{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"import matplotlib.pyplot as plt\n",
"#新增加的两行\n",
"from pylab import mpl\n",
"\n",
"# 设置显示中文字体\n",
"mpl.rcParams[\"font.sans-serif\"] = [\"SimHei\"]\n",
"\n",
"mpl.rcParams[\"axes.unicode_minus\"] = False"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [
{
"data": {
"text/plain": " 日期 企业名称 地址 省份 经度 纬度 烟囱高度(m) \\\n0 2018-10-01 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°51′5.54″ 30°39′14.76″ 80 \n1 2018-10-02 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°51′5.54″ 30°39′14.76″ 80 \n2 2018-10-03 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°51′5.54″ 30°39′14.76″ 80 \n3 2018-10-04 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°51′5.54″ 30°39′14.76″ 80 \n4 2018-10-05 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°51′5.54″ 30°39′14.76″ 80 \n\n 脱硝工艺 脱硝剂名称 脱硝设备数量 ... 供热量(吉焦) 产渣量(吨) 机组运行时间(小时) 硫分(%) 脱硫副产品产量(吨) \\\n0 SNCR SCR 氨水 3 ... 6536.83 NaN 24.0 0.51 NaN \n1 SNCR SCR 氨水 3 ... 2484.64 NaN 24.0 0.51 NaN \n2 SNCR SCR 氨水 3 ... 3020.83 NaN 24.0 0.51 NaN \n3 SNCR SCR 氨水 3 ... 5599.23 NaN 24.0 0.51 72.52 \n4 SNCR SCR 氨水 3 ... 4702.65 NaN 24.0 0.51 NaN \n\n 脱硫剂使用量(吨) 脱硫设施运行时间(小时) 脱硝还原剂消耗量(吨) 脱硝运行时间(小时) 燃料消耗量(吨) \n0 5.06 24.0 2.98 24.0 323 \n1 5.04 24.0 2.97 24.0 218 \n2 5.04 24.0 2.95 24.0 212 \n3 5.03 24.0 2.98 24.0 223 \n4 5.06 24.0 3.01 24.0 243 \n\n[5 rows x 44 columns]",
"text/html": "
\n\n
\n \n \n | \n 日期 | \n 企业名称 | \n 地址 | \n 省份 | \n 经度 | \n 纬度 | \n 烟囱高度(m) | \n 脱硝工艺 | \n 脱硝剂名称 | \n 脱硝设备数量 | \n ... | \n 供热量(吉焦) | \n 产渣量(吨) | \n 机组运行时间(小时) | \n 硫分(%) | \n 脱硫副产品产量(吨) | \n 脱硫剂使用量(吨) | \n 脱硫设施运行时间(小时) | \n 脱硝还原剂消耗量(吨) | \n 脱硝运行时间(小时) | \n 燃料消耗量(吨) | \n
\n \n \n \n 0 | \n 2018-10-01 | \n 浙江秀舟热电有限公司 | \n 嘉兴市南湖区凤桥镇 | \n 浙江省 | \n 120°51′5.54″ | \n 30°39′14.76″ | \n 80 | \n SNCR SCR | \n 氨水 | \n 3 | \n ... | \n 6536.83 | \n NaN | \n 24.0 | \n 0.51 | \n NaN | \n 5.06 | \n 24.0 | \n 2.98 | \n 24.0 | \n 323 | \n
\n \n 1 | \n 2018-10-02 | \n 浙江秀舟热电有限公司 | \n 嘉兴市南湖区凤桥镇 | \n 浙江省 | \n 120°51′5.54″ | \n 30°39′14.76″ | \n 80 | \n SNCR SCR | \n 氨水 | \n 3 | \n ... | \n 2484.64 | \n NaN | \n 24.0 | \n 0.51 | \n NaN | \n 5.04 | \n 24.0 | \n 2.97 | \n 24.0 | \n 218 | \n
\n \n 2 | \n 2018-10-03 | \n 浙江秀舟热电有限公司 | \n 嘉兴市南湖区凤桥镇 | \n 浙江省 | \n 120°51′5.54″ | \n 30°39′14.76″ | \n 80 | \n SNCR SCR | \n 氨水 | \n 3 | \n ... | \n 3020.83 | \n NaN | \n 24.0 | \n 0.51 | \n NaN | \n 5.04 | \n 24.0 | \n 2.95 | \n 24.0 | \n 212 | \n
\n \n 3 | \n 2018-10-04 | \n 浙江秀舟热电有限公司 | \n 嘉兴市南湖区凤桥镇 | \n 浙江省 | \n 120°51′5.54″ | \n 30°39′14.76″ | \n 80 | \n SNCR SCR | \n 氨水 | \n 3 | \n ... | \n 5599.23 | \n NaN | \n 24.0 | \n 0.51 | \n 72.52 | \n 5.03 | \n 24.0 | \n 2.98 | \n 24.0 | \n 223 | \n
\n \n 4 | \n 2018-10-05 | \n 浙江秀舟热电有限公司 | \n 嘉兴市南湖区凤桥镇 | \n 浙江省 | \n 120°51′5.54″ | \n 30°39′14.76″ | \n 80 | \n SNCR SCR | \n 氨水 | \n 3 | \n ... | \n 4702.65 | \n NaN | \n 24.0 | \n 0.51 | \n NaN | \n 5.06 | \n 24.0 | \n 3.01 | \n 24.0 | \n 243 | \n
\n \n
\n
5 rows × 44 columns
\n
"
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"zjxz_daily = pd.read_excel('./data/机器学习样表.xlsx', sheet_name=0, header=[0, 1])\n",
"old_cols = zjxz_daily.columns\n",
"new_cols = [x[0].strip() if 'Unnamed' in x[1] else x[0] + '_' + x[1] for x in old_cols]\n",
"zjxz_daily.columns = new_cols\n",
"zjxz_daily.head()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"zjxz_daily_data = zjxz_daily[['日期', '企业名称', '发电量(千瓦时)', '供热量(吉焦)', '燃料消耗量(吨)']].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 37,
"outputs": [
{
"data": {
"text/plain": "Index(['企业名称', '地址', '省份', '经度', '纬度', '烟囱高度(m)', '机组数量', '单机容量(MW)', '生产设备类型',\n '锅炉额定蒸发量 t/h ', '汽轮机类型', '压力参数', '冷却方式', '脱硝工艺', '脱硫工艺', '除尘工艺',\n 'Unnamed: 16', '日期', '机组编号', '投产日期', '燃煤干燥无灰基挥发分vda(%)',\n '入炉煤低位发热量(GJ/t)', '入炉煤消耗量发电(吨)', '入炉煤消耗量供热(吨)', '脱硝还原剂使用量a侧(吨)',\n '脱硝还原剂使用量b侧(吨)', '脱硝设施运行时间a侧(小时)', '脱硝设施运行时间b侧(小时)', '发电量', '供热量(吉焦)',\n '机组运行时间', '硫分(%)', '脱硫副产品产量(吨)', '脱硫剂使用量(吨)', '脱硫设施运行时间(小时)',\n '脱硝还原剂消耗量(吨)', '燃料消耗量(吨)', '石灰石总量(吨)', 'Unnamed: 38', 'Unnamed: 39',\n '日期.1', '机组编号.1', '投产日期.1', '燃煤干燥无灰基挥发分vda(%).1', '入炉煤低位发热量(GJ/t).1',\n '入炉煤消耗量发电(吨).1', '入炉煤消耗量供热(吨).1', '脱硝还原剂使用量a侧(吨).1', '脱硝还原剂使用量b侧(吨).1',\n '脱硝设施运行时间a侧(小时).1', '脱硝设施运行时间b侧(小时).1', '发电量(万千瓦时)', '供热量(吉焦)',\n '机组运行时间(小时)', '硫分(%).1', '脱硫副产品产量(吨).1', '脱硫剂使用量(吨).1',\n '脱硫设施运行时间(小时).1', '脱硝还原剂消耗量(吨).1', '燃料消耗量(吨).1', '石灰石总量(吨).1'],\n dtype='object')"
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xswx_daily = pd.read_excel('./data/机器学习样表.xlsx', sheet_name=3)\n",
"xswx_daily.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 38,
"outputs": [
{
"data": {
"text/plain": " days 发电量_2(万千瓦时) 供热量_2(吉焦) 燃料消耗量_2(吨)\n149 2021-05-30 1033 0.0 4763.4\n150 2021-05-31 909 0.0 4516.5",
"text/html": "\n\n
\n \n \n | \n days | \n 发电量_2(万千瓦时) | \n 供热量_2(吉焦) | \n 燃料消耗量_2(吨) | \n
\n \n \n \n 149 | \n 2021-05-30 | \n 1033 | \n 0.0 | \n 4763.4 | \n
\n \n 150 | \n 2021-05-31 | \n 909 | \n 0.0 | \n 4516.5 | \n
