083 \n2022-01-18 3070 国电电力邯郸东郊热电有限责任公司 991453.20 20.236625 \n2022-01-19 3297 国电电力邯郸东郊热电有限责任公司 991811.85 20.144542 \n2022-01-20 3359 国电电力邯郸东郊热电有限责任公司 1005389.55 19.532208 \n2022-01-21 4019 国电电力邯郸东郊热电有限责任公司 1028425.05 19.846833 \n2022-01-22 3923 国电电力邯郸东郊热电有限责任公司 1030724.40 20.398667 \n2022-01-23 3743 国电电力邯郸东郊热电有限责任公司 685315.05 20.195708 \n2022-01-24 3852 国电电力邯郸东郊热电有限责任公司 747819.00 19.783167 \n2022-01-25 3621 国电电力邯郸东郊热电有限责任公司 981332.25 20.899917 \n2022-01-26 3735 国电电力邯郸东郊热电有限责任公司 973191.45 19.605917 \n2022-01-27 3446 国电电力邯郸东郊热电有限责任公司 976386.90 21.139042 \n2022-01-28 3721 国电电力邯郸东郊热电有限责任公司 995228.10 20.381167 \n2022-01-29 3142 国电电力邯郸东郊热电有限责任公司 967837.80 20.602667 \n2022-01-30 2820 国电电力邯郸东郊热电有限责任公司 959857.95 22.424542 \n2022-01-31 2966 国电电力邯郸东郊热电有限责任公司 982636.80 22.933250 \n2022-02-01 2895 国电电力邯郸东郊热电有限责任公司 958825.35 18.983458 \n2022-02-02 2930 国电电力邯郸东郊热电有限责任公司 935412.75 19.692250 \n2022-02-03 2937 国电电力邯郸东郊热电有限责任公司 908839.35 20.232167 \n2022-02-04 2867 国电电力邯郸东郊热电有限责任公司 911025.60 18.351792 \n2022-02-05 2916 国电电力邯郸东郊热电有限责任公司 920823.45 19.440333 \n2022-02-06 2947 国电电力邯郸东郊热电有限责任公司 916121.70 18.340417 \n2022-02-07 2754 国电电力邯郸东郊热电有限责任公司 917169.90 18.995583 \n2022-02-08 2485 国电电力邯郸东郊热电有限责任公司 886401.60 20.192167 \n2022-02-09 2834 国电电力邯郸东郊热电有限责任公司 906835.80 19.853292 \n2022-02-10 3172 国电电力邯郸东郊热电有限责任公司 928945.80 19.825792 \n2022-02-11 2835 国电电力邯郸东郊热电有限责任公司 885137.40 20.022458 \n2022-02-12 2787 国电电力邯郸东郊热电有限责任公司 878793.15 19.901583 \n2022-02-13 2915 国电电力邯郸东郊热电有限责任公司 904216.50 19.563583 \n2022-02-14 2555 国电电力邯郸东郊热电有限责任公司 898221.45 19.591208 \n2022-02-15 2447 国电电力邯郸东郊热电有限责任公司 898496.85 20.304208 \n2022-02-16 2350 国电电力邯郸东郊热电有限责任公司 930371.55 19.781625 \n2022-02-17 2623 国电电力邯郸东郊热电有限责任公司 924087.90 20.751667 \n2022-02-18 2724 国电电力邯郸东郊热电有限责任公司 943475.55 17.547500 \n2022-02-19 2409 国电电力邯郸东郊热电有限责任公司 927422.25 16.901125 \n2022-02-20 2916 国电电力邯郸东郊热电有限责任公司 956680.50 17.790792 \n2022-02-21 2996 国电电力邯郸东郊热电有限责任公司 948743.85 20.735625 \n2022-02-22 3209 国电电力邯郸东郊热电有限责任公司 960633.00 20.336125 \n2022-02-23 2868 国电电力邯郸东郊热电有限责任公司 962487.30 14.817583 \n2022-02-24 2921 国电电力邯郸东郊热电有限责任公司 923360.40 12.179875 \n2022-02-25 2584 国电电力邯郸东郊热电有限责任公司 860085.15 10.475958 \n2022-02-26 2545 国电电力邯郸东郊热电有限责任公司 902073.30 16.492917 \n2022-02-27 2825 国电电力邯郸东郊热电有限责任公司 873491.25 19.575875 \n2022-02-28 2632 国电电力邯郸东郊热电有限责任公司 873223.80 19.886042 \n\n 机组1_SO2浓度(mg/m3) ... 机组2_流量 (m3/h) 机组2_NOx浓度(mg/m3) \\\n2022-01-01 18.165208 ... 1095004.20 19.098625 \n2022-01-02 18.721167 ... 1113858.45 20.497292 \n2022-01-03 16.690083 ... 1111516.35 19.519958 \n2022-01-04 15.546958 ... 1112429.55 17.986042 \n2022-01-05 14.888333 ... 1141153.80 18.756125 \n2022-01-06 13.671917 ... 1112256.75 17.648125 \n2022-01-07 14.894875 ... 1113637.65 18.144083 \n2022-01-08 16.130625 ... 1092330.60 17.743625 \n2022-01-09 13.766125 ... 1083863.40 17.620958 \n2022-01-10 15.530625 ... 1037804.40 17.968750 \n2022-01-11 14.161208 ... 1084317.30 17.114042 \n2022-01-12 11.636042 ... 1094112.45 17.645292 \n2022-01-13 13.701250 ... 1072833.30 18.238292 \n2022-01-14 12.812500 ... 1066098.60 17.308125 \n2022-01-15 12.266542 ... 1075279.95 18.627792 \n2022-01-16 14.186208 ... 1090436.85 16.915625 \n2022-01-17 13.058542 ... 1064488.95 18.095833 \n2022-01-18 15.996250 ... 1092306.45 18.965000 \n2022-01-19 14.782958 ... 1087070.70 19.335167 \n2022-01-20 15.500333 ... 1113286.95 18.942125 \n2022-01-21 15.057042 ... 1150941.60 18.483375 \n2022-01-22 15.060083 ... 1115300.25 18.465542 \n2022-01-23 13.737458 ... 1102247.70 18.294292 \n2022-01-24 13.516667 ... 1098705.00 17.310875 \n2022-01-25 17.045250 ... 1110458.10 17.740417 \n2022-01-26 15.363083 ... 1098819.75 18.230167 \n2022-01-27 16.053542 ... 1079510.70 17.716750 \n2022-01-28 17.793375 ... 1093401.60 18.939708 \n2022-01-29 15.591625 ... 1083312.90 19.393750 \n2022-01-30 21.170125 ... 1077400.95 20.856208 \n2022-01-31 18.113667 ... 1081850.55 20.094917 \n2022-02-01 16.199000 ... 1089026.85 20.805875 \n2022-02-02 15.898208 ... 1089972.75 19.052292 \n2022-02-03 14.801333 ... 1060159.80 19.806708 \n2022-02-04 14.603708 ... 1059162.90 17.241125 \n2022-02-05 14.161000 ... 1084824.90 17.398917 \n2022-02-06 14.278167 ... 1059457.95 15.366292 \n2022-02-07 15.024875 ... 1046341.05 18.485042 \n2022-02-08 14.818625 ... 1036790.55 18.849500 \n2022-02-09 14.572875 ... 1038851.70 17.988792 \n2022-02-10 15.346833 ... 1062997.35 17.954583 \n2022-02-11 15.645167 ... 1059613.65 17.185792 \n2022-02-12 11.658667 ... 1043504.40 18.584083 \n2022-02-13 14.393250 ... 1061035.50 19.747500 \n2022-02-14 16.393500 ... 1059337.20 19.648167 \n2022-02-15 15.477375 ... 1021689.15 18.697583 \n2022-02-16 13.623167 ... 991069.20 16.822500 \n2022-02-17 16.294000 ... 1039439.10 19.709708 \n2022-02-18 15.684250 ... 1088419.20 17.534083 \n2022-02-19 14.059042 ... 1065218.70 17.390458 \n2022-02-20 14.316042 ... 1079138.85 18.781292 \n2022-02-21 13.478583 ... 1083679.50 19.196333 \n2022-02-22 17.093583 ... 1082105.40 19.493083 \n2022-02-23 12.260375 ... 1071494.25 16.403542 \n2022-02-24 8.796875 ... 1059437.85 14.083875 \n2022-02-25 6.187042 ... 1024307.10 12.822500 \n2022-02-26 9.615208 ... 1037322.30 16.268375 \n2022-02-27 18.428667 ... 1035227.55 19.332083 \n2022-02-28 17.970458 ... 1027222.05 19.495750 \n\n 机组2_SO2浓度(mg/m3) 机组2_烟尘浓度(mg/m3) 机组2_含氧量(%) 机组2_温度(℃) \\\n2022-01-01 16.495917 0.477167 7.384167 49.570583 \n2022-01-02 15.455208 0.453042 6.918208 48.557083 \n2022-01-03 15.434792 0.459625 7.142917 49.184958 \n2022-01-04 13.265125 0.464458 7.163542 49.099500 \n2022-01-05 14.446000 0.487458 6.975583 49.745875 \n2022-01-06 9.985417 0.552083 7.258000 50.724417 \n2022-01-07 14.375125 0.531500 7.082708 50.259708 \n2022-01-08 15.234625 0.502833 7.209167 49.827500 \n2022-01-09 13.893542 0.565583 7.215167 49.601458 \n2022-01-10 12.740167 0.514167 7.948000 49.459583 \n2022-01-11 11.562042 0.526583 7.341083 50.172417 \n2022-01-12 11.908917 0.523000 7.001083 49.564167 \n2022-01-13 11.256125 0.487292 7.163792 49.767583 \n2022-01-14 11.162625 0.478542 7.419292 49.618292 \n2022-01-15 13.612458 0.497458 7.446625 49.474000 \n2022-01-16 12.755250 0.442083 7.392500 49.458458 \n2022-01-17 11.811625 0.488917 7.067125 49.127708 \n2022-01-18 14.870083 0.492542 7.034500 49.347542 \n2022-01-19 14.736000 0.494667 7.120333 50.075542 \n2022-01-20 15.420750 0.440667 7.128083 49.868583 \n2022-01-21 13.172750 0.490542 6.855500 50.414417 \n2022-01-22 14.323500 0.540750 6.913500 50.396083 \n2022-01-23 13.573833 0.561625 7.263125 49.926292 \n2022-01-24 14.138333 0.523708 7.422375 