\n \n
\n
"
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xswx_daily_unit_1 = xswx_daily[xswx_daily['日期'] >= '2021-01-01'][['日期', '发电量', '供热量(吉焦)', '燃料消耗量(吨)']].copy()\n",
"xswx_daily_unit_1.columns = ['days', \"发电量_1(万千瓦时)\", '供热量_1(吉焦)', '燃料消耗量_1(吨)']\n",
"xswx_daily_unit_2 = xswx_daily[xswx_daily['日期.1'] >= '2021-01-01'][\n",
" ['日期.1', '发电量(万千瓦时)', '供热量(吉焦)', '燃料消耗量(吨).1']].copy()\n",
"xswx_daily_unit_2.columns = ['days', \"发电量_2(万千瓦时)\", '供热量_2(吉焦)', '燃料消耗量_2(吨)']\n",
"xswx_daily_unit_2.tail(2)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 39,
"outputs": [
{
"data": {
"text/plain": "DatetimeIndex(['2021-01-01', '2021-01-02', '2021-01-03', '2021-01-04',\n '2021-01-05', '2021-01-06', '2021-01-07', '2021-01-08',\n '2021-01-09', '2021-01-10',\n ...\n '2021-05-22', '2021-05-23', '2021-05-24', '2021-05-25',\n '2021-05-26', '2021-05-27', '2021-05-28', '2021-05-29',\n '2021-05-30', '2021-05-31'],\n dtype='datetime64[ns]', length=151, freq='D')"
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"min_start = min(xswx_daily_unit_1.days.min(), xswx_daily_unit_2.days.min())\n",
"max_end = max(xswx_daily_unit_1.days.max(), xswx_daily_unit_2.days.max())\n",
"date_range = pd.date_range(min_start, max_end, freq='D')\n",
"date_range"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 40,
"outputs": [],
"source": [
"xswx_daily_unit_1 = xswx_daily_unit_1.set_index('days').reindex(date_range).fillna(0)\n",
"xswx_daily_unit_2 = xswx_daily_unit_2.set_index('days').reindex(date_range).fillna(0)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 42,
"outputs": [],
"source": [
"xswx_daily_data = pd.concat([xswx_daily_unit_1, xswx_daily_unit_2], axis=1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 44,
"outputs": [],
"source": [
"xswx_daily_data['企业名称'] = '武乡西山发电有限责任公司'\n",
"xswx_daily_data['发电量(万千瓦时)'] = xswx_daily_data['发电量_1(万千瓦时)'] + xswx_daily_data['发电量_2(万千瓦时)']\n",
"xswx_daily_data['供热量(吉焦)'] = xswx_daily_data['供热量_1(吉焦)'] + xswx_daily_data['供热量_2(吉焦)']\n",
"xswx_daily_data['燃料消耗量(吨)'] = xswx_daily_data['燃料消耗量_1(吨)'] + xswx_daily_data['燃料消耗量_2(吨)']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 46,
"outputs": [
{
"data": {
"text/plain": " 发电量_1(万千瓦时) 供热量_1(吉焦) 燃料消耗量_1(吨) 发电量_2(万千瓦时) 供热量_2(吉焦) \\\n2021-01-01 952.0 11032.5 5478.8 893 0.0 \n2021-01-02 1127.0 11180.5 6125.4 1061 0.0 \n2021-01-03 1051.0 11197.7 5717.6 1053 0.0 \n2021-01-04 1179.0 11146.6 6172.5 1237 0.0 \n2021-01-05 1142.0 10922.4 6053.3 1082 0.0 \n... ... ... ... ... ... \n2021-05-27 0.0 0.0 0.0 1192 0.0 \n2021-05-28 0.0 0.0 0.0 1159 0.0 \n2021-05-29 0.0 0.0 0.0 998 0.0 \n2021-05-30 0.0 0.0 0.0 1033 0.0 \n2021-05-31 0.0 0.0 0.0 909 0.0 \n\n 燃料消耗量_2(吨) 企业名称 发电量(万千瓦时) 供热量(吉焦) 燃料消耗量(吨) \n2021-01-01 4689.7 武乡西山发电有限责任公司 1845.0 11032.5 10168.5 \n2021-01-02 5455.5 武乡西山发电有限责任公司 2188.0 11180.5 11580.9 \n2021-01-03 4060.5 武乡西山发电有限责任公司 2104.0 11197.7 9778.1 \n2021-01-04 5574.7 武乡西山发电有限责任公司 2416.0 11146.6 11747.2 \n2021-01-05 6363.9 武乡西山发电有限责任公司 2224.0 10922.4 12417.2 \n... ... ... ... ... ... \n2021-05-27 5684.3 武乡西山发电有限责任公司 1192.0 0.0 5684.3 \n2021-05-28 5349.3 武乡西山发电有限责任公司 1159.0 0.0 5349.3 \n2021-05-29 4851.2 武乡西山发电有限责任公司 998.0 0.0 4851.2 \n2021-05-30 4763.4 武乡西山发电有限责任公司 1033.0 0.0 4763.4 \n2021-05-31 4516.5 武乡西山发电有限责任公司 909.0 0.0 4516.5 \n\n[151 rows x 10 columns]",
"text/html": "\n\n
\n \n \n | \n 发电量_1(万千瓦时) | \n 供热量_1(吉焦) | \n 燃料消耗量_1(吨) | \n 发电量_2(万千瓦时) | \n 供热量_2(吉焦) | \n 燃料消耗量_2(吨) | \n 企业名称 | \n 发电量(万千瓦时) | \n 供热量(吉焦) | \n 燃料消耗量(吨) | \n
\n \n \n \n 2021-01-01 | \n 952.0 | \n 11032.5 | \n 5478.8 | \n 893 | \n 0.0 | \n 4689.7 | \n 武乡西山发电有限责任公司 | \n 1845.0 | \n 11032.5 | \n 10168.5 | \n
\n \n 2021-01-02 | \n 1127.0 | \n 11180.5 | \n 6125.4 | \n 1061 | \n 0.0 | \n 5455.5 | \n 武乡西山发电有限责任公司 | \n 2188.0 | \n 11180.5 | \n 11580.9 | \n
\n \n 2021-01-03 | \n 1051.0 | \n 11197.7 | \n 5717.6 | \n 1053 | \n 0.0 | \n 4060.5 | \n 武乡西山发电有限责任公司 | \n 2104.0 | \n 11197.7 | \n 9778.1 | \n
\n \n 2021-01-04 | \n 1179.0 | \n 11146.6 | \n 6172.5 | \n 1237 | \n 0.0 | \n 5574.7 | \n 武乡西山发电有限责任公司 | \n 2416.0 | \n 11146.6 | \n 11747.2 | \n
\n \n 2021-01-05 | \n 1142.0 | \n 10922.4 | \n 6053.3 | \n 1082 | \n 0.0 | \n 6363.9 | \n 武乡西山发电有限责任公司 | \n 2224.0 | \n 10922.4 | \n 12417.2 | \n
\n \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n
\n \n 2021-05-27 | \n 0.0 | \n 0.0 | \n 0.0 | \n 1192 | \n 0.0 | \n 5684.3 | \n 武乡西山发电有限责任公司 | \n 1192.0 | \n 0.0 | \n 5684.3 | \n
\n \n 2021-05-28 | \n 0.0 | \n 0.0 | \n 0.0 | \n 1159 | \n 0.0 | \n 5349.3 | \n 武乡西山发电有限责任公司 | \n 1159.0 | \n 0.0 | \n 5349.3 | \n
\n \n 2021-05-29 | \n 0.0 | \n 0.0 | \n 0.0 | \n 998 | \n 0.0 | \n 4851.2 | \n 武乡西山发电有限责任公司 | \n 998.0 | \n 0.0 | \n 4851.2 | \n
\n \n 2021-05-30 | \n 0.0 | \n 0.0 | \n 0.0 | \n 1033 | \n 0.0 | \n 4763.4 | \n 武乡西山发电有限责任公司 | \n 1033.0 | \n 0.0 | \n 4763.4 | \n
\n \n 2021-05-31 | \n 0.0 | \n 0.0 | \n 0.0 | \n 909 | \n 0.0 | \n 4516.5 | \n 武乡西山发电有限责任公司 | \n 909.0 | \n 0.0 | \n 4516.5 | \n