49.522792 \n2022-01-25 15.157083 0.548583 7.225333 49.643167 \n2022-01-26 13.962875 0.529250 7.353625 49.324125 \n2022-01-27 14.416917 0.446208 7.150917 49.165083 \n2022-01-28 16.025875 0.442833 6.876500 49.420125 \n2022-01-29 15.589125 0.495917 7.114250 49.561625 \n2022-01-30 19.920417 0.505208 7.135000 49.392292 \n2022-01-31 18.052333 0.477458 7.262000 48.929000 \n2022-02-01 17.409333 0.419625 6.965333 48.865042 \n2022-02-02 15.773458 0.413333 7.029000 49.367125 \n2022-02-03 15.555333 0.420792 7.337792 48.929583 \n2022-02-04 14.201500 0.426000 7.606125 48.940875 \n2022-02-05 13.958750 0.417125 7.327083 49.117375 \n2022-02-06 14.157000 0.412875 7.405000 49.008958 \n2022-02-07 14.790833 0.411958 7.544167 48.647417 \n2022-02-08 13.748292 0.409208 7.437333 48.806583 \n2022-02-09 14.982000 0.413333 7.305083 49.236333 \n2022-02-10 14.905292 0.439542 7.322958 49.126708 \n2022-02-11 15.418750 0.431875 7.399125 49.408708 \n2022-02-12 11.594583 0.440250 7.651625 49.116458 \n2022-02-13 14.760208 0.450958 7.574292 49.781083 \n2022-02-14 15.406917 0.424833 7.482917 49.330375 \n2022-02-15 13.850625 0.418458 7.849917 49.334625 \n2022-02-16 12.883958 0.418792 7.987792 49.201917 \n2022-02-17 14.789000 0.391833 7.572167 49.359500 \n2022-02-18 15.288667 0.413625 7.403667 49.193625 \n2022-02-19 14.100208 0.411917 7.867083 48.750417 \n2022-02-20 14.185750 0.417083 7.481667 49.719708 \n2022-02-21 13.091000 0.420542 7.096250 49.336583 \n2022-02-22 15.314375 0.407500 7.471250 49.393917 \n2022-02-23 11.103458 0.416125 7.264125 49.460667 \n2022-02-24 6.978250 0.421917 7.268875 49.327667 \n2022-02-25 7.001375 0.403125 7.359417 48.764042 \n2022-02-26 8.824500 0.417542 7.432958 48.933458 \n2022-02-27 17.331167 0.350625 7.471875 48.993042 \n2022-02-28 18.255167 0.358292 7.451500 49.359958 \n\n 机组2_烟气湿度(%) 机组2_烟气压力(千帕) 机组2_烟气流速(m/s) 机组2_状态 \n2022-01-01 14.332542 -0.001208 13.711958 正常运行 \n2022-01-02 13.511000 -0.004167 13.774167 正常运行 \n2022-01-03 13.971208 -0.003500 13.844875 正常运行 \n2022-01-04 13.916375 -0.008208 13.842125 正常运行 \n2022-01-05 14.428917 0.005875 14.311083 正常运行 \n2022-01-06 15.268208 -0.000167 14.131583 正常运行 \n2022-01-07 14.889875 -0.003833 14.068833 正常运行 \n2022-01-08 14.535917 0.001125 13.726083 正常运行 \n2022-01-09 14.305000 -0.008500 13.569167 正常运行 \n2022-01-10 14.191625 -0.030583 12.975792 正常运行 \n2022-01-11 14.764958 -0.029042 13.674167 正常运行 \n2022-01-12 14.263000 -0.015208 13.690458 正常运行 \n2022-01-13 14.442958 -0.022458 13.463542 正常运行 \n2022-01-14 14.328583 -0.026708 13.353708 正常运行 \n2022-01-15 14.199875 -0.017833 13.440708 正常运行 \n2022-01-16 14.185542 -0.014458 13.628750 正常运行 \n2022-01-17 13.929958 -0.020917 13.250917 正常运行 \n2022-01-18 14.144208 -0.004125 13.642042 正常运行 \n2022-01-19 14.787958 -0.029292 13.718750 正常运行 \n2022-01-20 14.510042 -0.025833 13.986250 正常运行 \n2022-01-21 14.936792 -0.005083 14.560750 正常运行 \n2022-01-22 15.098875 -0.022167 14.133250 正常运行 \n2022-01-23 14.761500 -0.027958 13.891958 正常运行 \n2022-01-24 14.277750 -0.015417 13.751458 正常运行 \n2022-01-25 14.441208 -0.008750 13.930542 正常运行 \n2022-01-26 14.133625 -0.019167 13.717375 正常运行 \n2022-01-27 13.993833 -0.019167 13.451958 正常运行 \n2022-01-28 14.186417 -0.007375 13.664208 正常运行 \n2022-01-29 14.288167 -0.012125 13.557125 正常运行 \n2022-01-30 14.165333 -0.019083 13.457583 正常运行 \n2022-01-31 13.787333 -0.011708 13.436125 正常运行 \n2022-02-01 13.722667 -0.020083 13.511750 正常运行 \n2022-02-02 14.131875 -0.013042 13.611125 正常运行 \n2022-02-03 13.783458 -0.020375 13.166667 正常运行 \n2022-02-04 13.776375 -0.031458 13.159875 正常运行 \n2022-02-05 13.928458 -0.020042 13.502917 正常运行 \n2022-02-06 13.860208 -0.019833 13.172083 正常运行 \n2022-02-07 13.576750 -0.021792 12.952875 正常运行 \n2022-02-08 13.721208 -0.025417 12.863625 正常运行 \n2022-02-09 14.036875 -0.026583 12.952667 正常运行 \n2022-02-10 13.953417 -0.011083 13.232667 正常运行 \n2022-02-11 14.210083 -0.011542 13.247875 正常运行 \n2022-02-12 13.956625 -0.018250 12.992667 正常运行 \n2022-02-13 14.427542 -0.037625 13.313500 正常运行 \n2022-02-14 14.049500 -0.044708 13.217542 正常运行 \n2022-02-15 14.077958 -0.049333 12.751083 正常运行 \n2022-02-16 13.875458 -0.062125 12.336333 正常运行 \n2022-02-17 14.031000 -0.041375 12.966167 正常运行 \n2022-02-18 13.987625 -0.024583 13.562792 正常运行 \n2022-02-19 13.605208 -0.032292 13.194958 正常运行 \n2022-02-20 14.403625 -0.016708 13.532375 正常运行 \n2022-02-21 14.083542 -0.014750 13.520000 正常运行 \n2022-02-22 14.153542 -0.018667 13.514750 正常运行 \n2022-02-23 14.195833 -0.019167 13.393625 正常运行 \n2022-02-24 14.195417 -0.010125 13.237458 正常运行 \n2022-02-25 13.771625 -0.005583 12.710292 正常运行 \n2022-02-26 13.873167 0.002500 12.894500 正常运行 \n2022-02-27 13.949583 0.000250 12.880750 正常运行 \n2022-02-28 14.249000 0.008292 12.840625 正常运行 \n\n[59 rows x 27 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
发电量_1(万千瓦时)供热量_1(吉焦)燃料消耗量_1(吨)发电量_2(万千瓦时)供热量_2(吉焦)燃料消耗量_2(吨)企业名称机组1_流量 (m3/h)机组1_NOx浓度(mg/m3)机组1_SO2浓度(mg/m3)...机组2_流量 (m3/h)机组2_NOx浓度(mg/m3)机组2_SO2浓度(mg/m3)机组2_烟尘浓度(mg/m3)机组2_含氧量(%)机组2_温度(℃)机组2_烟气湿度(%)机组2_烟气压力(千帕)机组2_烟气流速(m/s)机组2_状态
2022-01-01494.20308292861536.503242752国电电力邯郸东郊热电有限责任公司941229.6018.20037518.165208...1095004.2019.09862516.4959170.4771677.38416749.57058314.332542-0.00120813.711958正常运行
2022-01-02554.30321222536567.9010083086国电电力邯郸东郊热电有限责任公司992216.1019.53645818.721167...1113858.4520.49729215.4552080.4530426.91820848.55708313.511000-0.00416713.774167正常运行
2022-01-03558.30334512911566.2012962914国电电力邯郸东郊热电有限责任公司1016053.0520.57791716.690083...1111516.3519.51995815.4347920.4596257.14291749.18495813.971208-0.00350013.844875正常运行
2022-01-04529.70331793023563.5012482847国电电力邯郸东郊热电有限责任公司979135.3520.39791715.546958...1112429.5517.98604213.2651250.4644587.16354249.09950013.916375-0.00820813.842125正常运行
2022-01-05563.90297313191609.3013623014国电电力邯郸东郊热电有限责任公司996159.1517.95541714.888333...1141153.8018.75612514.4460000.4874586.97558349.74587514.4289170.00587514.311083正常运行
2022-01-06561.00325053357577.2012363353国电电力邯郸东郊热电有限责任公司970119.1520.29225013.671917...1112256.7517.6481259.9854170.5520837.25800050.72441715.268208-0.00016714.131583正常运行
2022-01-07570.00331893231579.0010353252国电电力邯郸东郊热电有限责任公司998681.8518.99633314.894875...1113637.6518.14408314.3751250.5315007.08270850.25970814.889875-0.00383314.068833正常运行
2022-01-08526.80318812765542.9013232548国电电力邯郸东郊热电有限责任公司974497.6519.10358316.130625...1092330.6017.74362515.2346250.5028337.20916749.82750014.5359170.00112513.726083正常运行
2022-01-09517.10307992574538.9013052394国电电力邯郸东郊热电有限责任公司957560.5519.97454213.766125...1083863.4017.62095813.8935420.5655837.21516749.60145814.305000-0.00850013.569167正常运行