\n \n
\n
151 rows × 10 columns
\n
"
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xswx_daily_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 103,
"outputs": [
{
"data": {
"text/plain": " Unnamed: 0 Unnamed: 1 监控点名称 二氧化硫浓度(mg/m3) 氮氧化物浓度(mg/m3) \\\n0 2021.1.1 武乡西山发电有限责任公司 1号炉废气排放口 20.15 31.49 \n1 2021.1.2 武乡西山发电有限责任公司 1号炉废气排放口 20.27 31.65 \n2 2021.1.3 武乡西山发电有限责任公司 1号炉废气排放口 19.72 31.68 \n3 2021.1.4 武乡西山发电有限责任公司 1号炉废气排放口 17.64 31.51 \n4 2021.1.5 武乡西山发电有限责任公司 1号炉废气排放口 18.66 31.72 \n.. ... ... ... ... ... \n113 2021.4.26 武乡西山发电有限责任公司 1号炉废气排放口 0.22 0.01 \n114 2021.4.27 武乡西山发电有限责任公司 1号炉废气排放口 0.00 0.01 \n115 2021.4.28 武乡西山发电有限责任公司 1号炉废气排放口 0.01 0.00 \n116 2021.4.29 武乡西山发电有限责任公司 1号炉废气排放口 0.00 0.01 \n117 2021.4.30 武乡西山发电有限责任公司 1号炉废气排放口 0.00 0.02 \n\n 烟尘浓度(mg/m3) 流速(m/s) 流量(m3/h) Unnamed: 8 Unnamed: 9 ... \\\n0 2.49 11.24 1558502.96 NaN NaN ... \n1 2.51 12.03 1648629.50 NaN NaN ... \n2 2.50 12.11 1656682.63 NaN NaN ... \n3 2.52 11.79 1610496.46 NaN NaN ... \n4 2.50 11.97 1652330.08 NaN NaN ... \n.. ... ... ... ... ... ... \n113 0.19 0.00 0.00 NaN NaN ... \n114 0.21 0.00 0.00 NaN NaN ... \n115 0.25 0.00 0.00 NaN NaN ... \n116 0.26 0.00 0.00 NaN NaN ... \n117 0.56 0.00 0.00 NaN NaN ... \n\n Unnamed: 14 监控点名称.1 二氧化硫浓度(mg/m3).1 氮氧化物浓度(mg/m3).1 烟尘浓度(mg/m3).1 \\\n0 武乡西山发电有限责任公司 2号炉废气排放口 22.00 33.09 2.25 \n1 武乡西山发电有限责任公司 2号炉废气排放口 20.45 34.37 2.37 \n2 武乡西山发电有限责任公司 2号炉废气排放口 19.82 33.55 2.38 \n3 武乡西山发电有限责任公司 2号炉废气排放口 20.18 32.47 2.39 \n4 武乡西山发电有限责任公司 2号炉废气排放口 21.07 33.73 2.42 \n.. ... ... ... ... ... \n113 武乡西山发电有限责任公司 2号炉废气排放口 18.31 35.41 2.03 \n114 武乡西山发电有限责任公司 2号炉废气排放口 0.14 0.43 0.08 \n115 武乡西山发电有限责任公司 2号炉废气排放口 0.00 0.01 0.09 \n116 武乡西山发电有限责任公司 2号炉废气排放口 0.01 0.05 0.07 \n117 武乡西山发电有限责任公司 2号炉废气排放口 3.96 22.90 0.68 \n\n 流速(m/s).1 流量(m3/h).1 Unnamed: 21 Unnamed: 22 状态.1 \n0 5.00 731609.00 NaN NaN 正常运行 \n1 9.18 1326387.42 NaN NaN 正常运行 \n2 9.85 1417186.13 NaN NaN 正常运行 \n3 9.07 1304455.88 NaN NaN 正常运行 \n4 9.71 1390566.88 NaN NaN 正常运行 \n.. ... ... ... ... ... \n113 9.59 1316204.83 NaN NaN 正常运行 \n114 1.44 193474.61 NaN NaN 停运 \n115 2.69 467356.96 NaN NaN 停运 \n116 2.30 401366.08 NaN NaN 停运 \n117 6.09 932694.63 NaN NaN 停运 \n\n[118 rows x 24 columns]",
"text/html": "\n\n
\n \n \n | \n Unnamed: 0 | \n Unnamed: 1 | \n 监控点名称 | \n 二氧化硫浓度(mg/m3) | \n 氮氧化物浓度(mg/m3) | \n 烟尘浓度(mg/m3) | \n 流速(m/s) | \n 流量(m3/h) | \n Unnamed: 8 | \n Unnamed: 9 | \n ... | \n Unnamed: 14 | \n 监控点名称.1 | \n 二氧化硫浓度(mg/m3).1 | \n 氮氧化物浓度(mg/m3).1 | \n 烟尘浓度(mg/m3).1 | \n 流速(m/s).1 | \n 流量(m3/h).1 | \n Unnamed: 21 | \n Unnamed: 22 | \n 状态.1 | \n
\n \n \n \n 0 | \n 2021.1.1 | \n 武乡西山发电有限责任公司 | \n 1号炉废气排放口 | \n 20.15 | \n 31.49 | \n 2.49 | \n 11.24 | \n 1558502.96 | \n NaN | \n NaN | \n ... | \n 武乡西山发电有限责任公司 | \n 2号炉废气排放口 | \n 22.00 | \n 33.09 | \n 2.25 | \n 5.00 | \n 731609.00 | \n NaN | \n NaN | \n 正常运行 | \n
\n \n 1 | \n 2021.1.2 | \n 武乡西山发电有限责任公司 | \n 1号炉废气排放口 | \n 20.27 | \n 31.65 | \n 2.51 | \n 12.03 | \n 1648629.50 | \n NaN | \n NaN | \n ... | \n 武乡西山发电有限责任公司 | \n 2号炉废气排放口 | \n 20.45 | \n 34.37 | \n 2.37 | \n 9.18 | \n 1326387.42 | \n NaN | \n NaN | \n 正常运行 | \n
\n \n 2 | \n 2021.1.3 | \n 武乡西山发电有限责任公司 | \n 1号炉废气排放口 | \n 19.72 | \n 31.68 | \n 2.50 | \n 12.11 | \n 1656682.63 | \n NaN | \n NaN | \n ... | \n 武乡西山发电有限责任公司 | \n 2号炉废气排放口 | \n 19.82 | \n 33.55 | \n 2.38 | \n 9.85 | \n 1417186.13 | \n NaN | \n NaN | \n 正常运行 | \n
\n \n 3 | \n 2021.1.4 | \n 武乡西山发电有限责任公司 | \n 1号炉废气排放口 | \n 17.64 | \n 31.51 | \n 2.52 | \n 11.79 | \n 1610496.46 | \n NaN | \n NaN | \n ... | \n 武乡西山发电有限责任公司 | \n 2号炉废气排放口 | \n 20.18 | \n 32.47 | \n 2.39 | \n 9.07 | \n 1304455.88 | \n NaN | \n NaN | \n 正常运行 | \n
\n \n 4 | \n 2021.1.5 | \n 武乡西山发电有限责任公司 | \n 1号炉废气排放口 | \n 18.66 | \n 31.72 | \n 2.50 | \n 11.97 | \n 1652330.08 | \n NaN | \n NaN | \n ... | \n 武乡西山发电有限责任公司 | \n 2号炉废气排放口 | \n 21.07 | \n 33.73 | \n 2.42 | \n 9.71 | \n 1390566.88 | \n NaN | \n NaN | \n 正常运行 | \n
\n \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n
\n \n 113 | \n 2021.4.26 | \n 武乡西山发电有限责任公司 | \n 1号炉废气排放口 | \n 0.22 | \n 0.01 | \n 0.19 | \n 0.00 | \n 0.00 | \n NaN | \n NaN | \n ... | \n 武乡西山发电有限责任公司 | \n 2号炉废气排放口 | \n 18.31 | \n 35.41 | \n 2.03 | \n 9.59 | \n 1316204.83 | \n NaN | \n NaN | \n 正常运行 | \n
\n \n 114 | \n 2021.4.27 | \n 武乡西山发电有限责任公司 | \n 1号炉废气排放口 | \n 0.00 | \n 0.01 | \n 0.21 | \n 0.00 | \n 0.00 | \n NaN | \n NaN | \n ... | \n 武乡西山发电有限责任公司 | \n 2号炉废气排放口 | \n 0.14 | \n 0.43 | \n 0.08 | \n 1.44 | \n 193474.61 | \n NaN | \n NaN | \n 停运 | \n
\n \n 115 | \n 2021.4.28 | \n 武乡西山发电有限责任公司 | \n 1号炉废气排放口 | \n 0.01 | \n 0.00 | \n 0.25 | \n 0.00 | \n 0.00 | \n NaN | \n NaN | \n ... | \n 武乡西山发电有限责任公司 | \n 2号炉废气排放口 | \n 0.00 | \n 0.01 | \n 0.09 | \n 2.69 | \n 467356.96 | \n NaN | \n NaN | \n 停运 | \n
\n \n 116 | \n 2021.4.29 | \n 武乡西山发电有限责任公司 | \n 1号炉废气排放口 | \n 0.00 | \n 0.01 | \n 0.26 | \n 0.00 | \n 0.00 | \n NaN | \n NaN | \n ... | \n 武乡西山发电有限责任公司 | \n 2号炉废气排放口 | \n 0.01 | \n 0.05 | \n 0.07 | \n 2.30 | \n 401366.08 | \n NaN | \n NaN | \n 停运 | \n
\n \n 117 | \n 2021.4.30 | \n 武乡西山发电有限责任公司 | \n 1号炉废气排放口 | \n 0.00 | \n 0.02 | \n 0.56 | \n 0.00 | \n 0.00 | \n NaN | \n NaN | \n ... | \n 武乡西山发电有限责任公司 | \n 2号炉废气排放口 | \n 3.96 | \n 22.90 | \n 0.68 | \n 6.09 | \n 932694.63 | \n NaN | \n NaN | \n 停运 | \n
\n \n
\n
118 rows × 24 columns
\n
"
},
"execution_count": 103,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xswx_emiss_data = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=2)\n",
"xswx_emiss_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 104,
"outputs": [
{
"data": {
"text/plain": " Unnamed: 0 二氧化硫浓度(mg/m3) 氮氧化物浓度(mg/m3) 烟尘浓度(mg/m3) 流速(m/s) \\\n0 2021.1.1 20.15 31.49 2.49 11.24 \n1 2021.1.2 20.27 31.65 2.51 12.03 \n2 2021.1.3 19.72 31.68 2.50 12.11 \n3 2021.1.4 17.64 31.51 2.52 11.79 \n4 2021.1.5 18.66 31.72 2.50 11.97 \n.. ... ... ... ... ... \n113 2021.4.26 0.22 0.01 0.19 0.00 \n114 2021.4.27 0.00 0.01 0.21 0.00 \n115 2021.4.28 0.01 0.00 0.25 0.00 \n116 2021.4.29 0.00 0.01 0.26 0.00 \n117 2021.4.30 0.00 0.02 0.56 0.00 \n\n 流量(m3/h) 状态 \n0 1558502.96 正常运行 \n1 1648629.50 正常运行 \n2 1656682.63 正常运行 \n3 1610496.46 正常运行 \n4 1652330.08 正常运行 \n.. ... ... \n113 0.00 停运 \n114 0.00 停运 \n115 0.00 停运 \n116 0.00 停运 \n117 0.00 停运 \n\n[118 rows x 7 columns]",
"text/html": "\n\n
\n \n \n | \n Unnamed: 0 | \n 二氧化硫浓度(mg/m3) | \n 氮氧化物浓度(mg/m3) | \n 烟尘浓度(mg/m3) | \n 流速(m/s) | \n 流量(m3/h) | \n 状态 | \n
\n \n \n \n 0 | \n 2021.1.1 | \n 20.15 | \n 31.49 | \n 2.49 | \n 11.24 | \n 1558502.96 | \n 正常运行 | \n
\n \n 1 | \n 2021.1.2 | \n 20.27 | \n 31.65 | \n 2.51 | \n 12.03 | \n 1648629.50 | \n 正常运行 | \n
\n \n 2 | \n 2021.1.3 | \n 19.72 | \n 31.68 | \n 2.50 | \n 12.11 | \n 1656682.63 | \n 正常运行 | \n
\n \n 3 | \n 2021.1.4 | \n 17.64 | \n 31.51 | \n 2.52 | \n 11.79 | \n 1610496.46 | \n 正常运行 | \n
\n \n 4 | \n 2021.1.5 | \n 18.66 | \n 31.72 | \n 2.50 | \n 11.97 | \n 1652330.08 | \n 正常运行 | \n
\n \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n
\n \n 113 | \n 2021.4.26 | \n 0.22 | \n 0.01 | \n 0.19 | \n 0.00 | \n 0.00 | \n 停运 | \n
\n \n 114 | \n 2021.4.27 | \n 0.00 | \n 0.01 | \n 0.21 | \n 0.00 | \n 0.00 | \n 停运 | \n
\n \n 115 | \n 2021.4.28 | \n 0.01 | \n 0.00 | \n 0.25 | \n 0.00 | \n 0.00 | \n 停运 | \n
\n \n 116 | \n 2021.4.29 | \n 0.00 | \n 0.01 | \n 0.26 | \n 0.00 | \n 0.00 | \n 停运 | \n
\n \n 117 | \n 2021.4.30 | \n 0.00 | \n 0.02 | \n 0.56 | \n 0.00 | \n 0.00 | \n 停运 | \n
\n \n
\n
118 rows × 7 columns
\n
"
},
"execution_count": 104,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xswx_emiss_data_1 = xswx_emiss_data[np.array(xswx_emiss_data.columns)[[0, 3, 4, 5, 6, 7, 10]]].copy()\n",
"xswx_emiss_data_2 = xswx_emiss_data[np.array(xswx_emiss_data.columns)[[13, 16, 17, 18, 19, 20, 23]]].copy()\n",
"xswx_emiss_data_1"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 105,
"outputs": [],
"source": [
"xswx_emiss_data_1.columns = ['days'] + xswx_emiss_data_1.columns[1:].tolist()\n",
"xswx_emiss_data_2.columns = xswx_emiss_data_1.columns.tolist()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 106,
"outputs": [],
"source": [
"xswx_emiss_data_1.index = pd.to_datetime(xswx_emiss_data_1.days)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 107,
"outputs": [],
"source": [
"xswx_emiss_data_2.index = pd.to_datetime(xswx_emiss_data_2.days)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 108,
"outputs": [],
"source": [
"xswx_emiss_data_1.drop(columns=['days'], inplace=True)\n",
"xswx_emiss_data_2.drop(columns=['days'], inplace=True)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 109,
"outputs": [],
"source": [
"xswx_emiss_data_1.columns = [f'机组1_{x}' for x in xswx_emiss_data_1.columns]\n",
"xswx_emiss_data_2.columns = [f'机组2_{x}' for x in xswx_emiss_data_2.columns]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 110,
"outputs": [
{
"data": {
"text/plain": "2021-01-01 1\n2021-03-17 1\n2021-03-29 1\n2021-03-28 1\n2021-03-27 1\n ..\n2021-02-05 1\n2021-02-04 1\n2021-02-03 1\n2021-02-02 1\n2021-04-30 1\nName: days, Length: 118, dtype: int64"
},
"execution_count": 110,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xswx_emiss_data_1.reset_index().days.value_counts()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 112,
"outputs": [
{
"data": {