2022-01-10512.80292772512483.4013352303国电电力邯郸东郊热电有限责任公司956263.2020.45004215.530625...1037804.4017.96875012.7401670.5141677.94800049.45958314.191625-0.03058312.975792正常运行
2022-01-11521.20324602757536.1012992819国电电力邯郸东郊热电有限责任公司955973.4018.97987514.161208...1084317.3017.11404211.5620420.5265837.34108350.17241714.764958-0.02904213.674167正常运行
2022-01-12543.32335933132558.8513682612国电电力邯郸东郊热电有限责任公司987528.7518.11654211.636042...1094112.4517.64529211.9089170.5230007.00108349.56416714.263000-0.01520813.690458正常运行
2022-01-13512.52333262950527.3213982820国电电力邯郸东郊热电有限责任公司971672.8518.86112513.701250...1072833.3018.23829211.2561250.4872927.16379249.76758314.442958-0.02245813.463542正常运行
2022-01-14495.42314172755512.8315362820国电电力邯郸东郊热电有限责任公司956458.6518.33695812.812500...1066098.6017.30812511.1626250.4785427.41929249.61829214.328583-0.02670813.353708正常运行
2022-01-15500.06324342834517.1912422986国电电力邯郸东郊热电有限责任公司950168.5520.05933312.266542...1075279.9518.62779213.6124580.4974587.44662549.47400014.199875-0.01783313.440708正常运行
2022-01-16527.93319863182542.3411163132国电电力邯郸东郊热电有限责任公司973078.8019.97450014.186208...1090436.8516.91562512.7552500.4420837.39250049.45845814.185542-0.01445813.628750正常运行
2022-01-17496.50322683121513.1413622912国电电力邯郸东郊热电有限责任公司956802.1518.87908313.058542...1064488.9518.09583311.8116250.4889177.06712549.12770813.929958-0.02091713.250917正常运行
2022-01-18529.31318143241544.1113053070国电电力邯郸东郊热电有限责任公司991453.2020.23662515.996250...1092306.4518.96500014.8700830.4925427.03450049.34754214.144208-0.00412513.642042正常运行
2022-01-19552.01304143274565.9611613297国电电力邯郸东郊热电有限责任公司991811.8520.14454214.782958...1087070.7019.33516714.7360000.4946677.12033350.07554214.787958-0.02929213.718750正常运行
2022-01-20544.00324163594581.3413293359国电电力邯郸东郊热电有限责任公司1005389.5519.53220815.500333...1113286.9518.94212515.4207500.4406677.12808349.86858314.510042-0.02583313.986250正常运行
2022-01-21561.29343003891617.1813834019国电电力邯郸东郊热电有限责任公司1028425.0519.84683315.057042...1150941.6018.48337513.1727500.4905426.85550050.41441714.936792-0.00508314.560750正常运行
2022-01-22574.00383424276585.2513683923国电电力邯郸东郊热电有限责任公司1030724.4020.39866715.060083...1115300.2518.46554214.3235000.5407506.91350050.39608315.098875-0.02216714.133250正常运行
2022-01-23534.94374443767550.2412423743国电电力邯郸东郊热电有限责任公司685315.0520.19570813.737458...1102247.7018.29429213.5738330.5616257.26312549.92629214.761500-0.02795813.891958正常运行
2022-01-24543.91345393175550.6113623852国电电力邯郸东郊热电有限责任公司747819.0019.78316713.516667...1098705.0017.31087514.1383330.5237087.42237549.52279214.277750-0.01541713.751458正常运行
2022-01-25538.31367533860551.2111313621国电电力邯郸东郊热电有限责任公司981332.2520.89991717.045250...1110458.1017.74041715.1570830.5485837.22533349.64316714.441208-0.00875013.930542正常运行
2022-01-26529.59341483749545.598913735国电电力邯郸东郊热电有限责任公司973191.4519.60591715.363083...1098819.7518.23016713.9628750.5292507.35362549.32412514.133625-0.01916713.717375正常运行
2022-01-27525.88336303725537.337773446国电电力邯郸东郊热电有限责任公司976386.9021.13904216.053542...1079510.7017.71675014.4169170.4462087.15091749.16508313.993833-0.01916713.451958正常运行
2022-01-28545.06341813866554.885583721国电电力邯郸东郊热电有限责任公司995228.1020.38116717.793375...1093401.6018.93970816.0258750.4428336.87650049.42012514.186417-0.00737513.664208正常运行
2022-01-29522.68306373395544.473993142国电电力邯郸东郊热电有限责任公司967837.8020.60266715.591625...1083312.9019.39375015.5891250.4959177.11425049.56162514.288167-0.01212513.557125正常运行
2022-01-30509.69342543101526.922582820国电电力邯郸东郊热电有限责任公司959857.9522.42454221.170125...1077400.9520.85620819.9204170.5052087.13500049.39229214.165333-0.01908313.457583正常运行
2022-01-31516.51321452985528.132102966国电电力邯郸东郊热电有限责任公司982636.8022.93325018.113667...1081850.5520.09491718.0523330.4774587.26200048.92900013.787333-0.01170813.436125正常运行
2022-02-01500.46256872662543.602072895国电电力邯郸东郊热电有限责任公司958825.3518.98345816.199000...1089026.8520.80587517.4093330.4196256.96533348.86504213.722667-0.02008313.511750正常运行
2022-02-02477.03290612821534.401862930国电电力邯郸东郊热电有限责任公司935412.7519.69225015.898208...1089972.7519.05229215.7734580.4133337.02900049.36712514.131875-0.01304213.611125正常运行
2022-02-03439.93295982779494.862042937国电电力邯郸东郊热电有限责任公司908839.3520.23216714.801333...1060159.8019.80670815.5553330.4207927.33779248.92958313.783458-0.02037513.166667正常运行
2022-02-04452.76287092523493.992822867国电电力邯郸东郊热电有限责任公司911025.6018.35179214.603708...1059162.9017.24112514.2015000.4260007.60612548.94087513.776375-0.03145813.159875正常运行
2022-02-05508.35301332884521.492852916国电电力邯郸东郊热电有限责任公司920823.4519.44033314.161000...1084824.9017.39891713.9587500.4171257.32708349.11737513.928458-0.02004213.502917正常运行
2022-02-06485.41276352902503.133632947国电电力邯郸东郊热电有限责任公司916121.7018.34041714.278167...1059457.9515.36629214.1570000.4128757.40500049.00895813.860208-0.01983313.172083正常运行
2022-02-07469.75282592939484.853632754国电电力邯郸东郊热电有限责任公司917169.9018.99558315.024875...1046341.0518.48504214.7908330.4119587.54416748.64741713.576750-0.02179212.952875正常运行
2022-02-08452.87266852556481.926032485国电电力邯郸东郊热电有限责任公司886401.6020.19216714.818625...1036790.5518.84950013.7482920.4092087.43733348.80658313.721208-0.02541712.863625正常运行
2022-02-09470.87260372691488.176812834国电电力邯郸东郊热电有限责任公司906835.8019.85329214.572875...1038851.7017.98879214.9820000.4133337.30508349.23633314.036875-0.02658312.952667正常运行
2022-02-10490.75255302901508.895913172国电电力邯郸东郊热电有限责任公司928945.8019.82579215.346833...1062997.3517.95458314.9052920.4395427.32295849.12670813.953417-0.01108313.232667正常运行
2022-02-11467.50243592790497.457352835国电电力邯郸东郊热电有限责任公司885137.4020.02245815.645167...1059613.6517.18579215.4187500.4318757.39912549.40870814.210083-0.01154213.247875正常运行
2022-02-12446.31241802766474.046212787国电电力邯郸东郊热电有限责任公司878793.1519.90158311.658667...1043504.4018.58408311.5945830.4402507.65162549.11645813.956625-0.01825012.992667正常运行
2022-02-13466.12252743054491.415942915国电电力邯郸东郊热电有限责任公司904216.5019.56358314.393250...1061035.5019.74750014.7602080.4509587.57429249.78108314.427542-0.03762513.313500正常运行
2022-02-14464.96293382533491.966512555国电电力邯郸东郊热电有限责任公司898221.4519.59120816.393500...1059337.2019.64816715.4069170.4248337.48291749.33037514.049500-0.04470813.217542正常运行
2022-02-15466.40273942611444.044742447国电电力邯郸东郊热电有限责任公司898496.8520.30420815.477375...1021689.1518.69758313.8506250.4184587.84991749.33462514.077958-0.04933312.751083正常运行
2022-02-16493.26276392905420.1010742350国电电力邯郸东郊热电有限责任公司930371.5519.78162513.623167...991069.2016.82250012.8839580.4187927.98779249.20191713.875458-0.06212512.336333正常运行