"text/plain": " 发电量_1(万千瓦时) 供热量_1(吉焦) 燃料消耗量_1(吨) 发电量_2(万千瓦时) 供热量_2(吉焦) \\\n2021-01-01 952.0 11032.5 5478.8 893 0.0 \n2021-01-02 1127.0 11180.5 6125.4 1061 0.0 \n2021-01-03 1051.0 11197.7 5717.6 1053 0.0 \n2021-01-04 1179.0 11146.6 6172.5 1237 0.0 \n2021-01-05 1142.0 10922.4 6053.3 1082 0.0 \n... ... ... ... ... ... \n2021-05-27 0.0 0.0 0.0 1192 0.0 \n2021-05-28 0.0 0.0 0.0 1159 0.0 \n2021-05-29 0.0 0.0 0.0 998 0.0 \n2021-05-30 0.0 0.0 0.0 1033 0.0 \n2021-05-31 0.0 0.0 0.0 909 0.0 \n\n 燃料消耗量_2(吨) 企业名称 发电量(万千瓦时) 供热量(吉焦) 燃料消耗量(吨) ... \\\n2021-01-01 4689.7 武乡西山发电有限责任公司 1845.0 11032.5 10168.5 ... \n2021-01-02 5455.5 武乡西山发电有限责任公司 2188.0 11180.5 11580.9 ... \n2021-01-03 4060.5 武乡西山发电有限责任公司 2104.0 11197.7 9778.1 ... \n2021-01-04 5574.7 武乡西山发电有限责任公司 2416.0 11146.6 11747.2 ... \n2021-01-05 6363.9 武乡西山发电有限责任公司 2224.0 10922.4 12417.2 ... \n... ... ... ... ... ... ... \n2021-05-27 5684.3 武乡西山发电有限责任公司 1192.0 0.0 5684.3 ... \n2021-05-28 5349.3 武乡西山发电有限责任公司 1159.0 0.0 5349.3 ... \n2021-05-29 4851.2 武乡西山发电有限责任公司 998.0 0.0 4851.2 ... \n2021-05-30 4763.4 武乡西山发电有限责任公司 1033.0 0.0 4763.4 ... \n2021-05-31 4516.5 武乡西山发电有限责任公司 909.0 0.0 4516.5 ... \n\n 机组1_烟尘浓度(mg/m3) 机组1_流速(m/s) 机组1_流量(m3/h) 机组1_状态 \\\n2021-01-01 2.49 11.24 1558502.96 正常运行 \n2021-01-02 2.51 12.03 1648629.50 正常运行 \n2021-01-03 2.50 12.11 1656682.63 正常运行 \n2021-01-04 2.52 11.79 1610496.46 正常运行 \n2021-01-05 2.50 11.97 1652330.08 正常运行 \n... ... ... ... ... \n2021-05-27 NaN NaN NaN NaN \n2021-05-28 NaN NaN NaN NaN \n2021-05-29 NaN NaN NaN NaN \n2021-05-30 NaN NaN NaN NaN \n2021-05-31 NaN NaN NaN NaN \n\n 机组2_二氧化硫浓度(mg/m3) 机组2_氮氧化物浓度(mg/m3) 机组2_烟尘浓度(mg/m3) 机组2_流速(m/s) \\\n2021-01-01 22.00 33.09 2.25 5.00 \n2021-01-02 20.45 34.37 2.37 9.18 \n2021-01-03 19.82 33.55 2.38 9.85 \n2021-01-04 20.18 32.47 2.39 9.07 \n2021-01-05 21.07 33.73 2.42 9.71 \n... ... ... ... ... \n2021-05-27 NaN NaN NaN NaN \n2021-05-28 NaN NaN NaN NaN \n2021-05-29 NaN NaN NaN NaN \n2021-05-30 NaN NaN NaN NaN \n2021-05-31 NaN NaN NaN NaN \n\n 机组2_流量(m3/h) 机组2_状态 \n2021-01-01 731609.00 正常运行 \n2021-01-02 1326387.42 正常运行 \n2021-01-03 1417186.13 正常运行 \n2021-01-04 1304455.88 正常运行 \n2021-01-05 1390566.88 正常运行 \n... ... ... \n2021-05-27 NaN NaN \n2021-05-28 NaN NaN \n2021-05-29 NaN NaN \n2021-05-30 NaN NaN \n2021-05-31 NaN NaN \n\n[151 rows x 22 columns]",
"text/html": "\n\n
\n \n \n | \n 发电量_1(万千瓦时) | \n 供热量_1(吉焦) | \n 燃料消耗量_1(吨) | \n 发电量_2(万千瓦时) | \n 供热量_2(吉焦) | \n 燃料消耗量_2(吨) | \n 企业名称 | \n 发电量(万千瓦时) | \n 供热量(吉焦) | \n 燃料消耗量(吨) | \n ... | \n 机组1_烟尘浓度(mg/m3) | \n 机组1_流速(m/s) | \n 机组1_流量(m3/h) | \n 机组1_状态 | \n 机组2_二氧化硫浓度(mg/m3) | \n 机组2_氮氧化物浓度(mg/m3) | \n 机组2_烟尘浓度(mg/m3) | \n 机组2_流速(m/s) | \n 机组2_流量(m3/h) | \n 机组2_状态 | \n
\n \n \n \n 2021-01-01 | \n 952.0 | \n 11032.5 | \n 5478.8 | \n 893 | \n 0.0 | \n 4689.7 | \n 武乡西山发电有限责任公司 | \n 1845.0 | \n 11032.5 | \n 10168.5 | \n ... | \n 2.49 | \n 11.24 | \n 1558502.96 | \n 正常运行 | \n 22.00 | \n 33.09 | \n 2.25 | \n 5.00 | \n 731609.00 | \n 正常运行 | \n
\n \n 2021-01-02 | \n 1127.0 | \n 11180.5 | \n 6125.4 | \n 1061 | \n 0.0 | \n 5455.5 | \n 武乡西山发电有限责任公司 | \n 2188.0 | \n 11180.5 | \n 11580.9 | \n ... | \n 2.51 | \n 12.03 | \n 1648629.50 | \n 正常运行 | \n 20.45 | \n 34.37 | \n 2.37 | \n 9.18 | \n 1326387.42 | \n 正常运行 | \n
\n \n 2021-01-03 | \n 1051.0 | \n 11197.7 | \n 5717.6 | \n 1053 | \n 0.0 | \n 4060.5 | \n 武乡西山发电有限责任公司 | \n 2104.0 | \n 11197.7 | \n 9778.1 | \n ... | \n 2.50 | \n 12.11 | \n 1656682.63 | \n 正常运行 | \n 19.82 | \n 33.55 | \n 2.38 | \n 9.85 | \n 1417186.13 | \n 正常运行 | \n
\n \n 2021-01-04 | \n 1179.0 | \n 11146.6 | \n 6172.5 | \n 1237 | \n 0.0 | \n 5574.7 | \n 武乡西山发电有限责任公司 | \n 2416.0 | \n 11146.6 | \n 11747.2 | \n ... | \n 2.52 | \n 11.79 | \n 1610496.46 | \n 正常运行 | \n 20.18 | \n 32.47 | \n 2.39 | \n 9.07 | \n 1304455.88 | \n 正常运行 | \n
\n \n 2021-01-05 | \n 1142.0 | \n 10922.4 | \n 6053.3 | \n 1082 | \n 0.0 | \n 6363.9 | \n 武乡西山发电有限责任公司 | \n 2224.0 | \n 10922.4 | \n 12417.2 | \n ... | \n 2.50 | \n 11.97 | \n 1652330.08 | \n 正常运行 | \n 21.07 | \n 33.73 | \n 2.42 | \n 9.71 | \n 1390566.88 | \n 正常运行 | \n
\n \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n
\n \n 2021-05-27 | \n 0.0 | \n 0.0 | \n 0.0 | \n 1192 | \n 0.0 | \n 5684.3 | \n 武乡西山发电有限责任公司 | \n 1192.0 | \n 0.0 | \n 5684.3 | \n ... | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n
\n \n 2021-05-28 | \n 0.0 | \n 0.0 | \n 0.0 | \n 1159 | \n 0.0 | \n 5349.3 | \n 武乡西山发电有限责任公司 | \n 1159.0 | \n 0.0 | \n 5349.3 | \n ... | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n
\n \n 2021-05-29 | \n 0.0 | \n 0.0 | \n 0.0 | \n 998 | \n 0.0 | \n 4851.2 | \n 武乡西山发电有限责任公司 | \n 998.0 | \n 0.0 | \n 4851.2 | \n ... | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n
\n \n 2021-05-30 | \n 0.0 | \n 0.0 | \n 0.0 | \n 1033 | \n 0.0 | \n 4763.4 | \n 武乡西山发电有限责任公司 | \n 1033.0 | \n 0.0 | \n 4763.4 | \n ... | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n
\n \n 2021-05-31 | \n 0.0 | \n 0.0 | \n 0.0 | \n 909 | \n 0.0 | \n 4516.5 | \n 武乡西山发电有限责任公司 | \n 909.0 | \n 0.0 | \n 4516.5 | \n ... | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n NaN | \n
\n \n
\n
151 rows × 22 columns
\n
"
},
"execution_count": 112,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.concat([xswx_daily_data, xswx_emiss_data_1, xswx_emiss_data_2], axis=1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"### 邯郸东郊"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 114,
"outputs": [
{
"data": {
"text/plain": "Index(['企业名称', '地址', '省份', '经度', '纬度', '机组数量', '单机容量(MW)', '生产设备类型',\n '锅炉额定蒸发量 t/h ', '汽轮机类型', '压力参数', '冷却方式', '脱硝工艺', '脱硫工艺', '除尘工艺', '日期',\n '机组编号', '投产日期', '燃料类型', '低位发热量(GJ/t)', '产灰量(吨)', '发电量(万千瓦时)', '供热量',\n '产渣量', '机组运行时间', '发电煤耗(克/千瓦时)', '燃料消耗量(吨)', 'Unnamed: 27', '日期.1',\n '机组编号.1', '投产日期.1', '燃料类型.1', '低位发热量(GJ/t).1', '产灰量(吨).1',\n '发电量(万千瓦时).1', '供热量.1', '产渣量.1', '机组运行时间.1', '发电煤耗(克/千瓦时).1',\n '燃料消耗量(吨).1'],\n dtype='object')"
},
"execution_count": 114,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hddj_daily = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=5)\n",
"hddj_daily.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 116,
"outputs": [],
"source": [
"hddj_daily_1 = hddj_daily[['日期', '发电量(万千瓦时)', '供热量', '燃料消耗量(吨)']].copy()\n",
"hddj_daily_1.columns = ['days', \"发电量_1(万千瓦时)\", '供热量_1(吉焦)', '燃料消耗量_1(吨)']\n",
"hddj_daily_2 = hddj_daily[['日期.1', '发电量(万千瓦时).1', '供热量.1', '燃料消耗量(吨).1']].copy()\n",
"hddj_daily_2.columns = ['days', \"发电量_2(万千瓦时)\", '供热量_2(吉焦)', '燃料消耗量_2(吨)']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 118,
"outputs": [
{
"data": {
"text/plain": "DatetimeIndex(['2022-01-01', '2022-01-02', '2022-01-03', '2022-01-04',\n '2022-01-05', '2022-01-06', '2022-01-07', '2022-01-08',\n '2022-01-09', '2022-01-10', '2022-01-11', '2022-01-12',\n '2022-01-13', '2022-01-14', '2022-01-15', '2022-01-16',\n '2022-01-17', '2022-01-18', '2022-01-19', '2022-01-20',\n '2022-01-21', '2022-01-22', '2022-01-23', '2022-01-24',\n '2022-01-25', '2022-01-26', '2022-01-27', '2022-01-28',\n '2022-01-29', '2022-01-30', '2022-01-31', '2022-02-01',\n '2022-02-02', '2022-02-03', '2022-02-04', '2022-02-05',\n '2022-02-06', '2022-02-07', '2022-02-08', '2022-02-09',\n '2022-02-10', '2022-02-11', '2022-02-12', '2022-02-13',\n '2022-02-14', '2022-02-15', '2022-02-16', '2022-02-17',\n '2022-02-18', '2022-02-19', '2022-02-20', '2022-02-21',\n '2022-02-22', '2022-02-23', '2022-02-24', '2022-02-25',\n '2022-02-26', '2022-02-27', '2022-02-28'],\n dtype='datetime64[ns]', freq='D')"
},
"execution_count": 118,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"min_start = min(hddj_daily_1.days.min(), hddj_daily_2.days.min())\n",
"max_end = max(hddj_daily_1.days.max(), hddj_daily_2.days.max())\n",
"date_range = pd.date_range(min_start, max_end, freq='D')\n",
"date_range"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 119,
"outputs": [],
"source": [
"hddj_daily_1 = hddj_daily_1.set_index('days').reindex(date_range).fillna(0)\n",
"hddj_daily_2 = hddj_daily_2.set_index('days').reindex(date_range).fillna(0)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 120,
"outputs": [
{
"data": {
"text/plain": " 发电量_1(万千瓦时) 供热量_1(吉焦) 燃料消耗量_1(吨)\n2022-01-01 494.20 30829 2861\n2022-01-02 554.30 32122 2536\n2022-01-03 558.30 33451 2911\n2022-01-04 529.70 33179 3023\n2022-01-05 563.90 29731 3191\n2022-01-06 561.00 32505 3357\n2022-01-07 570.00 33189 3231\n2022-01-08 526.80 31881 2765\n2022-01-09 517.10 30799 2574\n2022-01-10 512.80 29277 2512\n2022-01-11 521.20 32460 2757\n2022-01-12 543.32 33593 3132\n2022-01-13 512.52 33326 2950\n2022-01-14 495.42 31417 2755\n2022-01-15 500.06 32434 2834\n2022-01-16 527.93 31986 3182\n2022-01-17 496.50 32268 3121\n2022-01-18 529.31 31814 3241\n2022-01-19 552.01 30414 3274\n2022-01-20 544.00 32416 3594\n2022-01-21 561.29 34300 3891\n2022-01-22 574.00 38342 4276\n2022-01-23 534.94 37444 3767\n2022-01-24 543.91 34539 3175\n2022-01-25 538.31 36753 3860\n2022-01-26 529.59 34148 3749\n2022-01-27 525.88 33630 3725\n2022-01-28 545.06 34181 3866\n2022-01-29 522.68 30637 3395\n2022-01-30 509.69 34254 3101\n2022-01-31 516.51 32145 2985\n2022-02-01 500.46 25687 2662\n2022-02-02 477.03 29061 2821\n2022-02-03 439.93 29598 2779\n2022-02-04 452.76 28709 2523\n2022-02-05 508.35 30133 2884\n2022-02-06 485.41 27635 2902\n2022-02-07 469.75 28259 2939\n2022-02-08 452.87 26685 2556\n2022-02-09 470.87 26037 2691\n2022-02-10 490.75 25530 2901\n2022-02-11 467.50 24359 2790\n2022-02-12 446.31 24180 2766\n2022-02-13 466.12 25274 3054\n2022-02-14 464.96 29338 2533\n2022-02-15 466.40 27394 2611\n2022-02-16 493.26 27639 2905\n2022-02-17 495.53 30228 2894\n2022-02-18 524.59 28126 3030\n2022-02-19 466.49 27575 2470\n2022-02-20 503.46 27424 2799\n2022-02-21 521.02 26965 3098\n2022-02-22 528.08 26886 3317\n2022-02-23 533.95 25022 3174\n2022-02-24 505.76 26727 3079\n2022-02-25 445.43 21930 2580\n2022-02-26 491.01 16645 2733\n2022-02-27 465.33 17884 2862\n2022-02-28 487.21 15457 3029",
"text/html": "\n\n
\n \n \n | \n 发电量_1(万千瓦时) | \n 供热量_1(吉焦) | \n 燃料消耗量_1(吨) | \n
\n \n \n \n 2022-01-01 | \n 494.20 | \n 30829 | \n 2861 | \n
\n \n 2022-01-02 | \n 554.30 | \n 32122 | \n 2536 | \n
\n \n 2022-01-03 | \n 558.30 | \n 33451 | \n 2911 | \n
\n \n 2022-01-04 | \n 529.70 | \n 33179 | \n 3023 | \n
\n \n 2022-01-05 | \n 563.90 | \n 29731 | \n 3191 | \n
\n \n 2022-01-06 | \n 561.00 | \n 32505 | \n 3357 | \n
\n \n 2022-01-07 | \n 570.00 | \n 33189 | \n 3231 | \n
\n \n 2022-01-08 | \n 526.80 | \n 31881 | \n 2765 | \n
\n \n 2022-01-09 | \n 517.10 | \n 30799 | \n 2574 | \n
\n \n 2022-01-10 | \n 512.80 | \n 29277 | \n 2512 | \n
\n \n 2022-01-11 | \n 521.20 | \n 32460 | \n 2757 | \n
\n \n 2022-01-12 | \n 543.32 | \n 33593 | \n 3132 | \n
\n \n 2022-01-13 | \n 512.52 | \n 33326 | \n 2950 | \n
\n \n 2022-01-14 | \n 495.42 | \n 31417 | \n 2755 | \n
\n \n 2022-01-15 | \n 500.06 | \n 32434 | \n 2834 | \n
\n \n 2022-01-16 | \n 527.93 | \n 31986 | \n 3182 | \n
\n \n 2022-01-17 | \n 496.50 | \n 32268 | \n 3121 | \n
\n \n 2022-01-18 | \n 529.31 | \n 31814 | \n 3241 | \n
\n \n 2022-01-19 | \n 552.01 | \n 30414 | \n 3274 | \n
\n \n 2022-01-20 | \n 544.00 | \n 32416 | \n 3594 | \n
\n \n 2022-01-21 | \n 561.29 | \n 34300 | \n 3891 | \n
\n \n 2022-01-22 | \n 574.00 | \n 38342 | \n 4276 | \n
\n \n 2022-01-23 | \n 534.94 | \n 37444 | \n 3767 | \n
\n \n 2022-01-24 | \n 543.91 | \n 34539 | \n 3175 | \n
\n \n 2022-01-25 | \n 538.31 | \n 36753 | \n 3860 | \n
\n \n 2022-01-26 | \n 529.59 | \n 34148 | \n 3749 | \n
\n \n 2022-01-27 | \n 525.88 | \n 33630 | \n 3725 | \n
\n \n 2022-01-28 | \n 545.06 | \n 34181 | \n 3866 | \n
\n \n 2022-01-29 | \n 522.68 | \n 30637 | \n 3395 | \n
\n \n 2022-01-30 | \n 509.69 | \n 34254 | \n 3101 | \n
\n \n 2022-01-31 | \n 516.51 | \n 32145 | \n 2985 | \n
\n \n 2022-02-01 | \n 500.46 | \n 25687 | \n 2662 | \n
\n \n 2022-02-02 | \n 477.03 | \n 29061 | \n 2821 | \n
\n \n 2022-02-03 | \n 439.93 | \n 29598 | \n 2779 | \n
\n \n 2022-02-04 | \n 452.76 | \n 28709 | \n 2523 | \n
\n \n 2022-02-05 | \n 508.35 | \n 30133 | \n 2884 | \n
\n \n 2022-02-06 | \n 485.41 | \n 27635 | \n 2902 | \n
\n \n 2022-02-07 | \n 469.75 | \n 28259 | \n 2939 | \n
\n \n 2022-02-08 | \n 452.87 | \n 26685 | \n 2556 | \n
\n \n 2022-02-09 | \n 470.87 | \n 26037 | \n 2691 | \n
\n \n 2022-02-10 | \n 490.75 | \n 25530 | \n 2901 | \n
\n \n 2022-02-11 | \n 467.50 | \n 24359 | \n 2790 | \n
\n \n 2022-02-12 | \n 446.31 | \n 24180 | \n 2766 | \n
\n \n 2022-02-13 | \n 466.12 | \n 25274 | \n 3054 | \n
\n \n 2022-02-14 | \n 464.96 | \n 29338 | \n 2533 | \n
\n \n 2022-02-15 | \n 466.40 | \n 27394 | \n 2611 | \n
\n \n 2022-02-16 | \n 493.26 | \n 27639 | \n 2905 | \n
\n \n 2022-02-17 | \n 495.53 | \n 30228 | \n 2894 | \n
\n \n 2022-02-18 | \n 524.59 | \n 28126 | \n 3030 | \n
\n \n 2022-02-19 | \n 466.49 | \n 27575 | \n 2470 | \n
\n \n 2022-02-20 | \n 503.46 | \n 27424 | \n 2799 | \n
\n \n 2022-02-21 | \n 521.02 | \n 26965 | \n 3098 | \n
\n \n 2022-02-22 | \n 528.08 | \n 26886 | \n 3317 | \n
\n \n 2022-02-23 | \n 533.95 | \n 25022 | \n 3174 | \n
\n \n 2022-02-24 | \n 505.76 | \n 26727 | \n 3079 | \n
\n \n 2022-02-25 | \n 445.43 | \n 21930 | \n 2580 | \n
\n \n 2022-02-26 | \n 491.01 | \n 16645 | \n 2733 | \n
\n \n 2022-02-27 | \n 465.33 | \n 17884 | \n 2862 | \n
\n \n 2022-02-28 | \n 487.21 | \n 15457 | \n 3029 | \n
\n \n
\n
"
},
"execution_count": 120,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hddj_daily_1"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 122,
"outputs": [],
"source": [
"hddj_daily_data = pd.concat([hddj_daily_1, hddj_daily_2], axis=1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 125,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['时间', '企业名称', '监测点', '流量 (m3/h)', 'NOx浓度(mg/m3)', 'SO2浓度(mg/m3)',\n",
" '烟尘浓度(mg/m3)', '含氧量(%)', '温度(℃)', '烟气湿度(%)', '烟气压力(千帕)', '烟气流速(m/s)',\n",
" '状态', 'Unnamed: 13', '时间.1', '企业名称.1', '监测点.1', '流量 (m3/h).1',\n",
" 'NOx浓度(mg/m3).1', 'SO2浓度(mg/m3).1', '烟尘浓度(mg/m3).1', '含氧量(%).1',\n",
" '温度(℃).1', '烟气湿度(%).1', '烟气压力(千帕).1', '烟气流速(m/s).1', '状态.1'],\n",
" dtype='object')\n"
]
}
],
"source": [
"hddj_emiss_data = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=4)\n",
"hddj_emiss_data.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 127,
"outputs": [
{
"data": {
"text/plain": " 时间 企业名称 监测点 流量 (m3/h) \\\n0 2022-01-01 00:00:00 国电电力邯郸东郊热电有限责任公司 1号机组排口DA002(DCS) 930582.0 \n1 2022-01-01 01:00:00 国电电力邯郸东郊热电有限责任公司 1号机组排口DA002(DCS) 891316.8 \n\n NOx浓度(mg/m3) SO2浓度(mg/m3) 烟尘浓度(mg/m3) 含氧量(%) 温度(℃) 烟气湿度(%) ... \\\n0 13.379 13.158 3.438 6.435 48.604 14.695 ... \n1 19.312 17.951 2.798 7.164 47.819 14.156 ... \n\n 流量 (m3/h).1 NOx浓度(mg/m3).1 SO2浓度(mg/m3).1 烟尘浓度(mg/m3).1 含氧量(%).1 温度(℃).1 \\\n0 1111474.8 18.171 18.171 0.476 7.065 48.307 \n1 1103194.8 20.524 22.773 0.479 7.130 48.887 \n\n 烟气湿度(%).1 烟气压力(千帕).1 烟气流速(m/s).1 状态.1 \n0 13.253 -0.012 13.693 停运 \n1 13.734 -0.021 13.691 停运 \n\n[2 rows x 27 columns]",
"text/html": "\n\n
\n \n \n | \n 时间 | \n 企业名称 | \n 监测点 | \n 流量 (m3/h) | \n NOx浓度(mg/m3) | \n SO2浓度(mg/m3) | \n 烟尘浓度(mg/m3) | \n 含氧量(%) | \n 温度(℃) | \n 烟气湿度(%) | \n ... | \n 流量 (m3/h).1 | \n NOx浓度(mg/m3).1 | \n SO2浓度(mg/m3).1 | \n 烟尘浓度(mg/m3).1 | \n 含氧量(%).1 | \n 温度(℃).1 | \n 烟气湿度(%).1 | \n 烟气压力(千帕).1 | \n 烟气流速(m/s).1 | \n 状态.1 | \n
\n \n \n \n 0 | \n 2022-01-01 00:00:00 | \n 国电电力邯郸东郊热电有限责任公司 | \n 1号机组排口DA002(DCS) | \n 930582.0 | \n 13.379 | \n 13.158 | \n 3.438 | \n 6.435 | \n 48.604 | \n 14.695 | \n ... | \n 1111474.8 | \n 18.171 | \n 18.171 | \n 0.476 | \n 7.065 | \n 48.307 | \n 13.253 | \n -0.012 | \n 13.693 | \n 停运 | \n
\n \n 1 | \n 2022-01-01 01:00:00 | \n 国电电力邯郸东郊热电有限责任公司 | \n 1号机组排口DA002(DCS) | \n 891316.8 | \n 19.312 | \n 17.951 | \n 2.798 | \n 7.164 | \n 47.819 | \n 14.156 | \n ... | \n 1103194.8 | \n 20.524 | \n 22.773 | \n 0.479 | \n 7.130 | \n 48.887 | \n 13.734 | \n -0.021 | \n 13.691 | \n 停运 | \n
\n \n
\n
2 rows × 27 columns
\n
"
},
"execution_count": 127,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hddj_emiss_data.head(2)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 126,
"outputs": [],
"source": [
"hddj_emiss_data_1 = hddj_emiss_data[['时间', '流量 (m3/h)', 'NOx浓度(mg/m3)', 'SO2浓度(mg/m3)',\n",
" '烟尘浓度(mg/m3)', '含氧量(%)', '温度(℃)', '烟气湿度(%)', '烟气压力(千帕)', '烟气流速(m/s)',\n",
" '状态', ]].copy()\n",
"hddj_emiss_data_2 = hddj_emiss_data[['时间.1', '流量 (m3/h).1',\n",
" 'NOx浓度(mg/m3).1', 'SO2浓度(mg/m3).1', '烟尘浓度(mg/m3).1', '含氧量(%).1',\n",
" '温度(℃).1', '烟气湿度(%).1', '烟气压力(千帕).1', '烟气流速(m/s).1', '状态.1']].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 128,
"outputs": [],
"source": [
"hddj_emiss_data_1.columns = ['date'] + hddj_emiss_data_1.columns[1:].tolist()\n",
"hddj_emiss_data_2.columns = hddj_emiss_data_1.columns.tolist()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 129,
"outputs": [],
"source": [
"hddj_emiss_data_1.columns = [f'机组1_{x}' for x in hddj_emiss_data_1.columns]\n",
"hddj_emiss_data_2.columns = [f'机组2_{x}' for x in hddj_emiss_data_2.columns]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 130,
"outputs": [
{
"data": {
"text/plain": " 机组2_date 机组2_流量 (m3/h) 机组2_NOx浓度(mg/m3) 机组2_SO2浓度(mg/m3) \\\n0 2022-01-01 00:00:00 1111474.8 18.171 18.171 \n1 2022-01-01 01:00:00 1103194.8 20.524 22.773 \n2 2022-01-01 02:00:00 1086537.6 14.074 16.777 \n3 2022-01-01 03:00:00 1076364.0 18.024 17.549 \n4 2022-01-01 04:00:00 1066298.4 16.406 18.709 \n... ... ... ... ... \n1411 2022-02-28 19:00:00 960645.6 11.857 17.406 \n1412 2022-02-28 20:00:00 1014156.0 19.930 19.709 \n1413 2022-02-28 21:00:00 967834.8 19.400 19.780 \n1414 2022-02-28 22:00:00 1014112.8 16.875 20.308 \n1415 2022-02-28 23:00:00 1013400.0 16.565 16.111 \n\n 机组2_烟尘浓度(mg/m3) 机组2_含氧量(%) 机组2_温度(℃) 机组2_烟气湿度(%) 机组2_烟气压力(千帕) \\\n0 0.476 7.065 48.307 13.253 -0.012 \n1 0.479 7.130 48.887 13.734 -0.021 \n2 0.490 7.398 48.794 13.674 -0.026 \n3 0.481 7.694 48.866 13.691 -0.025 \n4 0.475 7.770 48.090 13.093 -0.022 \n... ... ... ... ... ... \n1411 0.415 7.353 48.755 14.155 -0.009 \n1412 0.420 7.532 48.974 13.962 0.007 \n1413 0.450 7.840 49.538 14.562 0.000 \n1414 0.432 7.822 48.593 13.728 0.013 \n1415 0.607 7.941 48.373 13.500 0.005 \n\n 机组2_烟气流速(m/s) 机组2_状态 \n0 13.693 停运 \n1 13.691 停运 \n2 13.470 停运 \n3 13.351 停运 \n4 13.103 停运 \n... ... ... \n1411 11.975 NaN \n1412 12.621 NaN \n1413 12.148 NaN \n1414 12.570 NaN \n1415 12.515 NaN \n\n[1416 rows x 11 columns]",
"text/html": "\n\n
\n \n \n | \n 机组2_date | \n 机组2_流量 (m3/h) | \n 机组2_NOx浓度(mg/m3) | \n 机组2_SO2浓度(mg/m3) | \n 机组2_烟尘浓度(mg/m3) | \n 机组2_含氧量(%) | \n 机组2_温度(℃) | \n 机组2_烟气湿度(%) | \n 机组2_烟气压力(千帕) | \n 机组2_烟气流速(m/s) | \n 机组2_状态 | \n
\n \n \n \n 0 | \n 2022-01-01 00:00:00 | \n 1111474.8 | \n 18.171 | \n 18.171 | \n 0.476 | \n 7.065 | \n 48.307 | \n 13.253 | \n -0.012 | \n 13.693 | \n 停运 | \n
\n \n 1 | \n 2022-01-01 01:00:00 | \n 1103194.8 | \n 20.524 | \n 22.773 | \n 0.479 | \n 7.130 | \n 48.887 | \n 13.734 | \n -0.021 | \n 13.691 | \n 停运 | \n
\n \n 2 | \n 2022-01-01 02:00:00 | \n 1086537.6 | \n 14.074 | \n 16.777 | \n 0.490 | \n 7.398 | \n 48.794 | \n 13.674 | \n -0.026 | \n 13.470 | \n 停运 | \n
\n \n 3 | \n 2022-01-01 03:00:00 | \n 1076364.0 | \n 18.024 | \n 17.549 | \n 0.481 | \n 7.694 | \n 48.866 | \n 13.691 | \n -0.025 | \n 13.351 | \n 停运 | \n
\n \n 4 | \n 2022-01-01 04:00:00 | \n 1066298.4 | \n 16.406 | \n 18.709 | \n 0.475 | \n 7.770 | \n 48.090 | \n 13.093 | \n -0.022 | \n 13.103 | \n 停运 | \n
\n \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n
\n \n 1411 | \n 2022-02-28 19:00:00 | \n 960645.6 | \n 11.857 | \n 17.406 | \n 0.415 | \n 7.353 | \n 48.755 | \n 14.155 | \n -0.009 | \n 11.975 | \n NaN | \n
\n \n 1412 | \n 2022-02-28 20:00:00 | \n 1014156.0 | \n 19.930 | \n 19.709 | \n 0.420 | \n 7.532 | \n 48.974 | \n 13.962 | \n 0.007 | \n 12.621 | \n NaN | \n
\n \n 1413 | \n 2022-02-28 21:00:00 | \n 967834.8 | \n 19.400 | \n 19.780 | \n 0.450 | \n 7.840 | \n 49.538 | \n 14.562 | \n 0.000 | \n 12.148 | \n NaN | \n
\n \n 1414 | \n 2022-02-28 22:00:00 | \n 1014112.8 | \n 16.875 | \n 20.308 | \n 0.432 | \n 7.822 | \n 48.593 | \n 13.728 | \n 0.013 | \n 12.570 | \n NaN | \n
\n \n 1415 | \n 2022-02-28 23:00:00 | \n 1013400.0 | \n 16.565 | \n 16.111 | \n 0.607 | \n 7.941 | \n 48.373 | \n 13.500 | \n 0.005 | \n 12.515 | \n NaN | \n
\n \n
\n
1416 rows × 11 columns
\n
"
},
"execution_count": 130,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hddj_emiss_data_2"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}