2022-02-17495.53302282894469.3213622623国电电力邯郸东郊热电有限责任公司924087.9020.75166716.294000...1039439.1019.70970814.7890000.3918337.57216749.35950014.031000-0.04137512.966167正常运行
2022-02-18524.59281263030531.2814132724国电电力邯郸东郊热电有限责任公司943475.5517.54750015.684250...1088419.2017.53408315.2886670.4136257.40366749.19362513.987625-0.02458313.562792正常运行
2022-02-19466.49275752470497.1113172409国电电力邯郸东郊热电有限责任公司927422.2516.90112514.059042...1065218.7017.39045814.1002080.4119177.86708348.75041713.605208-0.03229213.194958正常运行
2022-02-20503.46274242799460.9112812916国电电力邯郸东郊热电有限责任公司956680.5017.79079214.316042...1079138.8518.78129214.1857500.4170837.48166749.71970814.403625-0.01670813.532375正常运行
2022-02-21521.02269653098482.8913172996国电电力邯郸东郊热电有限责任公司948743.8520.73562513.478583...1083679.5019.19633313.0910000.4205427.09625049.33658314.083542-0.01475013.520000正常运行
2022-02-22528.08268863317490.4513143209国电电力邯郸东郊热电有限责任公司960633.0020.33612517.093583...1082105.4019.49308315.3143750.4075007.47125049.39391714.153542-0.01866713.514750正常运行
2022-02-23533.95250223174494.5414072868国电电力邯郸东郊热电有限责任公司962487.3014.81758312.260375...1071494.2516.40354211.1034580.4161257.26412549.46066714.195833-0.01916713.393625正常运行
2022-02-24505.76267273079527.4312002921国电电力邯郸东郊热电有限责任公司923360.4012.1798758.796875...1059437.8514.0838756.9782500.4219177.26887549.32766714.195417-0.01012513.237458正常运行
2022-02-25445.43219302580473.0613682584国电电力邯郸东郊热电有限责任公司860085.1510.4759586.187042...1024307.1012.8225007.0013750.4031257.35941748.76404213.771625-0.00558312.710292正常运行
2022-02-26491.01166452733509.1813412545国电电力邯郸东郊热电有限责任公司902073.3016.4929179.615208...1037322.3016.2683758.8245000.4175427.43295848.93345813.8731670.00250012.894500正常运行
2022-02-27465.33178842862500.1812692825国电电力邯郸东郊热电有限责任公司873491.2519.57587518.428667...1035227.5519.33208317.3311670.3506257.47187548.99304213.9495830.00025012.880750正常运行
2022-02-28487.21154573029497.7612362632国电电力邯郸东郊热电有限责任公司873223.8019.88604217.970458...1027222.0519.49575018.2551670.3582927.45150049.35995814.2490000.00829212.840625正常运行
\n

59 rows × 27 columns

\n
" }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hddj_save_data = pd.concat([hddj_daily_data, hddj_emiss_daily_1, hddj_emiss_daily_2], axis=1)\n", "hddj_save_data" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 34, "outputs": [ { "data": { "text/plain": "Index(['企业名称', 'address_reg', 'address1', '经度', '纬度', '机组数量', '单机容量(MW)',\n '生产设备类型', '锅炉额定蒸发量 t/h ', '汽轮机类型', '压力参数', '冷却方式', '脱硝工艺', '脱硫工艺',\n '除尘工艺', '燃料类型', '低位发热量(GJ/t)', 'Unnamed: 17', '日期', '机组编号', '投产日期',\n '产灰量(吨)', '产石膏量(吨)', '脱硝设施耗电量(千瓦时)', '运行时间(小时)', '除尘设施运行时间(小时)',\n '除尘耗电量(千瓦时)', '发电量(万千瓦时)', '供热量(万吉焦)', '产渣量', '脱硫剂使用量(吨)', '脱硫耗电量(千瓦时)',\n '脱硫设施运行时间(小时)', '脱硝还原剂消耗量(吨)', '脱硝运行时间(小时)', '燃料消耗量(吨)', 'Unnamed: 36',\n '日期.1', '机组编号.1', '投产日期.1', '产灰量(吨).1', '产石膏量(吨).1', '脱硝设施耗电量(千瓦时).1',\n '运行时间(小时).1', '除尘设施运行时间(小时).1', '除尘耗电量(千瓦时).1', '发电量(万千瓦时).1',\n '供热量(万吉焦).1', '产渣量.1', '脱硫剂使用量(吨).1', '脱硫耗电量(千瓦时).1', '脱硫设施运行时间(小时).1',\n '脱硝还原剂消耗量(吨).1', '脱硝运行时间(小时).1', '燃料消耗量(吨).1'],\n dtype='object')" }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "jtzh_daily = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=7)\n", "jtzh_daily.columns" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 35, "outputs": [], "source": [ "jtzh_daily_1 = jtzh_daily[['日期', '发电量(万千瓦时)', '供热量(万吉焦)', '燃料消耗量(吨)']].copy()\n", "jtzh_daily_1.columns = ['days', \"发电量_1(万千瓦时)\", '供热量_1(吉焦)', '燃料消耗量_1(吨)']\n", "jtzh_daily_2 = jtzh_daily[['日期.1', '发电量(万千瓦时).1', '供热量(万吉焦).1', '燃料消耗量(吨).1']].copy()\n", "jtzh_daily_2.columns = ['days', \"发电量_2(万千瓦时)\", '供热量_2(吉焦)', '燃料消耗量_2(吨)']" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 36, "outputs": [ { "data": { "text/plain": " days 发电量_2(万千瓦时) 供热量_2(吉焦) 燃料消耗量_2(吨)\n0 2022-05-01 0.000 0 0\n1 2022-05-02 0.000 0 0\n2 2022-05-03 0.000 0 0\n3 2022-05-04 0.000 0 0\n4 2022-05-05 0.000 0 0\n5 2022-05-06 0.000 0 0\n6 2022-05-07 0.000 0 426\n7 2022-05-08 218.196 0 1873\n8 2022-05-09 444.756 0 2350\n9 2022-05-10 552.114 0 2636\n10 2022-05-11 481.542 0 2432\n11 2022-05-12 439.788 0 2099\n12 2022-05-13 495.702 0 2340\n13 2022-05-14 486.624 0 2737\n14 2022-05-15 460.524 0 2461\n15 2022-05-16 505.578 0 2615\n16 2022-05-17 432.450 0 2593\n17 2022-05-18 509.586 0 2871\n18 2022-05-19 514.404 0 2637\n19 2022-05-20 514.434 0 2682\n20 2022-05-21 520.626 0 2581\n21 2022-05-22 500.040 0 2632\n22 2022-05-23 584.886 0 3187\n23 2022-05-24 514.488 0 2719\n24 2022-05-25 486.474 0 2599\n25 2022-05-26 501.366 0 2794\n26 2022-05-27 467.106 0 2401\n27 2022-05-28 504.900 0 2611\n28 2022-05-29 462.822 0 2846\n29 2022-05-30 528.960 0 2981\n30 2022-05-31 672.180 0 3560", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
days发电量_2(万千瓦时)供热量_2(吉焦)燃料消耗量_2(吨)
02022-05-010.00000
12022-05-020.00000
22022-05-030.00000
32022-05-040.00000
42022-05-050.00000
52022-05-060.00000
62022-05-070.0000426
72022-05-08218.19601873
82022-05-09444.75602350
92022-05-10552.11402636
102022-05-11481.54202432
112022-05-12439.78802099
122022-05-13495.70202340
132022-05-14486.62402737
142022-05-15460.52402461
152022-05-16505.57802615
162022-05-17432.45002593
172022-05-18509.58602871
182022-05-19514.40402637
192022-05-20514.43402682
202022-05-21520.62602581
212022-05-22500.04002632
222022-05-23584.88603187
232022-05-24514.48802719
242022-05-25486.47402599
252022-05-26501.36602794
262022-05-27467.10602401
272022-05-28504.90002611
282022-05-29462.82202846
292022-05-30528.96002981
302022-05-31672.18003560
\n
" }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "jtzh_daily_2" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 37, "outputs": [ { "data": { "text/plain": "DatetimeIndex(['2022-05-01', '2022-05-02', '2022-05-03', '2022-05-04',\n '2022-05-05', '2022-05-06', '2022-05-07', '2022-05-08',\n '2022-05-09', '2022-05-10', '2022-05-11', '2022-05-12',\n '2022-05-13', '2022-05-14', '2022-05-15', '2022-05-16',\n '2022-05-17', '2022-05-18', '2022-05-19', '2022-05-20',\n '2022-05-21', '2022-05-22', '2022-05-23', '2022-05-24',\n '2022-05-25', '2022-05-26', '2022-05-27', '2022-05-28',\n '2022-05-29', '2022-05-30', '2022-05-31'],\n dtype='datetime64[ns]', freq='D')" }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "min_start = min(jtzh_daily_1.days.min(), jtzh_daily_2.days.min())\n", "max_end = max(jtzh_daily_1.days.max(), jtzh_daily_2.days.max())\n", "date_range = pd.date_range(min_start, max_end, freq='D')\n", "date_range" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 38, "outputs": [], "source": [ "jtzh_daily_1 = jtzh_daily_1.set_index('days').reindex(date_range.astype(str)).fillna(0)\n", "jtzh_daily_2 = jtzh_daily_2.set_index('days').reindex(date_range.astype(str)).fillna(0)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 39, "outputs": [ { "data": { "text/plain": " 发电量_1(万千瓦时) 供热量_1(吉焦) 燃料消耗量_1(吨) 发电量_2(万千瓦时) 供热量_2(吉焦) \\\n2022-05-01 444.630 0 1889 0.000 0 \n2022-05-02 516.594 0 2622 0.000 0 \n2022-05-03 410.316 0 2233 0.000 0 \n2022-05-04 421.908 0 2203 0.000 0 \n2022-05-05 486.318 0 2524 0.000 0 \n2022-05-06 457.542 0 2343 0.000 0 \n2022-05-07 451.140 0 2278 0.000 0 \n2022-05-08 484.986 0 1120 218.196 0 \n2022-05-09 0.000 0 0 444.756 0 \n2022-05-10 0.000 0 0 552.114 0 \n2022-05-11 0.000 0 0 481.542 0 \n2022-05-12 0.000 0 0 439.788 0 \n2022-05-13 0.000 0 0 495.702 0 \n2022-05-14 0.000 0 121 486.624 0 \n2022-05-15 159.936 0 2251 460.524 0 \n2022-05-16 516.192 0 2543 505.578 0 \n2022-05-17 432.300 0 2432 432.450 0 \n2022-05-18 508.680 0 2810 509.586 0 \n2022-05-19 516.066 0 2972 514.404 0 \n2022-05-20 517.356 0 2623 514.434 0 \n2022-05-21 521.454 0 2759 520.626 0 \n2022-05-22 504.798 0 2545 500.040 0 \n2022-05-23 587.400 0 3294 584.886 0 \n2022-05-24 515.964 0 2633 514.488 0 \n2022-05-25 485.346 0 2694 486.474 0 \n2022-05-26 503.502 0 2619 501.366 0 \n2022-05-27 470.340 0 2510 467.106 0 \n2022-05-28 508.644 0 2753 504.900 0 \n2022-05-29 460.536 0 1163 462.822 0 \n2022-05-30 8.610 0 0 528.960 0 \n2022-05-31 0.000 0 0 672.180 0 \n\n 燃料消耗量_2(吨) \n2022-05-01 0 \n2022-05-02 0 \n2022-05-03 0 \n2022-05-04 0 \n2022-05-05 0 \n2022-05-06 0 \n2022-05-07 426 \n2022-05-08 1873 \n2022-05-09 2350 \n2022-05-10 2636 \n2022-05-11 2432 \n2022-05-12 2099 \n2022-05-13 2340 \n2022-05-14 2737 \n2022-05-15 2461 \n2022-05-16 2615 \n2022-05-17 2593 \n2022-05-18 2871 \n2022-05-19 2637 \n2022-05-20 2682 \n2022-05-21 2581 \n2022-05-22 2632 \n2022-05-23 3187 \n2022-05-24 2719 \n2022-05-25 2599 \n2022-05-26 2794 \n2022-05-27 2401 \n2022-05-28 2611 \n2022-05-29 2846 \n2022-05-30 2981 \n2022-05-31 3560 ", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
发电量_1(万千瓦时)供热量_1(吉焦)燃料消耗量_1(吨)发电量_2(万千瓦时)供热量_2(吉焦)燃料消耗量_2(吨)
2022-05-01444.630018890.00000
2022-05-02516.594026220.00000
2022-05-03410.316022330.00000
2022-05-04421.908022030.00000
2022-05-05486.318025240.00000
2022-05-06457.542023430.00000
2022-05-07451.140022780.0000426
2022-05-08484.98601120218.19601873
2022-05-090.00000444.75602350
2022-05-100.00000552.11402636
2022-05-110.00000481.54202432
2022-05-120.00000439.78802099
2022-05-130.00000495.70202340
2022-05-140.0000121486.62402737
2022-05-15159.93602251460.52402461
2022-05-16516.19202543505.57802615
2022-05-17432.30002432432.45002593
2022-05-18508.68002810509.58602871
2022-05-19516.06602972514.40402637
2022-05-20517.35602623514.43402682
2022-05-21521.45402759520.62602581
2022-05-22504.79802545500.04002632
2022-05-23587.40003294584.88603187
2022-05-24515.96402633514.48802719
2022-05-25485.34602694486.47402599
2022-05-26503.50202619501.36602794
2022-05-27470.34002510467.10602401
2022-05-28508.64402753504.90002611
2022-05-29460.53601163462.82202846
2022-05-308.61000528.96002981
2022-05-310.00000672.18003560
\n
" }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "jtzh_daily_data = pd.concat([jtzh_daily_1, jtzh_daily_2], axis=1)\n", "jtzh_daily_data" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 40, "outputs": [ { "data": { "text/plain": "Index(['时间', '企业名称', '监测点', '流量 (m3/h)', 'NOx浓度(mg/m3)', 'SO2浓度(mg/m3)',\n '烟尘浓度(mg/m3)', '含氧量(%)', '烟气湿度(%)', '温度(℃)', '烟气流速(m/s)', '状态',\n 'Unnamed: 12', '时间.1', '企业名称.1', '监测点.1', '流量 (m3/h).1',\n 'NOx浓度(mg/m3).1', 'SO2浓度(mg/m3).1', '烟尘浓度(mg/m3).1', '含氧量(%).1',\n '烟气湿度(%).1', '温度(℃).1', '烟气流速(m/s).1', '状态.1'],\n dtype='object')" }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "jtzh_emiss_data = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=6)\n", "jtzh_emiss_data.columns" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 41, "outputs": [], "source": [ "jtzh_emiss_data_1 = jtzh_emiss_data[['时间', '流量 (m3/h)', 'NOx浓度(mg/m3)', 'SO2浓度(mg/m3)',\n", " '烟尘浓度(mg/m3)', '含氧量(%)', '温度(℃)', '烟气湿度(%)', '烟气流速(m/s)',\n", " '状态', ]].copy()\n", "jtzh_emiss_data_2 = jtzh_emiss_data[['时间.1', '流量 (m3/h).1',\n", " 'NOx浓度(mg/m3).1', 'SO2浓度(mg/m3).1', '烟尘浓度(mg/m3).1', '含氧量(%).1',\n", " '温度(℃).1', '烟气湿度(%).1', '烟气流速(m/s).1', '状态.1']].copy()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 42, "outputs": [], "source": [ "jtzh_emiss_data_1.columns = ['date'] + jtzh_emiss_data_1.columns[1:].tolist()\n", "jtzh_emiss_data_2.columns = jtzh_emiss_data_1.columns.tolist()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 43, "outputs": [], "source": [ "jtzh_emiss_data_1['days'] = jtzh_emiss_data_1.date.apply(lambda x: str(x).split(' ')[0])\n", "jtzh_emiss_data_2['days'] = jtzh_emiss_data_2.date.apply(lambda x: str(x).split(' ')[0])" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 44, "outputs": [ { "data": { "text/plain": " date 流量 (m3/h) NOx浓度(mg/m3) SO2浓度(mg/m3) 烟尘浓度(mg/m3) \\\n0 2022-05-01 00:00:00 705600 9.79 11.48 1.89 \n1 2022-05-01 01:00:00 716760 14.68 14.25 1.87 \n2 2022-05-01 02:00:00 685080 12.44 11.01 1.92 \n3 2022-05-01 03:00:00 687960 16.18 12.24 1.91 \n4 2022-05-01 04:00:00 691920 19.52 12.77 1.86 \n.. ... ... ... ... ... \n739 2022-05-31 19:00:00 56520 -0.13 0.06 0.68 \n740 2022-05-31 20:00:00 49680 -0.14 0.08 0.67 \n741 2022-05-31 21:00:00 47160 -0.15 0.07 0.68 \n742 2022-05-31 22:00:00 44280 -0.15 0.03 0.67 \n743 2022-05-31 23:00:00 38880 -0.15 0.01 0.66 \n\n 含氧量(%) 温度(℃) 烟气湿度(%) 烟气流速(m/s) 状态 days \n0 8.2 51.5 8.8 8.61 正常运行 2022-05-01 \n1 8.3 52.4 9.5 8.83 正常运行 2022-05-01 \n2 8.6 51.9 9.4 8.43 正常运行 2022-05-01 \n3 8.6 51.5 9.4 8.46 正常运行 2022-05-01 \n4 8.8 51.2 9.2 8.47 正常运行 2022-05-01 \n.. ... ... ... ... ... ... \n739 19.8 29.8 0.8 0.59 停运 2022-05-31 \n740 20.0 29.4 0.7 0.52 停运 2022-05-31 \n741 20.0 28.9 0.5 0.49 停运 2022-05-31 \n742 20.0 28.4 0.4 0.46 停运 2022-05-31 \n743 20.0 27.9 0.2 0.40 停运 2022-05-31 \n\n[744 rows x 11 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
date流量 (m3/h)NOx浓度(mg/m3)SO2浓度(mg/m3)烟尘浓度(mg/m3)含氧量(%)温度(℃)烟气湿度(%)烟气流速(m/s)状态days
02022-05-01 00:00:007056009.7911.481.898.251.58.88.61正常运行2022-05-01
12022-05-01 01:00:0071676014.6814.251.878.352.49.58.83正常运行2022-05-01
22022-05-01 02:00:0068508012.4411.011.928.651.99.48.43正常运行2022-05-01
32022-05-01 03:00:0068796016.1812.241.918.651.59.48.46正常运行2022-05-01
42022-05-01 04:00:0069192019.5212.771.868.851.29.28.47正常运行2022-05-01
....................................
7392022-05-31 19:00:0056520-0.130.060.6819.829.80.80.59停运2022-05-31
7402022-05-31 20:00:0049680-0.140.080.6720.029.40.70.52停运2022-05-31
7412022-05-31 21:00:0047160-0.150.070.6820.028.90.50.49停运2022-05-31
7422022-05-31 22:00:0044280-0.150.030.6720.028.40.40.46停运2022-05-31
7432022-05-31 23:00:0038880-0.150.010.6620.027.90.20.40停运2022-05-31
\n

744 rows × 11 columns

\n
" }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "jtzh_emiss_data_1" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 45, "outputs": [], "source": [ "num_cols = jtzh_emiss_data_1.columns[1:-2]\n", "jtzh_emiss_daily_1 = jtzh_emiss_data_1.ffill().groupby('days')[num_cols].mean()\n", "jtzh_emiss_daily_1['状态'] = jtzh_emiss_data_1.ffill().groupby('days')['状态'].apply(lambda x: x.value_counts().index[0])\n", "jtzh_emiss_daily_1.columns = [f\"机组1_{x}\" for x in jtzh_emiss_daily_1.columns]\n", "\n", "jtzh_emiss_daily_2 = jtzh_emiss_data_2.ffill().groupby('days')[num_cols].mean()\n", "jtzh_emiss_daily_2['状态'] = jtzh_emiss_data_1.ffill().groupby('days')['状态'].apply(lambda x: x.value_counts().index[0])\n", "jtzh_emiss_daily_2.columns = [f\"机组2_{x}\" for x in jtzh_emiss_daily_2.columns]" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 50, "outputs": [ { "data": { "text/plain": " 机组1_流量 (m3/h) 机组1_NOx浓度(mg/m3) 机组1_SO2浓度(mg/m3) \\\ndays \n2022-05-01 820965.0 12.952083 12.856250 \n2022-05-02 907380.0 14.641667 11.846250 \n2022-05-03 771360.0 14.414167 12.434167 \n2022-05-04 780390.0 14.922500 12.910417 \n2022-05-05 870075.0 14.102917 13.716667 \n2022-05-06 816300.0 14.321667 14.458750 \n2022-05-07 804405.0 16.310833 13.279583 \n2022-05-08 845610.0 18.585417 13.300417 \n2022-05-09 26370.0 6.152083 0.403750 \n2022-05-10 269970.0 -0.208333 0.264583 \n2022-05-11 163470.0 -0.147917 0.288333 \n2022-05-12 27720.0 -0.182083 0.225417 \n2022-05-13 50760.0 -0.140833 0.102917 \n2022-05-14 48540.0 -0.112500 0.052083 \n2022-05-15 602865.0 85.984583 6.295833 \n2022-05-16 912705.0 14.561250 13.784583 \n2022-05-17 816165.0 13.918333 12.802083 \n2022-05-18 892620.0 14.547083 13.451250 \n2022-05-19 904860.0 15.437083 13.886250 \n2022-05-20 906690.0 13.552917 13.295000 \n2022-05-21 931575.0 16.459583 11.678333 \n2022-05-22 891885.0 15.156250 13.014167 \n2022-05-23 1000560.0 14.451667 13.710833 \n2022-05-24 921300.0 13.775000 12.157083 \n2022-05-25 867765.0 15.344167 12.987083 \n2022-05-26 902100.0 14.439167 13.062917 \n2022-05-27 865320.0 14.760000 12.725417 \n2022-05-28 925965.0 15.012917 14.615833 \n2022-05-29 861255.0 14.035000 12.818750 \n2022-05-30 71640.0 0.266667 0.770417 \n2022-05-31 53550.0 -0.043333 0.085417 \n\n 机组1_烟尘浓度(mg/m3) 机组1_含氧量(%) 机组1_温度(℃) 机组1_烟气湿度(%) \\\ndays \n2022-05-01 1.787500 7.795833 52.320833 9.204167 \n2022-05-02 1.717917 7.295833 53.145833 9.016667 \n2022-05-03 1.850833 7.650000 51.841667 8.750000 \n2022-05-04 1.922083 7.462500 51.808333 8.495833 \n2022-05-05 1.981667 7.195833 52.354167 8.725000 \n2022-05-06 1.729583 7.433333 51.462500 8.858333 \n2022-05-07 1.837917 7.333333 51.025000 8.595833 \n2022-05-08 1.906667 7.862500 51.854167 9.483333 \n2022-05-09 0.651250 19.887500 34.925000 2.458333 \n2022-05-10 1.107500 19.912500 32.612500 0.000000 \n2022-05-11 1.262083 20.100000 22.850000 0.000000 \n2022-05-12 0.636667 20.216667 19.625000 0.000000 \n2022-05-13 0.629583 20.270833 18.637500 0.000000 \n2022-05-14 0.626667 20.237500 21.245833 0.345833 \n2022-05-15 1.590833 13.391667 39.200000 4.379167 \n2022-05-16 1.407500 7.279167 53.104167 9.058333 \n2022-05-17 1.493333 7.700000 53.766667 9.658333 \n2022-05-18 1.721667 7.141667 52.816667 8.712500 \n2022-05-19 1.705833 7.012500 52.487500 7.966667 \n2022-05-20 1.815417 7.041667 53.208333 8.454167 \n2022-05-21 1.968750 7.241667 53.270833 7.487500 \n2022-05-22 1.800000 7.120833 52.929167 8.608333 \n2022-05-23 2.156667 6.716667 53.529167 8.504167 \n2022-05-24 2.155833 7.191667 53.195833 8.562500 \n2022-05-25 1.666250 7.337500 52.162500 8.283333 \n2022-05-26 1.760833 7.245833 52.087500 8.283333 \n2022-05-27 1.699167 7.358333 52.287500 8.270833 \n2022-05-28 1.708750 7.170833 53.245833 8.679167 \n2022-05-29 1.580000 7.470833 53.304167 8.891667 \n2022-05-30 0.662500 19.554167 39.675000 3.845833 \n2022-05-31 0.663750 19.941667 28.033333 0.454167 \n\n 机组1_烟气流速(m/s) 机组1_状态 \ndays \n2022-05-01 10.088750 正常运行 \n2022-05-02 11.147917 正常运行 \n2022-05-03 9.415417 正常运行 \n2022-05-04 9.496250 正常运行 \n2022-05-05 10.636667 正常运行 \n2022-05-06 9.971667 正常运行 \n2022-05-07 9.781667 正常运行 \n2022-05-08 10.417500 正常运行 \n2022-05-09 0.285000 停运 \n2022-05-10 2.819583 停运 \n2022-05-11 1.665833 停运 \n2022-05-12 0.277917 停运 \n2022-05-13 0.507083 停运 \n2022-05-14 0.490417 停运 \n2022-05-15 6.872500 停运 \n2022-05-16 11.232917 正常运行 \n2022-05-17 10.111250 正常运行 \n2022-05-18 10.920833 正常运行 \n2022-05-19 10.968333 正常运行 \n2022-05-20 11.080417 正常运行 \n2022-05-21 11.228333 正常运行 \n2022-05-22 10.908750 正常运行 \n2022-05-23 12.238333 正常运行 \n2022-05-24 11.273333 正常运行 \n2022-05-25 10.549167 正常运行 \n2022-05-26 10.967083 正常运行 \n2022-05-27 10.518750 正常运行 \n2022-05-28 11.337917 正常运行 \n2022-05-29 10.572083 正常运行 \n2022-05-30 0.811667 停运 \n2022-05-31 0.556667 停运 ", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
机组1_流量 (m3/h)机组1_NOx浓度(mg/m3)机组1_SO2浓度(mg/m3)机组1_烟尘浓度(mg/m3)机组1_含氧量(%)机组1_温度(℃)机组1_烟气湿度(%)机组1_烟气流速(m/s)机组1_状态
days
2022-05-01820965.012.95208312.8562501.7875007.79583352.3208339.20416710.088750正常运行
2022-05-02907380.014.64166711.8462501.7179177.29583353.1458339.01666711.147917正常运行
2022-05-03771360.014.41416712.4341671.8508337.65000051.8416678.7500009.415417正常运行
2022-05-04780390.014.92250012.9104171.9220837.46250051.8083338.4958339.496250正常运行
2022-05-05870075.014.10291713.7166671.9816677.19583352.3541678.72500010.636667正常运行
2022-05-06816300.014.32166714.4587501.7295837.43333351.4625008.8583339.971667正常运行
2022-05-07804405.016.31083313.2795831.8379177.33333351.0250008.5958339.781667正常运行
2022-05-08845610.018.58541713.3004171.9066677.86250051.8541679.48333310.417500正常运行
2022-05-0926370.06.1520830.4037500.65125019.88750034.9250002.4583330.285000停运
2022-05-10269970.0-0.2083330.2645831.10750019.91250032.6125000.0000002.819583停运
2022-05-11163470.0-0.1479170.2883331.26208320.10000022.8500000.0000001.665833停运
2022-05-1227720.0-0.1820830.2254170.63666720.21666719.6250000.0000000.277917停运
2022-05-1350760.0-0.1408330.1029170.62958320.27083318.6375000.0000000.507083停运
2022-05-1448540.0-0.1125000.0520830.62666720.23750021.2458330.3458330.490417停运
2022-05-15602865.085.9845836.2958331.59083313.39166739.2000004.3791676.872500停运
2022-05-16912705.014.56125013.7845831.4075007.27916753.1041679.05833311.232917正常运行
2022-05-17816165.013.91833312.8020831.4933337.70000053.7666679.65833310.111250正常运行
2022-05-18892620.014.54708313.4512501.7216677.14166752.8166678.71250010.920833正常运行
2022-05-19904860.015.43708313.8862501.7058337.01250052.4875007.96666710.968333正常运行
2022-05-20906690.013.55291713.2950001.8154177.04166753.2083338.45416711.080417正常运行
2022-05-21931575.016.45958311.6783331.9687507.24166753.2708337.48750011.228333正常运行
2022-05-22891885.015.15625013.0141671.8000007.12083352.9291678.60833310.908750正常运行
2022-05-231000560.014.45166713.7108332.1566676.71666753.5291678.50416712.238333正常运行
2022-05-24921300.013.77500012.1570832.1558337.19166753.1958338.56250011.273333正常运行
2022-05-25867765.015.34416712.9870831.6662507.33750052.1625008.28333310.549167正常运行
2022-05-26902100.014.43916713.0629171.7608337.24583352.0875008.28333310.967083正常运行
2022-05-27865320.014.76000012.7254171.6991677.35833352.2875008.27083310.518750正常运行
2022-05-28925965.015.01291714.6158331.7087507.17083353.2458338.67916711.337917正常运行
2022-05-29861255.014.03500012.8187501.5800007.47083353.3041678.89166710.572083正常运行
2022-05-3071640.00.2666670.7704170.66250019.55416739.6750003.8458330.811667停运
2022-05-3153550.0-0.0433330.0854170.66375019.94166728.0333330.4541670.556667停运
\n
" }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "jtzh_emiss_daily_1" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 47, "outputs": [], "source": [ "jtzh_daily_data['企业名称'] = \"建投遵化热电有限责任公司\"\n", "jtzh_save_data = pd.concat([jtzh_daily_data, jtzh_emiss_daily_1, jtzh_emiss_daily_2], axis=1)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 48, "outputs": [ { "data": { "text/plain": " 发电量_1(万千瓦时) 供热量_1(吉焦) 燃料消耗量_1(吨) 发电量_2(万千瓦时) 供热量_2(吉焦) \\\n2022-05-01 444.630 0 1889 0.000 0 \n2022-05-02 516.594 0 2622 0.000 0 \n2022-05-03 410.316 0 2233 0.000 0 \n2022-05-04 421.908 0 2203 0.000 0 \n2022-05-05 486.318 0 2524 0.000 0 \n2022-05-06 457.542 0 2343 0.000 0 \n2022-05-07 451.140 0 2278 0.000 0 \n2022-05-08 484.986 0 1120 218.196 0 \n2022-05-09 0.000 0 0 444.756 0 \n2022-05-10 0.000 0 0 552.114 0 \n2022-05-11 0.000 0 0 481.542 0 \n2022-05-12 0.000 0 0 439.788 0 \n2022-05-13 0.000 0 0 495.702 0 \n2022-05-14 0.000 0 121 486.624 0 \n2022-05-15 159.936 0 2251 460.524 0 \n2022-05-16 516.192 0 2543 505.578 0 \n2022-05-17 432.300 0 2432 432.450 0 \n2022-05-18 508.680 0 2810 509.586 0 \n2022-05-19 516.066 0 2972 514.404 0 \n2022-05-20 517.356 0 2623 514.434 0 \n2022-05-21 521.454 0 2759 520.626 0 \n2022-05-22 504.798 0 2545 500.040 0 \n2022-05-23 587.400 0 3294 584.886 0 \n2022-05-24 515.964 0 2633 514.488 0 \n2022-05-25 485.346 0 2694 486.474 0 \n2022-05-26 503.502 0 2619 501.366 0 \n2022-05-27 470.340 0 2510 467.106 0 \n2022-05-28 508.644 0 2753 504.900 0 \n2022-05-29 460.536 0 1163 462.822 0 \n2022-05-30 8.610 0 0 528.960 0 \n2022-05-31 0.000 0 0 672.180 0 \n\n 燃料消耗量_2(吨) 企业名称 机组1_流量 (m3/h) 机组1_NOx浓度(mg/m3) \\\n2022-05-01 0 建投遵化热电有限责任公司 820965.0 12.952083 \n2022-05-02 0 建投遵化热电有限责任公司 907380.0 14.641667 \n2022-05-03 0 建投遵化热电有限责任公司 771360.0 14.414167 \n2022-05-04 0 建投遵化热电有限责任公司 780390.0 14.922500 \n2022-05-05 0 建投遵化热电有限责任公司 870075.0 14.102917 \n2022-05-06 0 建投遵化热电有限责任公司 816300.0 14.321667 \n2022-05-07 426 建投遵化热电有限责任公司 804405.0 16.310833 \n2022-05-08 1873 建投遵化热电有限责任公司 845610.0 18.585417 \n2022-05-09 2350 建投遵化热电有限责任公司 26370.0 6.152083 \n2022-05-10 2636 建投遵化热电有限责任公司 269970.0 -0.208333 \n2022-05-11 2432 建投遵化热电有限责任公司 163470.0 -0.147917 \n2022-05-12 2099 建投遵化热电有限责任公司 27720.0 -0.182083 \n2022-05-13 2340 建投遵化热电有限责任公司 50760.0 -0.140833 \n2022-05-14 2737 建投遵化热电有限责任公司 48540.0 -0.112500 \n2022-05-15 2461 建投遵化热电有限责任公司 602865.0 85.984583 \n2022-05-16 2615 建投遵化热电有限责任公司 912705.0 14.561250 \n2022-05-17 2593 建投遵化热电有限责任公司 816165.0 13.918333 \n2022-05-18 2871 建投遵化热电有限责任公司 892620.0 14.547083 \n2022-05-19 2637 建投遵化热电有限责任公司 904860.0 15.437083 \n2022-05-20 2682 建投遵化热电有限责任公司 906690.0 13.552917 \n2022-05-21 2581 建投遵化热电有限责任公司 931575.0 16.459583 \n2022-05-22 2632 建投遵化热电有限责任公司 891885.0 15.156250 \n2022-05-23 3187 建投遵化热电有限责任公司 1000560.0 14.451667 \n2022-05-24 2719 建投遵化热电有限责任公司 921300.0 13.775000 \n2022-05-25 2599 建投遵化热电有限责任公司 867765.0 15.344167 \n2022-05-26 2794 建投遵化热电有限责任公司 902100.0 14.439167 \n2022-05-27 2401 建投遵化热电有限责任公司 865320.0 14.760000 \n2022-05-28 2611 建投遵化热电有限责任公司 925965.0 15.012917 \n2022-05-29 2846 建投遵化热电有限责任公司 861255.0 14.035000 \n2022-05-30 2981 建投遵化热电有限责任公司 71640.0 0.266667 \n2022-05-31 3560 建投遵化热电有限责任公司 53550.0 -0.043333 \n\n 机组1_SO2浓度(mg/m3) ... 机组1_状态 机组2_流量 (m3/h) 机组2_NOx浓度(mg/m3) \\\n2022-05-01 12.856250 ... 正常运行 64290.0 0.169583 \n2022-05-02 11.846250 ... 正常运行 71235.0 0.143333 \n2022-05-03 12.434167 ... 正常运行 71370.0 1.227500 \n2022-05-04 12.910417 ... 正常运行 73785.0 0.134583 \n2022-05-05 13.716667 ... 正常运行 73605.0 0.075417 \n2022-05-06 14.458750 ... 正常运行 59610.0 0.082083 \n2022-05-07 13.279583 ... 正常运行 128505.0 16.567917 \n2022-05-08 13.300417 ... 正常运行 676485.0 135.337500 \n2022-05-09 0.403750 ... 停运 768375.0 14.072500 \n2022-05-10 0.264583 ... 停运 892770.0 14.628750 \n2022-05-11 0.288333 ... 停运 806250.0 15.005000 \n2022-05-12 0.225417 ... 停运 757695.0 15.691667 \n2022-05-13 0.102917 ... 停运 823410.0 14.090000 \n2022-05-14 0.052083 ... 停运 816600.0 15.875000 \n2022-05-15 6.295833 ... 停运 808785.0 14.118750 \n2022-05-16 13.784583 ... 正常运行 861765.0 15.751250 \n2022-05-17 12.802083 ... 正常运行 792225.0 13.562917 \n2022-05-18 13.451250 ... 正常运行 866895.0 14.520417 \n2022-05-19 13.886250 ... 正常运行 871455.0 14.498333 \n2022-05-20 13.295000 ... 正常运行 862005.0 13.764167 \n2022-05-21 11.678333 ... 正常运行 898170.0 15.342500 \n2022-05-22 13.014167 ... 正常运行 866460.0 16.112083 \n2022-05-23 13.710833 ... 正常运行 974625.0 16.114583 \n2022-05-24 12.157083 ... 正常运行 894960.0 14.147917 \n2022-05-25 12.987083 ... 正常运行 854205.0 15.225417 \n2022-05-26 13.062917 ... 正常运行 874425.0 15.542083 \n2022-05-27 12.725417 ... 正常运行 836100.0 14.040417 \n2022-05-28 14.615833 ... 正常运行 895515.0 15.555833 \n2022-05-29 12.818750 ... 正常运行 837945.0 15.120833 \n2022-05-30 0.770417 ... 停运 915030.0 15.763750 \n2022-05-31 0.085417 ... 停运 992220.0 17.718333 \n\n 机组2_SO2浓度(mg/m3) 机组2_烟尘浓度(mg/m3) 机组2_含氧量(%) 机组2_温度(℃) \\\n2022-05-01 -1.430417 0.210833 20.512500 13.150000 \n2022-05-02 -1.401250 0.211667 20.416667 15.525000 \n2022-05-03 -1.264167 0.218333 19.479167 22.129167 \n2022-05-04 -1.037500 0.214167 20.095833 26.258333 \n2022-05-05 -0.920417 0.212083 20.150000 23.062500 \n2022-05-06 -0.922083 0.210833 20.308333 15.370833 \n2022-05-07 -0.578333 0.481667 19.883333 17.375000 \n2022-05-08 7.194583 1.159583 10.775000 35.941667 \n2022-05-09 14.240000 0.990417 7.158333 44.408333 \n2022-05-10 14.722083 1.354167 6.433333 44.408333 \n2022-05-11 14.337500 1.321250 6.629167 43.937500 \n2022-05-12 13.880833 1.195833 6.604167 43.604167 \n2022-05-13 13.739583 1.269583 6.254167 43.504167 \n2022-05-14 13.857917 1.365833 6.375000 44.533333 \n2022-05-15 14.242917 1.252500 6.437500 44.541667 \n2022-05-16 14.907500 1.249583 6.450000 45.491667 \n2022-05-17 14.112083 1.308333 6.983333 46.116667 \n2022-05-18 13.890417 1.287917 6.391667 44.933333 \n2022-05-19 15.750417 1.176250 6.395833 44.466667 \n2022-05-20 15.565417 1.099583 6.225000 45.175000 \n2022-05-21 13.702083 1.205833 6.458333 45.204167 \n2022-05-22 14.662917 1.146250 6.337500 45.016667 \n2022-05-23 15.273750 1.201667 5.845833 45.633333 \n2022-05-24 13.437500 1.277083 6.166667 45.575000 \n2022-05-25 14.508750 1.211250 6.295833 44.412500 \n2022-05-26 15.649583 1.173750 6.237500 44.458333 \n2022-05-27 13.172083 1.220417 6.329167 44.741667 \n2022-05-28 14.915417 1.305833 6.183333 45.587500 \n2022-05-29 13.484583 1.341667 6.425000 45.545833 \n2022-05-30 15.673750 1.416667 6.162500 45.175000 \n2022-05-31 16.058750 1.567083 5.570833 46.100000 \n\n 机组2_烟气湿度(%) 机组2_烟气流速(m/s) 机组2_状态 \n2022-05-01 0.000000 0.630417 正常运行 \n2022-05-02 0.000000 0.704583 正常运行 \n2022-05-03 0.200000 0.722917 正常运行 \n2022-05-04 0.016667 0.757500 正常运行 \n2022-05-05 0.212500 0.750000 正常运行 \n2022-05-06 0.000000 0.590417 正常运行 \n2022-05-07 0.104167 1.297083 正常运行 \n2022-05-08 6.804167 7.757917 正常运行 \n2022-05-09 11.366667 9.436250 停运 \n2022-05-10 11.441667 10.987083 停运 \n2022-05-11 10.600000 9.805833 停运 \n2022-05-12 10.866667 9.228333 停运 \n2022-05-13 10.720833 10.015833 停运 \n2022-05-14 11.595833 10.068750 停运 \n2022-05-15 11.550000 9.954583 停运 \n2022-05-16 12.154167 10.716250 正常运行 \n2022-05-17 12.208333 9.870833 正常运行 \n2022-05-18 11.258333 10.660833 正常运行 \n2022-05-19 11.366667 10.697083 正常运行 \n2022-05-20 11.695833 10.653333 正常运行 \n2022-05-21 9.837500 10.888750 正常运行 \n2022-05-22 10.062500 10.512083 正常运行 \n2022-05-23 9.937500 11.813750 正常运行 \n2022-05-24 9.408333 10.788750 正常运行 \n2022-05-25 8.583333 10.172083 正常运行 \n2022-05-26 8.741667 10.432917 正常运行 \n2022-05-27 8.937500 9.993750 正常运行 \n2022-05-28 9.491667 10.801250 正常运行 \n2022-05-29 9.350000 10.090000 正常运行 \n2022-05-30 9.208333 11.002083 停运 \n2022-05-31 9.641667 12.008333 停运 \n\n[31 rows x 25 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
发电量_1(万千瓦时)供热量_1(吉焦)燃料消耗量_1(吨)发电量_2(万千瓦时)供热量_2(吉焦)燃料消耗量_2(吨)企业名称机组1_流量 (m3/h)机组1_NOx浓度(mg/m3)机组1_SO2浓度(mg/m3)...机组1_状态机组2_流量 (m3/h)机组2_NOx浓度(mg/m3)机组2_SO2浓度(mg/m3)机组2_烟尘浓度(mg/m3)机组2_含氧量(%)机组2_温度(℃)机组2_烟气湿度(%)机组2_烟气流速(m/s)机组2_状态
2022-05-01444.630018890.00000建投遵化热电有限责任公司820965.012.95208312.856250...正常运行64290.00.169583-1.4304170.21083320.51250013.1500000.0000000.630417正常运行
2022-05-02516.594026220.00000建投遵化热电有限责任公司907380.014.64166711.846250...正常运行71235.00.143333-1.4012500.21166720.41666715.5250000.0000000.704583正常运行
2022-05-03410.316022330.00000建投遵化热电有限责任公司771360.014.41416712.434167...正常运行71370.01.227500-1.2641670.21833319.47916722.1291670.2000000.722917正常运行
2022-05-04421.908022030.00000建投遵化热电有限责任公司780390.014.92250012.910417...正常运行73785.00.134583-1.0375000.21416720.09583326.2583330.0166670.757500正常运行
2022-05-05486.318025240.00000建投遵化热电有限责任公司870075.014.10291713.716667...正常运行73605.00.075417-0.9204170.21208320.15000023.0625000.2125000.750000正常运行
2022-05-06457.542023430.00000建投遵化热电有限责任公司816300.014.32166714.458750...正常运行59610.00.082083-0.9220830.21083320.30833315.3708330.0000000.590417正常运行
2022-05-07451.140022780.0000426建投遵化热电有限责任公司804405.016.31083313.279583...正常运行128505.016.567917-0.5783330.48166719.88333317.3750000.1041671.297083正常运行
2022-05-08484.98601120218.19601873建投遵化热电有限责任公司845610.018.58541713.300417...正常运行676485.0135.3375007.1945831.15958310.77500035.9416676.8041677.757917正常运行
2022-05-090.00000444.75602350建投遵化热电有限责任公司26370.06.1520830.403750...停运768375.014.07250014.2400000.9904177.15833344.40833311.3666679.436250停运
2022-05-100.00000552.11402636建投遵化热电有限责任公司269970.0-0.2083330.264583...停运892770.014.62875014.7220831.3541676.43333344.40833311.44166710.987083停运
2022-05-110.00000481.54202432建投遵化热电有限责任公司163470.0-0.1479170.288333...停运806250.015.00500014.3375001.3212506.62916743.93750010.6000009.805833停运
2022-05-120.00000439.78802099建投遵化热电有限责任公司27720.0-0.1820830.225417...停运757695.015.69166713.8808331.1958336.60416743.60416710.8666679.228333停运
2022-05-130.00000495.70202340建投遵化热电有限责任公司50760.0-0.1408330.102917...停运823410.014.09000013.7395831.2695836.25416743.50416710.72083310.015833停运
2022-05-140.0000121486.62402737建投遵化热电有限责任公司48540.0-0.1125000.052083...停运816600.015.87500013.8579171.3658336.37500044.53333311.59583310.068750停运
2022-05-15159.93602251460.52402461建投遵化热电有限责任公司602865.085.9845836.295833...停运808785.014.11875014.2429171.2525006.43750044.54166711.5500009.954583停运
2022-05-16516.19202543505.57802615建投遵化热电有限责任公司912705.014.56125013.784583...正常运行861765.015.75125014.9075001.2495836.45000045.49166712.15416710.716250正常运行
2022-05-17432.30002432432.45002593建投遵化热电有限责任公司816165.013.91833312.802083...正常运行792225.013.56291714.1120831.3083336.98333346.11666712.2083339.870833正常运行
2022-05-18508.68002810509.58602871建投遵化热电有限责任公司892620.014.54708313.451250...正常运行866895.014.52041713.8904171.2879176.39166744.93333311.25833310.660833正常运行
2022-05-19516.06602972514.40402637建投遵化热电有限责任公司904860.015.43708313.886250...正常运行871455.014.49833315.7504171.1762506.39583344.46666711.36666710.697083正常运行
2022-05-20517.35602623514.43402682建投遵化热电有限责任公司906690.013.55291713.295000...正常运行862005.013.76416715.5654171.0995836.22500045.17500011.69583310.653333正常运行
2022-05-21521.45402759520.62602581建投遵化热电有限责任公司931575.016.45958311.678333...正常运行898170.015.34250013.7020831.2058336.45833345.2041679.83750010.888750正常运行
2022-05-22504.79802545500.04002632建投遵化热电有限责任公司891885.015.15625013.014167...正常运行866460.016.11208314.6629171.1462506.33750045.01666710.06250010.512083正常运行
2022-05-23587.40003294584.88603187建投遵化热电有限责任公司1000560.014.45166713.710833...正常运行974625.016.11458315.2737501.2016675.84583345.6333339.93750011.813750正常运行
2022-05-24515.96402633514.48802719建投遵化热电有限责任公司921300.013.77500012.157083...正常运行894960.014.14791713.4375001.2770836.16666745.5750009.40833310.788750正常运行
2022-05-25485.34602694486.47402599建投遵化热电有限责任公司867765.015.34416712.987083...正常运行854205.015.22541714.5087501.2112506.29583344.4125008.58333310.172083正常运行
2022-05-26503.50202619501.36602794建投遵化热电有限责任公司902100.014.43916713.062917...正常运行874425.015.54208315.6495831.1737506.23750044.4583338.74166710.432917正常运行
2022-05-27470.34002510467.10602401建投遵化热电有限责任公司865320.014.76000012.725417...正常运行836100.014.04041713.1720831.2204176.32916744.7416678.9375009.993750正常运行
2022-05-28508.64402753504.90002611建投遵化热电有限责任公司925965.015.01291714.615833...正常运行895515.015.55583314.9154171.3058336.18333345.5875009.49166710.801250正常运行
2022-05-29460.53601163462.82202846建投遵化热电有限责任公司861255.014.03500012.818750...正常运行837945.015.12083313.4845831.3416676.42500045.5458339.35000010.090000正常运行
2022-05-308.61000528.96002981建投遵化热电有限责任公司71640.00.2666670.770417...停运915030.015.76375015.6737501.4166676.16250045.1750009.20833311.002083停运
2022-05-310.00000672.18003560建投遵化热电有限责任公司53550.0-0.0433330.085417...停运992220.017.71833316.0587501.5670835.57083346.1000009.64166712.008333停运
\n

31 rows × 25 columns

\n
" }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "jtzh_save_data" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 65, "outputs": [], "source": [ "writer = pd.ExcelWriter('data/电厂日数据.xlsx',engine='openpyxl')\n", "\n", "zjxz_save_data.to_excel(writer,\"浙江秀舟\")\n", "wxxs_save_data.to_excel(writer,\"武乡西山\")\n", "hddj_save_data.to_excel(writer,\"邯郸东郊\")\n", "jtzh_save_data.to_excel(writer,\"建投遵化\")\n", "\n", "writer.save()\n", "writer.close()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }