emission_detect_ai/data_analysis.ipynb

1113 lines
520 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"import matplotlib.pyplot as plt\n",
"#新增加的两行\n",
"from pylab import mpl\n",
"# 设置显示中文字体\n",
"mpl.rcParams[\"font.sans-serif\"] = [\"SimHei\"]\n",
"\n",
"mpl.rcParams[\"axes.unicode_minus\"] = False"
]
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [
{
"data": {
"text/plain": " 日期 企业名称 地址 省份 经度 纬度 烟囱高度m \\\n0 2018-10-01 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°515.54″ 30°3914.76″ 80 \n1 2018-10-02 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°515.54″ 30°3914.76″ 80 \n2 2018-10-03 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°515.54″ 30°3914.76″ 80 \n3 2018-10-04 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°515.54″ 30°3914.76″ 80 \n4 2018-10-05 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°515.54″ 30°3914.76″ 80 \n\n 脱硝工艺 脱硝剂名称 脱硝设备数量 ... 供热量(吉焦) 产渣量(吨) 机组运行时间(小时) 硫分(% 脱硫副产品产量(吨) \\\n0 SNCR SCR 氨水 3 ... 6536.83 NaN 24.0 0.51 NaN \n1 SNCR SCR 氨水 3 ... 2484.64 NaN 24.0 0.51 NaN \n2 SNCR SCR 氨水 3 ... 3020.83 NaN 24.0 0.51 NaN \n3 SNCR SCR 氨水 3 ... 5599.23 NaN 24.0 0.51 72.52 \n4 SNCR SCR 氨水 3 ... 4702.65 NaN 24.0 0.51 NaN \n\n 脱硫剂使用量(吨) 脱硫设施运行时间(小时) 脱硝还原剂消耗量(吨) 脱硝运行时间(小时) 燃料消耗量(吨) \n0 5.06 24.0 2.98 24.0 323 \n1 5.04 24.0 2.97 24.0 218 \n2 5.04 24.0 2.95 24.0 212 \n3 5.03 24.0 2.98 24.0 223 \n4 5.06 24.0 3.01 24.0 243 \n\n[5 rows x 44 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>日期</th>\n <th>企业名称</th>\n <th>地址</th>\n <th>省份</th>\n <th>经度</th>\n <th>纬度</th>\n <th>烟囱高度m</th>\n <th>脱硝工艺</th>\n <th>脱硝剂名称</th>\n <th>脱硝设备数量</th>\n <th>...</th>\n <th>供热量(吉焦)</th>\n <th>产渣量(吨)</th>\n <th>机组运行时间(小时)</th>\n <th>硫分(%</th>\n <th>脱硫副产品产量(吨)</th>\n <th>脱硫剂使用量(吨)</th>\n <th>脱硫设施运行时间(小时)</th>\n <th>脱硝还原剂消耗量(吨)</th>\n <th>脱硝运行时间(小时)</th>\n <th>燃料消耗量(吨)</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2018-10-01</td>\n <td>浙江秀舟热电有限公司</td>\n <td>嘉兴市南湖区凤桥镇</td>\n <td>浙江省</td>\n <td>120°515.54″</td>\n <td>30°3914.76″</td>\n <td>80</td>\n <td>SNCR SCR</td>\n <td>氨水</td>\n <td>3</td>\n <td>...</td>\n <td>6536.83</td>\n <td>NaN</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>NaN</td>\n <td>5.06</td>\n <td>24.0</td>\n <td>2.98</td>\n <td>24.0</td>\n <td>323</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2018-10-02</td>\n <td>浙江秀舟热电有限公司</td>\n <td>嘉兴市南湖区凤桥镇</td>\n <td>浙江省</td>\n <td>120°515.54″</td>\n <td>30°3914.76″</td>\n <td>80</td>\n <td>SNCR SCR</td>\n <td>氨水</td>\n <td>3</td>\n <td>...</td>\n <td>2484.64</td>\n <td>NaN</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>NaN</td>\n <td>5.04</td>\n <td>24.0</td>\n <td>2.97</td>\n <td>24.0</td>\n <td>218</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2018-10-03</td>\n <td>浙江秀舟热电有限公司</td>\n <td>嘉兴市南湖区凤桥镇</td>\n <td>浙江省</td>\n <td>120°515.54″</td>\n <td>30°3914.76″</td>\n <td>80</td>\n <td>SNCR SCR</td>\n <td>氨水</td>\n <td>3</td>\n <td>...</td>\n <td>3020.83</td>\n <td>NaN</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>NaN</td>\n <td>5.04</td>\n <td>24.0</td>\n <td>2.95</td>\n <td>24.0</td>\n <td>212</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2018-10-04</td>\n <td>浙江秀舟热电有限公司</td>\n <td>嘉兴市南湖区凤桥镇</td>\n <td>浙江省</td>\n <td>120°515.54″</td>\n <td>30°3914.76″</td>\n <td>80</td>\n <td>SNCR SCR</td>\n <td>氨水</td>\n <td>3</td>\n <td>...</td>\n <td>5599.23</td>\n <td>NaN</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>72.52</td>\n <td>5.03</td>\n <td>24.0</td>\n <td>2.98</td>\n <td>24.0</td>\n <td>223</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2018-10-05</td>\n <td>浙江秀舟热电有限公司</td>\n <td>嘉兴市南湖区凤桥镇</td>\n <td>浙江省</td>\n <td>120°515.54″</td>\n <td>30°3914.76″</td>\n <td>80</td>\n <td>SNCR SCR</td>\n <td>氨水</td>\n <td>3</td>\n <td>...</td>\n <td>4702.65</td>\n <td>NaN</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>NaN</td>\n <td>5.06</td>\n <td>24.0</td>\n <td>3.01</td>\n <td>24.0</td>\n <td>243</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 44 columns</p>\n</div>"
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"daily_data = pd.read_excel('./data/机器学习样表.xlsx',sheet_name=0, header=[0, 1])\n",
"old_cols = daily_data.columns\n",
"new_cols = [x[0].strip() if 'Unnamed' in x[1] else x[0]+'_'+x[1] for x in old_cols]\n",
"daily_data.columns = new_cols\n",
"daily_data.head()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"daily_data.rename(columns={\"日期\": \"days\"}, inplace=True)\n",
"daily_data.days = daily_data.days.astype(str)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 4,
"outputs": [
{
"data": {
"text/plain": "(1178, 44)"
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"daily_data.shape"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 5,
"outputs": [
{
"data": {
"text/plain": " date flow rNOx rO2 temp rSO2 rsmoke\n0 2018-03-23 00:00:00 244136.19 28.6370 7.700 51.400 0.8900 1.2000\n1 2018-03-23 01:00:00 234599.89 29.9710 7.800 51.300 0.7600 1.1700\n2 2018-03-23 02:00:00 249264.88 20.9960 7.300 54.900 2.1800 1.3600\n3 2018-03-23 03:00:00 229360.17 24.3590 7.500 52.700 1.9600 1.3500\n4 2018-03-23 04:00:00 236416.45 18.3680 7.200 55.100 1.6500 1.3500\n... ... ... ... ... ... ... ...\n33714 2022-01-26 19:00:00 255639.10 2.1000 15.719 36.720 1.7939 1.0533\n33715 2022-01-26 20:00:00 253412.80 1.6378 15.580 36.812 1.7928 1.0543\n33716 2022-01-26 21:00:00 261648.90 2.0940 15.595 36.948 1.8048 1.0547\n33717 2022-01-26 22:00:00 271429.70 1.9489 15.532 37.160 1.7887 1.0566\n33718 2022-01-26 23:00:00 272750.00 1.5552 15.435 37.279 1.7655 1.0570\n\n[33715 rows x 7 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>date</th>\n <th>flow</th>\n <th>rNOx</th>\n <th>rO2</th>\n <th>temp</th>\n <th>rSO2</th>\n <th>rsmoke</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2018-03-23 00:00:00</td>\n <td>244136.19</td>\n <td>28.6370</td>\n <td>7.700</td>\n <td>51.400</td>\n <td>0.8900</td>\n <td>1.2000</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2018-03-23 01:00:00</td>\n <td>234599.89</td>\n <td>29.9710</td>\n <td>7.800</td>\n <td>51.300</td>\n <td>0.7600</td>\n <td>1.1700</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2018-03-23 02:00:00</td>\n <td>249264.88</td>\n <td>20.9960</td>\n <td>7.300</td>\n <td>54.900</td>\n <td>2.1800</td>\n <td>1.3600</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2018-03-23 03:00:00</td>\n <td>229360.17</td>\n <td>24.3590</td>\n <td>7.500</td>\n <td>52.700</td>\n <td>1.9600</td>\n <td>1.3500</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2018-03-23 04:00:00</td>\n <td>236416.45</td>\n <td>18.3680</td>\n <td>7.200</td>\n <td>55.100</td>\n <td>1.6500</td>\n <td>1.3500</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>33714</th>\n <td>2022-01-26 19:00:00</td>\n <td>255639.10</td>\n <td>2.1000</td>\n <td>15.719</td>\n <td>36.720</td>\n <td>1.7939</td>\n <td>1.0533</td>\n </tr>\n <tr>\n <th>33715</th>\n <td>2022-01-26 20:00:00</td>\n <td>253412.80</td>\n <td>1.6378</td>\n <td>15.580</td>\n <td>36.812</td>\n <td>1.7928</td>\n <td>1.0543</td>\n </tr>\n <tr>\n <th>33716</th>\n <td>2022-01-26 21:00:00</td>\n <td>261648.90</td>\n <td>2.0940</td>\n <td>15.595</td>\n <td>36.948</td>\n <td>1.8048</td>\n <td>1.0547</td>\n </tr>\n <tr>\n <th>33717</th>\n <td>2022-01-26 22:00:00</td>\n <td>271429.70</td>\n <td>1.9489</td>\n <td>15.532</td>\n <td>37.160</td>\n <td>1.7887</td>\n <td>1.0566</td>\n </tr>\n <tr>\n <th>33718</th>\n <td>2022-01-26 23:00:00</td>\n <td>272750.00</td>\n <td>1.5552</td>\n <td>15.435</td>\n <td>37.279</td>\n <td>1.7655</td>\n <td>1.0570</td>\n </tr>\n </tbody>\n</table>\n<p>33715 rows × 7 columns</p>\n</div>"
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hourly_data = pd.read_excel('./data/机器学习样表.xlsx',sheet_name=1).drop_duplicates()\n",
"hourly_data.columns = ['date', 'flow', 'rNOx', 'rO2', 'temp', 'rSO2', 'rsmoke']\n",
"hourly_data.date = hourly_data.date.astype(\"datetime64\")\n",
"ori_hourly_data = hourly_data.copy()\n",
"hourly_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [],
"source": [
"hourly_data['rNOx'] = hourly_data.apply((lambda x: x['rNOx'] * 101800 * 273 / (101325 * (273 + x['temp']))), axis=1)\n",
"hourly_data['rSO2'] = hourly_data.apply((lambda x: x['rSO2'] * 101800 * 273 / (101325 * (273 + x['temp']))), axis=1)\n",
"hourly_data['rsmoke'] = hourly_data.apply((lambda x: x['rsmoke'] * 101800 * 273 / (101325 * (273 + x['temp']))), axis=1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"我们将每天24个小时的数据作为特征因此对数据不足24小时的要先填充Nan以备后续处理"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 8,
"outputs": [
{
"data": {
"text/plain": "(33744, 33715)"
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hour_range = pd.date_range(hourly_data.date.min(), hourly_data.date.max(), freq='H')\n",
"hour_range.shape[0], hourly_data.shape[0]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"可见少了约30条数据因此进行index对齐"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 9,
"outputs": [],
"source": [
"hourly_data = hourly_data.set_index(\"date\").reindex(hour_range)\n",
"hourly_data['days'] = hourly_data.index.astype(str).to_series().apply(lambda x:x.split(' ')[0]).values"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 异常值处理\n",
"对于出现的负值,若一天之中出现的较多,这一天的数据视为脏数据,可以统一处理"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [
{
"data": {
"text/plain": "flow 49432.59\nrNOx -0.338727\nrO2 19.1\ntemp 34.7\nrSO2 0.124794\nrsmoke 0.490263\ndays 2020-12-01\nName: 2020-12-01 12:00:00, dtype: object"
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hourly_data[hourly_data.rNOx < 0].iloc[0]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 11,
"outputs": [
{
"data": {
"text/plain": " flow rNOx rO2 temp rSO2 rsmoke \\\n2020-12-01 12:00:00 49432.59 NaN 19.1 34.7 0.124794 0.490263 \n\n days \n2020-12-01 12:00:00 2020-12-01 ",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>flow</th>\n <th>rNOx</th>\n <th>rO2</th>\n <th>temp</th>\n <th>rSO2</th>\n <th>rsmoke</th>\n <th>days</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2020-12-01 12:00:00</th>\n <td>49432.59</td>\n <td>NaN</td>\n <td>19.1</td>\n <td>34.7</td>\n <td>0.124794</td>\n <td>0.490263</td>\n <td>2020-12-01</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hourly_data[hourly_data._get_numeric_data() < 0] = np.nan\n",
"hourly_data[hourly_data.index=='2020-12-01 12:00:00']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 缺失值分析"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 12,
"outputs": [
{
"data": {
"text/plain": "['flow', 'rNOx', 'rO2', 'temp', 'rSO2', 'rsmoke']"
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 特征列\n",
"num_cols = [x for x in hourly_data.columns if not x.startswith('da')]\n",
"num_cols"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 13,
"outputs": [],
"source": [
"# 写一个逻辑首先统计出每天有缺失数据的比例对任一数据缺失记录高于4条的判断该天在daily_data是否有生产记录若无则为脏数据需要删去\n",
"del_date = list()\n",
"for col in num_cols:\n",
" na_counts = hourly_data[hourly_data[col].isna()].days.value_counts().to_dict()\n",
" for date in na_counts:\n",
" if na_counts.get(date) < 4:\n",
" continue\n",
" try:\n",
" if date in del_date:\n",
" continue\n",
" if daily_data[daily_data.days==date].shape[0] == 0:\n",
" del_date.append(date)\n",
" continue\n",
" if daily_data[daily_data.days==date]['发电量(千瓦时)'].values[0] > 100000 or daily_data[daily_data.days==date]['供热量(吉焦)'].values[0] > 2500:\n",
" # 取缺失率高且有较大发电量的天作为删除值\n",
" del_date.append(date)\n",
" except:\n",
" print(date)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 14,
"outputs": [
{
"data": {
"text/plain": "101"
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(del_date)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 15,
"outputs": [
{
"data": {
"text/plain": "((31320, 7), (1108, 44))"
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 删掉不要的脏数据\n",
"hourly_data = hourly_data[~hourly_data.days.isin(del_date)].copy()\n",
"daily_data = daily_data[~daily_data.days.isin(del_date)].copy()\n",
"hourly_data.shape, daily_data.shape"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"最后看一下有无哪一天仍有很多缺失数据"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 16,
"outputs": [
{
"data": {
"text/plain": "2019-04-08 22\n2019-07-17 3\n2018-12-19 3\n2021-02-18 3\n2019-01-16 3\n ..\n2019-03-12 1\n2019-03-17 1\n2019-03-27 1\n2019-04-04 1\n2019-05-24 1\nName: days, Length: 220, dtype: int64"
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hourly_data[hourly_data[num_cols].isnull().T.any()].days.value_counts()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"于是再去掉2019-04-08的数据"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 17,
"outputs": [
{
"data": {
"text/plain": "(31296, 7)"
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hourly_data = hourly_data[hourly_data.days!='2019-04-08'].copy()\n",
"hourly_data.shape"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 缺失值补充\n",
"1. 对Nan值 取其上下两个时刻的均值作为填充值\n",
"2. 对于多个连续缺失的值,实际上应该用窗口法填充,但是难度太大,因此仍用均值填充\n",
"3. 使用ffill和bfill然后合并取均值。"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 18,
"outputs": [
{
"data": {
"text/plain": " flow rNOx rO2 temp rSO2 rsmoke \\\n2018-03-23 00:00:00 244136.19 24.212548 7.700 51.400 0.752494 1.014598 \n2018-03-23 01:00:00 234599.89 25.348257 7.800 51.300 0.642777 0.989539 \n2018-03-23 02:00:00 249264.88 17.562606 7.300 54.900 1.823513 1.137605 \n2018-03-23 03:00:00 229360.17 20.513299 7.500 52.700 1.650563 1.136867 \n2018-03-23 04:00:00 236416.45 15.354987 7.200 55.100 1.379341 1.128551 \n... ... ... ... ... ... ... \n2022-01-26 19:00:00 255639.10 1.859704 15.719 36.720 1.588630 0.932774 \n2022-01-26 20:00:00 253412.80 1.449961 15.580 36.812 1.587185 0.933383 \n2022-01-26 21:00:00 261648.90 1.853027 15.595 36.948 1.597107 0.933327 \n2022-01-26 22:00:00 271429.70 1.723446 15.532 37.160 1.581778 0.934369 \n2022-01-26 23:00:00 272750.00 1.374762 15.435 37.279 1.560663 0.934365 \n\n days \n2018-03-23 00:00:00 2018-03-23 \n2018-03-23 01:00:00 2018-03-23 \n2018-03-23 02:00:00 2018-03-23 \n2018-03-23 03:00:00 2018-03-23 \n2018-03-23 04:00:00 2018-03-23 \n... ... \n2022-01-26 19:00:00 2022-01-26 \n2022-01-26 20:00:00 2022-01-26 \n2022-01-26 21:00:00 2022-01-26 \n2022-01-26 22:00:00 2022-01-26 \n2022-01-26 23:00:00 2022-01-26 \n\n[31296 rows x 7 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>flow</th>\n <th>rNOx</th>\n <th>rO2</th>\n <th>temp</th>\n <th>rSO2</th>\n <th>rsmoke</th>\n <th>days</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2018-03-23 00:00:00</th>\n <td>244136.19</td>\n <td>24.212548</td>\n <td>7.700</td>\n <td>51.400</td>\n <td>0.752494</td>\n <td>1.014598</td>\n <td>2018-03-23</td>\n </tr>\n <tr>\n <th>2018-03-23 01:00:00</th>\n <td>234599.89</td>\n <td>25.348257</td>\n <td>7.800</td>\n <td>51.300</td>\n <td>0.642777</td>\n <td>0.989539</td>\n <td>2018-03-23</td>\n </tr>\n <tr>\n <th>2018-03-23 02:00:00</th>\n <td>249264.88</td>\n <td>17.562606</td>\n <td>7.300</td>\n <td>54.900</td>\n <td>1.823513</td>\n <td>1.137605</td>\n <td>2018-03-23</td>\n </tr>\n <tr>\n <th>2018-03-23 03:00:00</th>\n <td>229360.17</td>\n <td>20.513299</td>\n <td>7.500</td>\n <td>52.700</td>\n <td>1.650563</td>\n <td>1.136867</td>\n <td>2018-03-23</td>\n </tr>\n <tr>\n <th>2018-03-23 04:00:00</th>\n <td>236416.45</td>\n <td>15.354987</td>\n <td>7.200</td>\n <td>55.100</td>\n <td>1.379341</td>\n <td>1.128551</td>\n <td>2018-03-23</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>2022-01-26 19:00:00</th>\n <td>255639.10</td>\n <td>1.859704</td>\n <td>15.719</td>\n <td>36.720</td>\n <td>1.588630</td>\n <td>0.932774</td>\n <td>2022-01-26</td>\n </tr>\n <tr>\n <th>2022-01-26 20:00:00</th>\n <td>253412.80</td>\n <td>1.449961</td>\n <td>15.580</td>\n <td>36.812</td>\n <td>1.587185</td>\n <td>0.933383</td>\n <td>2022-01-26</td>\n </tr>\n <tr>\n <th>2022-01-26 21:00:00</th>\n <td>261648.90</td>\n <td>1.853027</td>\n <td>15.595</td>\n <td>36.948</td>\n <td>1.597107</td>\n <td>0.933327</td>\n <td>2022-01-26</td>\n </tr>\n <tr>\n <th>2022-01-26 22:00:00</th>\n <td>271429.70</td>\n <td>1.723446</td>\n <td>15.532</td>\n <td>37.160</td>\n <td>1.581778</td>\n <td>0.934369</td>\n <td>2022-01-26</td>\n </tr>\n <tr>\n <th>2022-01-26 23:00:00</th>\n <td>272750.00</td>\n <td>1.374762</td>\n <td>15.435</td>\n <td>37.279</td>\n <td>1.560663</td>\n <td>0.934365</td>\n <td>2022-01-26</td>\n </tr>\n </tbody>\n</table>\n<p>31296 rows × 7 columns</p>\n</div>"
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hourly_data_ffill = hourly_data.ffill()\n",
"hourly_data_ffill"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 19,
"outputs": [
{
"data": {
"text/plain": " flow rNOx rO2 temp rSO2 rsmoke \\\n2018-03-23 00:00:00 244136.19 24.212548 7.700 51.400 0.752494 1.014598 \n2018-03-23 01:00:00 234599.89 25.348257 7.800 51.300 0.642777 0.989539 \n2018-03-23 02:00:00 249264.88 17.562606 7.300 54.900 1.823513 1.137605 \n2018-03-23 03:00:00 229360.17 20.513299 7.500 52.700 1.650563 1.136867 \n2018-03-23 04:00:00 236416.45 15.354987 7.200 55.100 1.379341 1.128551 \n... ... ... ... ... ... ... \n2022-01-26 19:00:00 255639.10 1.859704 15.719 36.720 1.588630 0.932774 \n2022-01-26 20:00:00 253412.80 1.449961 15.580 36.812 1.587185 0.933383 \n2022-01-26 21:00:00 261648.90 1.853027 15.595 36.948 1.597107 0.933327 \n2022-01-26 22:00:00 271429.70 1.723446 15.532 37.160 1.581778 0.934369 \n2022-01-26 23:00:00 272750.00 1.374762 15.435 37.279 1.560663 0.934365 \n\n days \n2018-03-23 00:00:00 2018-03-23 \n2018-03-23 01:00:00 2018-03-23 \n2018-03-23 02:00:00 2018-03-23 \n2018-03-23 03:00:00 2018-03-23 \n2018-03-23 04:00:00 2018-03-23 \n... ... \n2022-01-26 19:00:00 2022-01-26 \n2022-01-26 20:00:00 2022-01-26 \n2022-01-26 21:00:00 2022-01-26 \n2022-01-26 22:00:00 2022-01-26 \n2022-01-26 23:00:00 2022-01-26 \n\n[31296 rows x 7 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>flow</th>\n <th>rNOx</th>\n <th>rO2</th>\n <th>temp</th>\n <th>rSO2</th>\n <th>rsmoke</th>\n <th>days</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2018-03-23 00:00:00</th>\n <td>244136.19</td>\n <td>24.212548</td>\n <td>7.700</td>\n <td>51.400</td>\n <td>0.752494</td>\n <td>1.014598</td>\n <td>2018-03-23</td>\n </tr>\n <tr>\n <th>2018-03-23 01:00:00</th>\n <td>234599.89</td>\n <td>25.348257</td>\n <td>7.800</td>\n <td>51.300</td>\n <td>0.642777</td>\n <td>0.989539</td>\n <td>2018-03-23</td>\n </tr>\n <tr>\n <th>2018-03-23 02:00:00</th>\n <td>249264.88</td>\n <td>17.562606</td>\n <td>7.300</td>\n <td>54.900</td>\n <td>1.823513</td>\n <td>1.137605</td>\n <td>2018-03-23</td>\n </tr>\n <tr>\n <th>2018-03-23 03:00:00</th>\n <td>229360.17</td>\n <td>20.513299</td>\n <td>7.500</td>\n <td>52.700</td>\n <td>1.650563</td>\n <td>1.136867</td>\n <td>2018-03-23</td>\n </tr>\n <tr>\n <th>2018-03-23 04:00:00</th>\n <td>236416.45</td>\n <td>15.354987</td>\n <td>7.200</td>\n <td>55.100</td>\n <td>1.379341</td>\n <td>1.128551</td>\n <td>2018-03-23</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>2022-01-26 19:00:00</th>\n <td>255639.10</td>\n <td>1.859704</td>\n <td>15.719</td>\n <td>36.720</td>\n <td>1.588630</td>\n <td>0.932774</td>\n <td>2022-01-26</td>\n </tr>\n <tr>\n <th>2022-01-26 20:00:00</th>\n <td>253412.80</td>\n <td>1.449961</td>\n <td>15.580</td>\n <td>36.812</td>\n <td>1.587185</td>\n <td>0.933383</td>\n <td>2022-01-26</td>\n </tr>\n <tr>\n <th>2022-01-26 21:00:00</th>\n <td>261648.90</td>\n <td>1.853027</td>\n <td>15.595</td>\n <td>36.948</td>\n <td>1.597107</td>\n <td>0.933327</td>\n <td>2022-01-26</td>\n </tr>\n <tr>\n <th>2022-01-26 22:00:00</th>\n <td>271429.70</td>\n <td>1.723446</td>\n <td>15.532</td>\n <td>37.160</td>\n <td>1.581778</td>\n <td>0.934369</td>\n <td>2022-01-26</td>\n </tr>\n <tr>\n <th>2022-01-26 23:00:00</th>\n <td>272750.00</td>\n <td>1.374762</td>\n <td>15.435</td>\n <td>37.279</td>\n <td>1.560663</td>\n <td>0.934365</td>\n <td>2022-01-26</td>\n </tr>\n </tbody>\n</table>\n<p>31296 rows × 7 columns</p>\n</div>"
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hourly_data_bfill = hourly_data.bfill()\n",
"hourly_data_bfill"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 20,
"outputs": [],
"source": [
"hourly_data_fixed = (hourly_data_ffill[num_cols] + hourly_data_ffill[num_cols]) / 2"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 21,
"outputs": [
{
"data": {
"text/plain": " flow rNOx rO2 temp rSO2 rsmoke \\\n2020-12-01 12:00:00 49432.59 1.35584 19.1 34.7 0.124794 0.490263 \n\n days \n2020-12-01 12:00:00 2020-12-01 ",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>flow</th>\n <th>rNOx</th>\n <th>rO2</th>\n <th>temp</th>\n <th>rSO2</th>\n <th>rsmoke</th>\n <th>days</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2020-12-01 12:00:00</th>\n <td>49432.59</td>\n <td>1.35584</td>\n <td>19.1</td>\n <td>34.7</td>\n <td>0.124794</td>\n <td>0.490263</td>\n <td>2020-12-01</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hourly_data_fixed['days'] = hourly_data_fixed.index.astype(str).to_series().apply(lambda x:x.split(' ')[0]).values\n",
"hourly_data_fixed[hourly_data_fixed.index=='2020-12-01 12:00:00']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 特征工程将每天每小时的数据平铺开作为当天的24*6个特征"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 22,
"outputs": [
{
"data": {
"text/plain": "['0_flow',\n '0_rNOx',\n '0_rO2',\n '0_temp',\n '0_rSO2',\n '0_rsmoke',\n '1_flow',\n '1_rNOx',\n '1_rO2',\n '1_temp',\n '1_rSO2',\n '1_rsmoke',\n '2_flow',\n '2_rNOx',\n '2_rO2',\n '2_temp',\n '2_rSO2',\n '2_rsmoke',\n '3_flow',\n '3_rNOx',\n '3_rO2',\n '3_temp',\n '3_rSO2',\n '3_rsmoke',\n '4_flow',\n '4_rNOx',\n '4_rO2',\n '4_temp',\n '4_rSO2',\n '4_rsmoke',\n '5_flow',\n '5_rNOx',\n '5_rO2',\n '5_temp',\n '5_rSO2',\n '5_rsmoke',\n '6_flow',\n '6_rNOx',\n '6_rO2',\n '6_temp',\n '6_rSO2',\n '6_rsmoke',\n '7_flow',\n '7_rNOx',\n '7_rO2',\n '7_temp',\n '7_rSO2',\n '7_rsmoke',\n '8_flow',\n '8_rNOx',\n '8_rO2',\n '8_temp',\n '8_rSO2',\n '8_rsmoke',\n '9_flow',\n '9_rNOx',\n '9_rO2',\n '9_temp',\n '9_rSO2',\n '9_rsmoke',\n '10_flow',\n '10_rNOx',\n '10_rO2',\n '10_temp',\n '10_rSO2',\n '10_rsmoke',\n '11_flow',\n '11_rNOx',\n '11_rO2',\n '11_temp',\n '11_rSO2',\n '11_rsmoke',\n '12_flow',\n '12_rNOx',\n '12_rO2',\n '12_temp',\n '12_rSO2',\n '12_rsmoke',\n '13_flow',\n '13_rNOx',\n '13_rO2',\n '13_temp',\n '13_rSO2',\n '13_rsmoke',\n '14_flow',\n '14_rNOx',\n '14_rO2',\n '14_temp',\n '14_rSO2',\n '14_rsmoke',\n '15_flow',\n '15_rNOx',\n '15_rO2',\n '15_temp',\n '15_rSO2',\n '15_rsmoke',\n '16_flow',\n '16_rNOx',\n '16_rO2',\n '16_temp',\n '16_rSO2',\n '16_rsmoke',\n '17_flow',\n '17_rNOx',\n '17_rO2',\n '17_temp',\n '17_rSO2',\n '17_rsmoke',\n '18_flow',\n '18_rNOx',\n '18_rO2',\n '18_temp',\n '18_rSO2',\n '18_rsmoke',\n '19_flow',\n '19_rNOx',\n '19_rO2',\n '19_temp',\n '19_rSO2',\n '19_rsmoke',\n '20_flow',\n '20_rNOx',\n '20_rO2',\n '20_temp',\n '20_rSO2',\n '20_rsmoke',\n '21_flow',\n '21_rNOx',\n '21_rO2',\n '21_temp',\n '21_rSO2',\n '21_rsmoke',\n '22_flow',\n '22_rNOx',\n '22_rO2',\n '22_temp',\n '22_rSO2',\n '22_rsmoke',\n '23_flow',\n '23_rNOx',\n '23_rO2',\n '23_temp',\n '23_rSO2',\n '23_rsmoke']"
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"feature_cols = [f\"{x}_{y}\" for x in range(24) for y in num_cols]\n",
"feature_cols"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 23,
"outputs": [
{
"data": {
"text/plain": " flow \\\ndays \n2018-03-23 [244136.19, 234599.89, 249264.88, 229360.17, 2... \n2018-03-24 [234070.07, 235778.62, 231371.79, 234002.61, 2... \n2018-03-25 [228939.37, 232613.69, 229586.17, 235035.84, 2... \n2018-03-26 [231112.06, 225984.7, 224547.59, 221822.01, 21... \n2018-03-27 [226140.95, 219510.17, 215491.43, 205450.35, 2... \n... ... \n2022-01-22 [217544.3, 223416.0, 221987.6, 216571.4, 21647... \n2022-01-23 [204086.4, 213480.5, 207928.1, 210432.4, 20739... \n2022-01-24 [196331.5, 204396.6, 209247.7, 208345.4, 20784... \n2022-01-25 [241509.4, 251172.7, 222005.2, 216005.8, 21869... \n2022-01-26 [263819.8, 263171.3, 260461.9, 257509.9, 25479... \n\n rNOx \\\ndays \n2018-03-23 [24.212547548922526, 25.348256763471422, 17.56... \n2018-03-24 [21.236174270928696, 21.840986084108295, 21.63... \n2018-03-25 [17.854300390828886, 18.93070026209273, 18.963... \n2018-03-26 [25.934359751728444, 21.81253685318773, 21.535... \n2018-03-27 [11.968345200357508, 21.178438475476018, 26.25... \n... ... \n2022-01-22 [3.045354822347651, 2.8669384829826425, 3.2684... \n2022-01-23 [0.5965432853216215, 0.7573690670940121, 0.493... \n2022-01-24 [11.031038246691466, 11.518845457518038, 13.18... \n2022-01-25 [9.760638960096678, 9.68924708625155, 13.61718... \n2022-01-26 [3.085553795959118, 2.6547312605083198, 2.1764... \n\n rO2 \\\ndays \n2018-03-23 [7.7, 7.8, 7.3, 7.5, 7.2, 7.7, 7.3, 7.0, 6.2, ... \n2018-03-24 [7.4, 7.5, 7.4, 7.3, 7.5, 7.6, 7.5, 6.8, 5.7, ... \n2018-03-25 [7.4, 7.6, 7.8, 8.1, 8.0, 7.6, 7.4, 6.9, 5.9, ... \n2018-03-26 [7.5, 7.4, 7.5, 7.5, 7.5, 7.1, 7.0, 7.0, 5.7, ... \n2018-03-27 [6.9, 7.4, 7.5, 7.6, 7.6, 7.2, 7.3, 6.6, 5.7, ... \n... ... \n2022-01-22 [7.756, 7.856, 7.885, 8.05, 8.674, 8.493, 8.32... \n2022-01-23 [7.43, 8.015, 7.812, 7.805, 7.938, 8.12, 8.161... \n2022-01-24 [9.172, 9.131, 8.842, 8.987, 9.201, 9.489, 9.1... \n2022-01-25 [12.177, 11.365, 10.113, 10.497, 10.501, 10.84... \n2022-01-26 [15.38, 15.623, 15.897, 15.944, 15.919, 15.777... \n\n temp \\\ndays \n2018-03-23 [51.4, 51.3, 54.9, 52.7, 55.1, 51.9, 51.7, 52.... \n2018-03-24 [51.3, 51.6, 51.7, 52.0, 52.0, 51.9, 51.7, 52.... \n2018-03-25 [52.6, 52.4, 52.3, 52.2, 52.0, 53.3, 55.5, 53.... \n2018-03-26 [52.4, 52.3, 52.2, 52.6, 52.4, 54.1, 55.2, 53.... \n2018-03-27 [55.7, 53.0, 52.0, 52.0, 51.8, 52.2, 52.3, 53.... \n... ... \n2022-01-22 [55.539, 55.741, 55.812, 55.564, 55.491, 54.76... \n2022-01-23 [55.836, 55.577, 55.237, 55.573, 55.512, 54.88... \n2022-01-24 [52.855, 53.409, 53.889, 54.006, 53.944, 53.07... \n2022-01-25 [49.297, 48.991, 50.58, 50.893, 50.853, 50.416... \n2022-01-26 [37.445, 37.231, 36.495, 35.936, 35.819, 35.78... \n\n rSO2 \\\ndays \n2018-03-23 [0.7524938826881673, 0.642777189290924, 1.8235... \n2018-03-24 [0.2791006216657959, 0.287292450812319, 0.2956... \n2018-03-25 [5.332282211556822, 3.009154456372548, 4.68796... \n2018-03-26 [2.0988220157892563, 1.7874981882009273, 1.796... \n2018-03-27 [0.21695389751746164, 0.3281261324263327, 0.39... \n... ... \n2022-01-22 [0.6289737165296122, 0.6122342875306045, 0.625... \n2022-01-23 [0.5333190389186867, 0.5314856001529347, 0.561... \n2022-01-24 [0.8258148706118134, 0.8324800807378938, 0.886... \n2022-01-25 [0.819102568494695, 0.8377693046259155, 0.9752... \n2022-01-26 [0.5047465592805648, 0.5081007278163424, 0.497... \n\n rsmoke \ndays \n2018-03-23 [1.0145984935121357, 0.9895385677241856, 1.137... \n2018-03-24 [0.92187781095672, 0.8956764642972298, 0.92074... \n2018-03-25 [0.8255350027370751, 0.8260423997885425, 0.809... \n2018-03-26 [0.9271904487422418, 0.944338665464641, 0.9108... \n2018-03-27 [1.1014582489348053, 1.0853402841794082, 0.978... \n... ... \n2022-01-22 [1.0424734269053981, 1.0191389782210867, 1.039... \n2022-01-23 [1.0451184794574826, 1.022569279389579, 1.0344... \n2022-01-24 [1.018401194529847, 0.9991105440570864, 1.0109... \n2022-01-25 [0.981306152448034, 0.9660540603723952, 0.9886... \n2022-01-26 [0.9335116655624799, 0.9270826921667246, 0.929... \n\n[1304 rows x 6 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>flow</th>\n <th>rNOx</th>\n <th>rO2</th>\n <th>temp</th>\n <th>rSO2</th>\n <th>rsmoke</th>\n </tr>\n <tr>\n <th>days</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2018-03-23</th>\n <td>[244136.19, 234599.89, 249264.88, 229360.17, 2...</td>\n <td>[24.212547548922526, 25.348256763471422, 17.56...</td>\n <td>[7.7, 7.8, 7.3, 7.5, 7.2, 7.7, 7.3, 7.0, 6.2, ...</td>\n <td>[51.4, 51.3, 54.9, 52.7, 55.1, 51.9, 51.7, 52....</td>\n <td>[0.7524938826881673, 0.642777189290924, 1.8235...</td>\n <td>[1.0145984935121357, 0.9895385677241856, 1.137...</td>\n </tr>\n <tr>\n <th>2018-03-24</th>\n <td>[234070.07, 235778.62, 231371.79, 234002.61, 2...</td>\n <td>[21.236174270928696, 21.840986084108295, 21.63...</td>\n <td>[7.4, 7.5, 7.4, 7.3, 7.5, 7.6, 7.5, 6.8, 5.7, ...</td>\n <td>[51.3, 51.6, 51.7, 52.0, 52.0, 51.9, 51.7, 52....</td>\n <td>[0.2791006216657959, 0.287292450812319, 0.2956...</td>\n <td>[0.92187781095672, 0.8956764642972298, 0.92074...</td>\n </tr>\n <tr>\n <th>2018-03-25</th>\n <td>[228939.37, 232613.69, 229586.17, 235035.84, 2...</td>\n <td>[17.854300390828886, 18.93070026209273, 18.963...</td>\n <td>[7.4, 7.6, 7.8, 8.1, 8.0, 7.6, 7.4, 6.9, 5.9, ...</td>\n <td>[52.6, 52.4, 52.3, 52.2, 52.0, 53.3, 55.5, 53....</td>\n <td>[5.332282211556822, 3.009154456372548, 4.68796...</td>\n <td>[0.8255350027370751, 0.8260423997885425, 0.809...</td>\n </tr>\n <tr>\n <th>2018-03-26</th>\n <td>[231112.06, 225984.7, 224547.59, 221822.01, 21...</td>\n <td>[25.934359751728444, 21.81253685318773, 21.535...</td>\n <td>[7.5, 7.4, 7.5, 7.5, 7.5, 7.1, 7.0, 7.0, 5.7, ...</td>\n <td>[52.4, 52.3, 52.2, 52.6, 52.4, 54.1, 55.2, 53....</td>\n <td>[2.0988220157892563, 1.7874981882009273, 1.796...</td>\n <td>[0.9271904487422418, 0.944338665464641, 0.9108...</td>\n </tr>\n <tr>\n <th>2018-03-27</th>\n <td>[226140.95, 219510.17, 215491.43, 205450.35, 2...</td>\n <td>[11.968345200357508, 21.178438475476018, 26.25...</td>\n <td>[6.9, 7.4, 7.5, 7.6, 7.6, 7.2, 7.3, 6.6, 5.7, ...</td>\n <td>[55.7, 53.0, 52.0, 52.0, 51.8, 52.2, 52.3, 53....</td>\n <td>[0.21695389751746164, 0.3281261324263327, 0.39...</td>\n <td>[1.1014582489348053, 1.0853402841794082, 0.978...</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>2022-01-22</th>\n <td>[217544.3, 223416.0, 221987.6, 216571.4, 21647...</td>\n <td>[3.045354822347651, 2.8669384829826425, 3.2684...</td>\n <td>[7.756, 7.856, 7.885, 8.05, 8.674, 8.493, 8.32...</td>\n <td>[55.539, 55.741, 55.812, 55.564, 55.491, 54.76...</td>\n <td>[0.6289737165296122, 0.6122342875306045, 0.625...</td>\n <td>[1.0424734269053981, 1.0191389782210867, 1.039...</td>\n </tr>\n <tr>\n <th>2022-01-23</th>\n <td>[204086.4, 213480.5, 207928.1, 210432.4, 20739...</td>\n <td>[0.5965432853216215, 0.7573690670940121, 0.493...</td>\n <td>[7.43, 8.015, 7.812, 7.805, 7.938, 8.12, 8.161...</td>\n <td>[55.836, 55.577, 55.237, 55.573, 55.512, 54.88...</td>\n <td>[0.5333190389186867, 0.5314856001529347, 0.561...</td>\n <td>[1.0451184794574826, 1.022569279389579, 1.0344...</td>\n </tr>\n <tr>\n <th>2022-01-24</th>\n <td>[196331.5, 204396.6, 209247.7, 208345.4, 20784...</td>\n <td>[11.031038246691466, 11.518845457518038, 13.18...</td>\n <td>[9.172, 9.131, 8.842, 8.987, 9.201, 9.489, 9.1...</td>\n <td>[52.855, 53.409, 53.889, 54.006, 53.944, 53.07...</td>\n <td>[0.8258148706118134, 0.8324800807378938, 0.886...</td>\n <td>[1.018401194529847, 0.9991105440570864, 1.0109...</td>\n </tr>\n <tr>\n <th>2022-01-25</th>\n <td>[241509.4, 251172.7, 222005.2, 216005.8, 21869...</td>\n <td>[9.760638960096678, 9.68924708625155, 13.61718...</td>\n <td>[12.177, 11.365, 10.113, 10.497, 10.501, 10.84...</td>\n <td>[49.297, 48.991, 50.58, 50.893, 50.853, 50.416...</td>\n <td>[0.819102568494695, 0.8377693046259155, 0.9752...</td>\n <td>[0.981306152448034, 0.9660540603723952, 0.9886...</td>\n </tr>\n <tr>\n <th>2022-01-26</th>\n <td>[263819.8, 263171.3, 260461.9, 257509.9, 25479...</td>\n <td>[3.085553795959118, 2.6547312605083198, 2.1764...</td>\n <td>[15.38, 15.623, 15.897, 15.944, 15.919, 15.777...</td>\n <td>[37.445, 37.231, 36.495, 35.936, 35.819, 35.78...</td>\n <td>[0.5047465592805648, 0.5081007278163424, 0.497...</td>\n <td>[0.9335116655624799, 0.9270826921667246, 0.929...</td>\n </tr>\n </tbody>\n</table>\n<p>1304 rows × 6 columns</p>\n</div>"
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"daily_emiss_data = hourly_data_fixed.groupby('days').agg(list)\n",
"daily_emiss_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 24,
"outputs": [],
"source": [
"def merge(x1, x2, x3, x4, x5, x6):\n",
" return sum([x1, x2, x3, x4, x5, x6], [])"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 25,
"outputs": [
{
"data": {
"text/plain": "Index(['flow', 'rNOx', 'rO2', 'temp', 'rSO2', 'rsmoke'], dtype='object')"
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"daily_emiss_data.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 26,
"outputs": [
{
"data": {
"text/plain": " 0_flow 0_rNOx 0_rO2 0_temp 0_rSO2 0_rsmoke \\\ndays \n2018-03-23 244136.19 234599.89 249264.88 229360.17 236416.45 236113.88 \n2018-03-24 234070.07 235778.62 231371.79 234002.61 224972.48 212372.97 \n2018-03-25 228939.37 232613.69 229586.17 235035.84 227862.00 233114.53 \n2018-03-26 231112.06 225984.70 224547.59 221822.01 219699.59 216640.45 \n2018-03-27 226140.95 219510.17 215491.43 205450.35 209391.39 202650.57 \n... ... ... ... ... ... ... \n2022-01-22 217544.30 223416.00 221987.60 216571.40 216474.30 217356.80 \n2022-01-23 204086.40 213480.50 207928.10 210432.40 207398.30 205233.10 \n2022-01-24 196331.50 204396.60 209247.70 208345.40 207840.00 203811.20 \n2022-01-25 241509.40 251172.70 222005.20 216005.80 218697.30 217854.50 \n2022-01-26 263819.80 263171.30 260461.90 257509.90 254797.00 255295.30 \n\n 1_flow 1_rNOx 1_rO2 1_temp ... 22_rO2 \\\ndays ... \n2018-03-23 243835.88 254941.06 263172.44 265048.62 ... 1.108454 \n2018-03-24 227885.84 252032.30 257109.81 252191.47 ... 1.139022 \n2018-03-25 224467.42 252500.03 240797.89 247235.60 ... 0.924819 \n2018-03-26 228010.51 255410.68 260558.74 253688.93 ... 0.849763 \n2018-03-27 207802.10 247740.44 254831.56 251766.47 ... 1.292986 \n... ... ... ... ... ... ... \n2022-01-22 215403.80 216200.90 224753.10 226410.50 ... 1.036403 \n2022-01-23 202121.80 203224.70 218894.90 238739.10 ... 1.024024 \n2022-01-24 204427.60 208614.90 204340.80 206945.40 ... 1.007186 \n2022-01-25 198460.70 199237.90 203870.10 224508.80 ... 0.936690 \n2022-01-26 255801.90 261359.50 267883.50 271961.30 ... 0.929660 \n\n 22_temp 22_rSO2 22_rsmoke 23_flow 23_rNOx 23_rO2 \\\ndays \n2018-03-23 1.149077 1.116597 1.070484 0.965953 1.005916 1.013989 \n2018-03-24 1.155038 1.161774 1.112287 0.960906 0.885317 0.892926 \n2018-03-25 0.975402 1.093083 0.968145 0.934758 0.900796 0.934184 \n2018-03-26 0.929620 0.984937 0.971792 0.953290 0.882604 0.943758 \n2018-03-27 1.344673 1.348917 1.185938 1.146697 1.155129 1.088680 \n... ... ... ... ... ... ... \n2022-01-22 1.037442 1.039126 1.045166 1.045001 1.037889 1.040583 \n2022-01-23 1.032411 1.035073 1.033276 1.035860 1.033211 1.031058 \n2022-01-24 1.008622 1.012684 1.021570 1.022493 1.015565 1.008908 \n2022-01-25 0.932645 0.935892 0.934892 0.933680 0.932380 0.928861 \n2022-01-26 0.929660 0.929660 0.929507 0.931257 0.932774 0.933383 \n\n 23_temp 23_rSO2 23_rsmoke \ndays \n2018-03-23 0.994012 0.978667 0.945210 \n2018-03-24 0.885317 0.870327 0.800264 \n2018-03-25 0.954531 0.960316 0.926621 \n2018-03-26 0.960906 0.995540 1.021165 \n2018-03-27 1.045839 0.937636 0.894574 \n... ... ... ... \n2022-01-22 1.039620 1.038964 1.041814 \n2022-01-23 1.025498 1.023998 1.022248 \n2022-01-24 0.994918 0.986704 0.987378 \n2022-01-25 0.928384 0.929663 0.932935 \n2022-01-26 0.933327 0.934369 0.934365 \n\n[1304 rows x 144 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>0_flow</th>\n <th>0_rNOx</th>\n <th>0_rO2</th>\n <th>0_temp</th>\n <th>0_rSO2</th>\n <th>0_rsmoke</th>\n <th>1_flow</th>\n <th>1_rNOx</th>\n <th>1_rO2</th>\n <th>1_temp</th>\n <th>...</th>\n <th>22_rO2</th>\n <th>22_temp</th>\n <th>22_rSO2</th>\n <th>22_rsmoke</th>\n <th>23_flow</th>\n <th>23_rNOx</th>\n <th>23_rO2</th>\n <th>23_temp</th>\n <th>23_rSO2</th>\n <th>23_rsmoke</th>\n </tr>\n <tr>\n <th>days</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2018-03-23</th>\n <td>244136.19</td>\n <td>234599.89</td>\n <td>249264.88</td>\n <td>229360.17</td>\n <td>236416.45</td>\n <td>236113.88</td>\n <td>243835.88</td>\n <td>254941.06</td>\n <td>263172.44</td>\n <td>265048.62</td>\n <td>...</td>\n <td>1.108454</td>\n <td>1.149077</td>\n <td>1.116597</td>\n <td>1.070484</td>\n <td>0.965953</td>\n <td>1.005916</td>\n <td>1.013989</td>\n <td>0.994012</td>\n <td>0.978667</td>\n <td>0.945210</td>\n </tr>\n <tr>\n <th>2018-03-24</th>\n <td>234070.07</td>\n <td>235778.62</td>\n <td>231371.79</td>\n <td>234002.61</td>\n <td>224972.48</td>\n <td>212372.97</td>\n <td>227885.84</td>\n <td>252032.30</td>\n <td>257109.81</td>\n <td>252191.47</td>\n <td>...</td>\n <td>1.139022</td>\n <td>1.155038</td>\n <td>1.161774</td>\n <td>1.112287</td>\n <td>0.960906</td>\n <td>0.885317</td>\n <td>0.892926</td>\n <td>0.885317</td>\n <td>0.870327</td>\n <td>0.800264</td>\n </tr>\n <tr>\n <th>2018-03-25</th>\n <td>228939.37</td>\n <td>232613.69</td>\n <td>229586.17</td>\n <td>235035.84</td>\n <td>227862.00</td>\n <td>233114.53</td>\n <td>224467.42</td>\n <td>252500.03</td>\n <td>240797.89</td>\n <td>247235.60</td>\n <td>...</td>\n <td>0.924819</td>\n <td>0.975402</td>\n <td>1.093083</td>\n <td>0.968145</td>\n <td>0.934758</td>\n <td>0.900796</td>\n <td>0.934184</td>\n <td>0.954531</td>\n <td>0.960316</td>\n <td>0.926621</td>\n </tr>\n <tr>\n <th>2018-03-26</th>\n <td>231112.06</td>\n <td>225984.70</td>\n <td>224547.59</td>\n <td>221822.01</td>\n <td>219699.59</td>\n <td>216640.45</td>\n <td>228010.51</td>\n <td>255410.68</td>\n <td>260558.74</td>\n <td>253688.93</td>\n <td>...</td>\n <td>0.849763</td>\n <td>0.929620</td>\n <td>0.984937</td>\n <td>0.971792</td>\n <td>0.953290</td>\n <td>0.882604</td>\n <td>0.943758</td>\n <td>0.960906</td>\n <td>0.995540</td>\n <td>1.021165</td>\n </tr>\n <tr>\n <th>2018-03-27</th>\n <td>226140.95</td>\n <td>219510.17</td>\n <td>215491.43</td>\n <td>205450.35</td>\n <td>209391.39</td>\n <td>202650.57</td>\n <td>207802.10</td>\n <td>247740.44</td>\n <td>254831.56</td>\n <td>251766.47</td>\n <td>...</td>\n <td>1.292986</td>\n <td>1.344673</td>\n <td>1.348917</td>\n <td>1.185938</td>\n <td>1.146697</td>\n <td>1.155129</td>\n <td>1.088680</td>\n <td>1.045839</td>\n <td>0.937636</td>\n <td>0.894574</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>2022-01-22</th>\n <td>217544.30</td>\n <td>223416.00</td>\n <td>221987.60</td>\n <td>216571.40</td>\n <td>216474.30</td>\n <td>217356.80</td>\n <td>215403.80</td>\n <td>216200.90</td>\n <td>224753.10</td>\n <td>226410.50</td>\n <td>...</td>\n <td>1.036403</td>\n <td>1.037442</td>\n <td>1.039126</td>\n <td>1.045166</td>\n <td>1.045001</td>\n <td>1.037889</td>\n <td>1.040583</td>\n <td>1.039620</td>\n <td>1.038964</td>\n <td>1.041814</td>\n </tr>\n <tr>\n <th>2022-01-23</th>\n <td>204086.40</td>\n <td>213480.50</td>\n <td>207928.10</td>\n <td>210432.40</td>\n <td>207398.30</td>\n <td>205233.10</td>\n <td>202121.80</td>\n <td>203224.70</td>\n <td>218894.90</td>\n <td>238739.10</td>\n <td>...</td>\n <td>1.024024</td>\n <td>1.032411</td>\n <td>1.035073</td>\n <td>1.033276</td>\n <td>1.035860</td>\n <td>1.033211</td>\n <td>1.031058</td>\n <td>1.025498</td>\n <td>1.023998</td>\n <td>1.022248</td>\n </tr>\n <tr>\n <th>2022-01-24</th>\n <td>196331.50</td>\n <td>204396.60</td>\n <td>209247.70</td>\n <td>208345.40</td>\n <td>207840.00</td>\n <td>203811.20</td>\n <td>204427.60</td>\n <td>208614.90</td>\n <td>204340.80</td>\n <td>206945.40</td>\n <td>...</td>\n <td>1.007186</td>\n <td>1.008622</td>\n <td>1.012684</td>\n <td>1.021570</td>\n <td>1.022493</td>\n <td>1.015565</td>\n <td>1.008908</td>\n <td>0.994918</td>\n <td>0.986704</td>\n <td>0.987378</td>\n </tr>\n <tr>\n <th>2022-01-25</th>\n <td>241509.40</td>\n <td>251172.70</td>\n <td>222005.20</td>\n <td>216005.80</td>\n <td>218697.30</td>\n <td>217854.50</td>\n <td>198460.70</td>\n <td>199237.90</td>\n <td>203870.10</td>\n <td>224508.80</td>\n <td>...</td>\n <td>0.936690</td>\n <td>0.932645</td>\n <td>0.935892</td>\n <td>0.934892</td>\n <td>0.933680</td>\n <td>0.932380</td>\n <td>0.928861</td>\n <td>0.928384</td>\n <td>0.929663</td>\n <td>0.932935</td>\n </tr>\n <tr>\n <th>2022-01-26</th>\n <td>263819.80</td>\n <td>263171.30</td>\n <td>260461.90</td>\n <td>257509.90</td>\n <td>254797.00</td>\n <td>255295.30</td>\n <td>255801.90</td>\n <td>261359.50</td>\n <td>267883.50</td>\n <td>271961.30</td>\n <td>...</td>\n <td>0.929660</td>\n <td>0.929660</td>\n <td>0.929660</td>\n <td>0.929507</td>\n <td>0.931257</td>\n <td>0.932774</td>\n <td>0.933383</td>\n <td>0.933327</td>\n <td>0.934369</td>\n <td>0.934365</td>\n </tr>\n </tbody>\n</table>\n<p>1304 rows × 144 columns</p>\n</div>"
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"daily_emiss_data['feature_cols'] = daily_emiss_data.apply(lambda row: merge(row['flow'], row['rNOx'], row['rO2'], row['temp'], row['rSO2'], row['rsmoke']), axis=1)\n",
"train_hourly_data = pd.DataFrame.from_records(np.array(daily_emiss_data['feature_cols'].values))\n",
"train_hourly_data.set_index(daily_emiss_data.index, inplace=True)\n",
"train_hourly_data.columns = feature_cols\n",
"train_hourly_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 27,
"outputs": [],
"source": [
"hourly_data_fixed['cNOx'] = hourly_data_fixed.flow * hourly_data_fixed.rNOx\n",
"hourly_data_fixed['cO2'] = hourly_data_fixed.flow * hourly_data_fixed.rO2\n",
"hourly_data_fixed['cSO2'] = hourly_data_fixed.flow * hourly_data_fixed.rSO2\n",
"hourly_data_fixed['csmoke'] = hourly_data_fixed.flow * hourly_data_fixed.rsmoke"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 28,
"outputs": [
{
"data": {
"text/plain": "(1304, 11)"
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"grp = hourly_data_fixed.groupby('days')\n",
"new_data = grp.agg({'cNOx': sum, 'cSO2':sum, 'cO2':sum, 'csmoke':sum,\n",
" 'flow':np.mean, 'rNOx':np.mean, 'rO2':np.mean, 'temp':np.mean,'rSO2':np.mean, 'rsmoke':np.mean}).reset_index()\n",
"new_data.shape"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 29,
"outputs": [
{
"data": {
"text/plain": "(1304, 155)"
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"final_hourly_data = train_hourly_data.reset_index().merge(new_data, how='left', on='days')\n",
"final_hourly_data.shape"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 30,
"outputs": [
{
"data": {
"text/plain": "(1108, 44)"
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"daily_data.shape"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 31,
"outputs": [],
"source": [
"import seaborn as sns\n",
"from scipy.stats import norm"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 32,
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\zhaojh\\Miniconda3\\envs\\py38\\lib\\site-packages\\seaborn\\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
" warnings.warn(msg, FutureWarning)\n"
]
},
{
"data": {
"text/plain": "<AxesSubplot:xlabel='燃料消耗量(吨)', ylabel='Density'>"
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": "<Figure size 640x480 with 1 Axes>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGtCAYAAAD6XRvKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6oklEQVR4nO3dd3hUZdrA4d+ZmUx6TwiQQOgtdOkgQkQRcEFBRVQUFJWy69oRXEVF12VVFte1oQIi4IcUEQREBBELvQYMBEJJg0B6z7Tz/TFkIJA6mdR57uuaC2bOOe88580kefJWRVVVFSGEEEIIJ6Sp7QCEEEIIIWqLJEJCCCGEcFqSCAkhhBDCaUkiJIQQQginJYmQEEIIIZyWJEJCCCGEcFqSCAkhhBDCaelqO4C6zGKxYDKZ0Gg0KIpS2+EIIYQQogJUVcVisaDT6dBoym7zkUSoDCaTiaioqNoOQwghhBB26NKlC3q9vsxzJBEqQ1EW2aVLF7RabS1HUzPMZjNRUVFOdc9VJXVmH6m3ypM6qzypM/vU93orir+81iCQRKhMRd1hWq22Xn4QqsIZ77mqpM7sI/VWeVJnlSd1Zp/6Xm8VGdYig6WFEEII4bQkERJCCCGE05JESAghhBBOSxIhIYQQQjgtSYSEEEII4bQkERJCCCGE05JESAghhBBOSxIhIYQQQjgtSYSEEEII4bQkERJCCCGE05JESAghhBBOSxIhIYQQQjgtSYSEEEII4bQkERJCCCGE05JESAghhBBOS1fbAQghhDPIzDeSXWAs8xxvNxd83V1qKCIhBEgiJIQQNSK7wMjB8xkYzZYSj7toNfQM95NESIgaJomQEELUEKPZQqGp5ERICFE7ZIyQEEIIIZyWJEJCCCGEcFqSCAkhhBDCaUkiJIQQQginJYmQEEIIIZyWJEJCCCGEcFqSCAkhhBDCaUkiJIQQQginJYmQEEIIIZyWJEJCCCGEcFqSCAkhhBDCaUkiJIQQQginJYmQEEIIIZyWJEJCCCGEcFqSCAkhhBDCaUkiJIQQQginJYmQEEIIIZyWJEJCCCGEcFqSCAkhhBDCaUkiJIQQQginJYmQEEIIIZyWJEJCCCGEcFqSCAkhhBDCaUkiJIQQQginVSuJUExMDOPGjaN3797MmzcPVVXLvWbv3r2MGDGCvn37snjx4gofmzp1Ku3bt7c9Jk2a5MhbEUIIIUQ9VuOJkMFgYOrUqURERLBmzRpiY2NZu3ZtmdekpaUxbdo0Ro0axcqVK9mwYQO7d+8u9xjAsWPH2LBhA/v27WPfvn189NFH1Xp/QgghhKg/ajwR2rlzJzk5OcyaNYvmzZvz7LPPsnr16jKvWb9+PcHBwcyYMYMWLVowffp02zVlHbt48SIA7dq1w8fHBx8fHzw8PKr3BoUQQghRb+hq+g1PnDhBt27dcHd3B6B9+/bExsaWec3Jkyfp168fiqIA0LVrV+bPn1/usaioKMxmM4MHDyYrK4uhQ4fy2muv4evrW6mYzWZzpc6vz4ru1ZnuuaqkzuzjbPWmWlQsFgsWi6XE4xaL9Zyy6sPZ6swRpM7sU9/rrTJx13gilJOTQ1hYmO25oihoNBoyMzNLTVBycnJo3bq17bmXlxfJycnlHjt79iwRERHMnDkTjUbDrFmzmD9/Pq+//nqlYo6KiqrU+Q2BM95zVUmd2ccZ6k2r1WJy9SExKZl8g6nEc9z1OpK9TKTGZ5X7Q9wZ6szRpM7s4wz1VuOJkFarRa/XF3vN1dWVgoKCUhOh668pOr+8Y0888QRPPPGE7djzzz/PU089VelEqEuXLmi12kpdU1+ZzWaioqKc6p6rSurMPs5Wb0kZBYTm6Cg0ldwi5KrTENIokKZ+4aWW4Wx15ghSZ/ap7/VWFH9F1Hgi5Ovry6lTp4q9lpubi4uLS5nXpKWllXh+Wceu5+PjQ3p6OgaD4YZkrCxarbZefhCqwhnvuaqkzuzjLPWmaKyt35pSRmZqNBoUjVKhunCWOnMkqTP7OEO91fhg6S5dunDkyBHb84SEBAwGQ5njdq6/Jjo6mpCQkHKPPfXUUxw+fNh2LCoqiuDg4EolQUIIIYRouGo8EerduzfZ2dmsW7cOgIULFzJgwAC0Wi05OTkYjcYbromMjOTAgQPs3r0bk8nEokWLGDRoULnH2rVrx9tvv82RI0f4+eefef/995kwYUKN3asQQggh6rYa7xrT6XTMnTuX5557jn//+9+YzWaWLVsGwOjRo5k9ezbDhg0rdk1AQAAzZ85kypQpeHl54eHhwVtvvVXusSeffJKkpCQmT55MYGAg999/P08++WTN3rAQQggh6qwaT4QAhg0bxo8//khUVBQ9e/YkICAAgO3bt5d6zYMPPsigQYOIjY2lT58+eHl5lXvMxcWFf/7zn/zzn/+s3hsSQgghRL1UK4kQQEhIiG0sT0WFh4cTHl7yjIqyjgkhhBBClEQ2XRVCCCGE05JESAghhBBOSxIhIYQQQjgtSYSEEEII4bQkERJCCCGE05JESAghhBBOSxIhIYQQQjgtSYSEEEII4bQkERJCCCGE05JESAghhBBOSxIhIYQQQjitWttrTAghGorMfCPZBcZSj2sUKDRaajAiIURFSSIkhBBVlF1g5OD5DIzmkpMdT72O8CCPGo5KCFERkggJIYQDGM0WCk0lJ0J6rbQGCVFXyRghIYQQQjgtSYSEEEII4bQkERJCCCGE05JESAghhBBOSxIhIYQQQjgtSYSEEEII4bQkERJCCCGE05JESAghhBBOSxIhIYQQQjgtSYSEEEII4bQkERJCCCGE05JESAghhBBOSxIhIYQQQjgtSYSEEEII4bQkERJCiDpCqcA5Go382BbCkXS1HYAQQgjQahTMFpWE9LxSz1EtKnov3xqMSoiGTxIhIYSoA7SKQq7BzKnkHIxmS8nnaCDMrYYDE6KBk0RICCHqEKPZQqGp5ETIRXrFhHA4+bYSQgghhNOSREgIIWpJZr6RlJzC2g5DCKcmXWNCCFELjiZksOZgAkazSpCXnl7hAUwLbF3bYQnhdCQREkKIGqSqKlv/TGZHzGXbayk5Bn44fhGtRiGyQ6NajE4I5yOJkBBC1KAjCRm2JOjmtkEMadeIqMRMvjucyMaoC/h7utCpiUyRF6KmyBghIYSoIWaLyrboSwBEdmjEiM5NcNdr6dMygNs7hQCwan+CjBsSogZJIiSEEDXkUHw6qbkGPPRabm4TVOzYiM5N6BzqQ6HJwg/HLtZShEI4H0mEhBCiBpgt1rFBADe3DcbVRVvsuFaj8LfItgBEX8giVVqFhKgRkggJIUQN2HHyEik51tagfq0CSjyneYAHHRt7owK/nU6p2QCFcFKSCAkhRA346crYoIFtgnDVaUs9b0h766yxg3Hp5BWaaiQ2IZyZJEJCCFHNcgtNHE3IAKBraNkzwloHe9LU1w2jWWXPubQaiE4I5yaJkBBCVLNjSZlYVGji60agl2uZ5yqKwqC21oHUe8+mYVHVmghRCKcliZAQQlSzIwmZAHQppzWoSOemvrjqNGTmG4lLzavO0IRwepIICSFENTKYLJy4mAVUPBHSaTV0auIDwNHEzGqLTQghiZAQQlSrmORsjGaVxj5uNPF1q/B1XcOsSdPxxEzpHhOiGkkiJIQQ1ejPC9bWoAFtAlEUpcLXtW7khbuLluxCE2dTcqsrPCGcniRCQghRTVRV5VRyNgD9WwVW6lqdRkNEU2v3WFSCdI8JUV0kERJCiGqSkmMg12DGRavQLsS70td3udI9diwpE7NFuseEqA6SCAkhRDU5n2rt0goP8ESvq/yP21ZBXnjoteQZzMSlyewxIaqDJEJCCFFNzl2Z+t4q2NOu67UahbaNvADroGshhOPVSiIUExPDuHHj6N27N/PmzUOtwIyIvXv3MmLECPr27cvixYsrfKyI0WjkL3/5C3v27HHIPQghRHnOXWkRah3sZXcZ7Rtbu9QkERKietR4ImQwGJg6dSoRERGsWbOG2NhY1q5dW+Y1aWlpTJs2jVGjRrFy5Uo2bNjA7t27yz12rc8//5yYmJhquSchhLheVoGRtFwDCtAy0L4WIYC2jbxRgAuZBWTmGx0WnxDCqsYToZ07d5KTk8OsWbNo3rw5zz77LKtXry7zmvXr1xMcHMyMGTNo0aIF06dPt11T1rEi586dY9GiRYSGhlbbfQkhxLXOX+kWa+zrhru+9E1Wy+PpqiPU3x2AkxelVUgIR9PV9BueOHGCbt264e5u/cZu3749sbGxZV5z8uRJ+vXrZ1uDo2vXrsyfP7/cY0VeffVVHn/8cX799Ve7YjabzXZdVx8V3asz3XNVSZ3ZpyHVm2pRsVgsWCwW22vnUnIACA/wwKJaQL3xnGuVdU7bRl4kpOcTfTEbuvg0iDqrKQ3pc1aT6nu9VSbuGk+EcnJyCAsLsz1XFAWNRkNmZia+viUvP5+Tk0Pr1q1tz728vEhOTi73GMCaNWvIycnh0UcftTsRioqKsuu6+swZ77mqpM7sU9/rTavVYnL1ITEpmXyDyfb6qQvWRMiTfC5cvEBTLw0XLlwgt9BQYjn+Xm6lnuOnWH+oxyRnY7Ko/Pnnn/X2F1Rtqe+fs9riDPVW44mQVqtFr9cXe83V1ZWCgoJSE6Hrryk6v7xjaWlpzJ8/n88//xydzv5b7dKlC1qt/U3b9YnZbCYqKsqp7rmqpM7s05DqLSmjgNAcHYUma0tOodFM6oETANzUthlN/N3x8vSkSZMmtnOu5+2mK/WcUFVly5mT5BnMnLyUx4SBnep9ndWUhvQ5q0n1vd6K4q+IGk+EfH19OXXqVLHXcnNzcXFxKfOatLS0Es8v69hbb73FPffcQ8eOHasUs1arrZcfhKpwxnuuKqkz+zSEelM01pZtzZVRlxez81EBX3cX/Dxd0SgaUIqfc72yztFg7R47kpDJ0Qu5PNQA6qymNYTPWW1whnqr8cHSXbp04ciRI7bnCQkJGAyGUluDSromOjqakJCQco99//33fPXVV/Tq1YtevXpx4MABpk6dysKFCx19W0IIYZOUkQ9A00psslqeoin4xy7IwopCOFKNJ0K9e/cmOzubdevWAbBw4UIGDBiAVqslJycHo/HG6aGRkZEcOHCA3bt3YzKZWLRoEYMGDSr32LZt21i/fj3r1q1j3bp1dO7cmTfffJP777+/xu5XCOF8LmRaE6Emfu4OK7MoETqdkk9uoamcs4UQFVXjXWM6nY65c+fy3HPP8e9//xuz2cyyZcsAGD16NLNnz2bYsGHFrgkICGDmzJlMmTIFLy8vPDw8eOutt8o9du2gbLCOHwoKCsLHx6cG7lQI4aySMqzjFJv6Oi4R8vfUE+DhQlqekf3n04ns2NhhZQvhzGo8EQIYNmwYP/74I1FRUfTs2ZOAgAAAtm/fXuo1Dz74IIMGDSI2NpY+ffrg5eVVoWPX+uqrrxx7I0IIcR2j2cKl7CuJkJ/jusYA2jTyYu+5dHadSZNESAgHqZVECCAkJMQ2lqeiwsPDCQ8Pr/QxIYSoKclZBVhU8NBr8XUvfRKIPdoEX0mEYlMdWq4Qzkw2XRVCCAe6cE23WNFCr47S+srmrccvZJGZJ9ttCOEIkggJIYQDJdkGSju2WwzAx92FMF89qgq7z0qrkBCOIImQEEI4kG3qvANnjF2rc2Nrq5B0jwnhGJIICSGEg1hUlYtZjp8xdq2Ixh4A7DmbVs6ZQoiKkERICCEc5HJ2IUazil6rIdBLX/4FdugYYk2ETlzMIjNfxgkJUVWSCAkhhIMULaTY2NcNjYMHShfxc9fRItADVYUD56VVSIiqkkRICCEcJDmrELAmQtWpTwvr2mt7z6ZX6/sI4QwkERJCCAe5dGV8UIi3a7W+T68W/gDslZljQlSZJEJCCOEgydnWFqFGPtXbItT7SiIUlZhJgdFcre8lREMniZAQQjiAwWQhPdcAQKNqbhFq5u9OiI8rRrPKobiMan0vIRo6SYSEEMIBLmUXoGLdWsPLtXp3L1IUhT4tAwHYd04GTAtRFZIICSGEAxStH9TI283hW2uUpI9tnJAkQkJUhSRCQgjhAEUzxkJ8qrdbrEjvltaZYwfj0jGZLTXynkI0RJIICSGEA1zMLGoRqplEqF0jb3zdXcgzmDmelFUj7ylEQySJkBBCOEByUddYNc8YK6LRKLbZY9I9JoT9JBESQogqKjCaSbsyYyykhhIhgN5FCyvKgGkh7CaJkBBCVNG51LwamzF2raJxQvvPpWGxqDX2vkI0JJIICSFEFZ1NyQVqtjUIoHNTX9xcNKTnGYm9nFOj7y1EQyGJkBBCVNG5K4lQTQ2ULqLXaejZ3DpOaI+MExLCLpIICSFEFZ1LrZ1ECK6OE5KFFYWwjyRCQghRRXFpeQAEe9ds1xhAn5ZFO9GnoaoyTkiIypJESAghqsBotpCUYZ06H+Slr/H379HcD51G4UJmAQnp+TX+/kLUd5IICSFEFcSl5WG2qOi1GnzcXWr8/T30OiJCfQHYf166x4SoLEmEhBCiCs5cto4PCvLWo6mBPcZKcnXfsfRaeX8h6jNJhIQQogrOXJm23qiGxgeVlGwVDZjeLwOmhai0mlv5SwghGqCiFqGamDGm1Sjo3dxIyihA0VxNiJr6WZOwU5dyOJ6USZi/B7610E0nRH0kiZAQQlTBmRRri1BwDSVC+UaV03HpXL/hfIi3K8nZhaw7lMQjA8IlERKigiQREkKIKqjJFqEiRpMF43WJUPNAD5KzCzmVnF1jcQjREMgYISGEsFNmnpHUK5ut1kSLUFlaBHoCV7f7EEJUjCRCQghhp9iibjEvV1x12lqNJfxKIhSfnkeB0VyrsQhRn0giJIQQdirqFmse6F7LkYC/hws+bjosKvyZlFXb4QhRb0giJIQQdiqaOt8swKOWIwFFUWytQkcTMms5GiHqD0mEhBDCTrYWoTqQCAG0CLImQkcSMmo3ECHqEUmEhBDCTkVT58PrSiIUaI3jWFIWpuvn1wshSiSJkBBC2MFiUTmXat11vi50jQGE+Ljh5qIh32Am+oJMoxeiIiQREkIIOyRl5mMwWdBrNYT41Mz2GuXRKIptGv0+2W5DiAqRREgIIexwLqWoNcgdraZ2NlstSasgSYSEqAxJhIQQwg5nU60DpVteSTzqipa2RCgdVVVrORoh6j5JhIQQwg7nr6zgXDRlva5oFuCBi1YhJafQNoZJCFE6SYSEEMIO5660CLWoYy1CLloNHZv4ANI9JkRFSCIkhBB2KNrTq2UdaxEC6BrmC8C+s5IICVEeSYSEEKKSzBaV+LR8AFoE1Y2p89fqFuYHSIuQEBUhiZAQQlRSUkY+BrMFvU5DU9/a32fsep1DfVAUOJeax6XsgtoOR4g6za5EaPDgwbz99tscOXLE0fEIIUSdVzQ+qHmAB5o6NHW+iLebC+1DvAHYfy69lqMRom6zKxF6++23MRqN/P3vfycyMpJ33nmH48ePOzo2IYSok85dGR/Uog6ODyrSu0UAIN1jQpTHrkRo4MCBvPrqq+zYsYMFCxag0+mYPHkyw4cP5/333yctTb7xhBAN19kriym2rIPjg4r0bimJkBAVUaUxQocPH+aHH35g48aNuLi4MGDAAFJTU5kyZYqj4hNCiDqnrk6dv1bvFv4A/JmURU6hqZajEaLu0tlz0dy5c/npp58wGo0MGzaMuXPn0rdvXzQaDUlJSYwcOdLRcQohRJ1xrg5PnS/SxNedMH93EtLzOXg+ncHtgms7JCHqJLsSoYKCAt566y369++PVqstdiwwMJAtW7Y4JDghhKhrTGYL8enWrrG63CIE1nFCCemJ7D+XJomQEKWwKxF66623Sj3m6upKSEiI3QEJIURdlpRRgNGs4qrT0LiO7Dpfmt4tAvj2UCJ7ZZyQEKWya4zQpk2bMJvNxV7bv38/L7zwgkOCEkKIuqpos9XwwLo5df5aReOEDsVlYDBZajkaIeomuxKh5557jvz8/GKvNWvWjK1btzokKCGEqKvqw9T5Im0aeRHgqafQZOFoQkZthyNEnVSprrGkpCQAVFXlwoULeHp62p7v2LGDRo0aOT5CB0hOTiYxMZF27drh5eVV2+EIIeox2x5jdXx8EICiKPRpEcAPxy+y52wava6sLSSEuKpSLUKRkZHceuutKIrCX/7yFyIjI4mMjGTYsGF89dVXvPHGGxUqJyYmhnHjxtG7d2/mzZuHqqrlXrN3715GjBhB3759Wbx4cYWPLVq0iDvvvJM5c+Zwyy23sHfv3orfsBBCXKc+TJ2/Vt9W1uRn95nUWo5EiLqpUonQiRMniI6ORlVV9u3bx4kTJ2yv/fDDD/Tr16/cMgwGA1OnTiUiIoI1a9YQGxvL2rVry7wmLS2NadOmMWrUKFauXMmGDRvYvXt3ucfOnj3LF198wcaNG9mwYQOPPvoo//3vfytzy0IIUcz51CszxupB1xhA35aBABw4n47RLOOEhLieXbPGWrZsecO0+YrauXMnOTk5zJo1C3d3d5599llef/11xo0bV+o169evJzg4mBkzZqAoCtOnT2f16tX069evzGNms5m5c+fauuw6dOjADz/8UOmYrx8Y3pAV3asz3XNVSZ3Zpz7Wm8lsIT7Nmgg183ezxa5aVCwWCxZLyYmGRbWA6ohzADRYVAulnILFYo2nKLa2wR74uruQmW8kKj6dbs38Kny/DUF9/JzVBfW93ioTt12J0ObNm+25DLC2KnXr1g13d+uOze3btyc2NrbMa06ePEm/fv1QFOsMja5duzJ//vxyj7Vp04Y2bdoAkJuby7Jly7j99tsrHXNUVFSlr6nvnPGeq0rqzD71qd4u5JgwWVT0WrhwJppkRUGr1WJy9SExKZl8Q8krOPt7udHUS8OFCxfILTRU6Zww71CSLyaXeo67Xkeyl4nU+CzbL4N2/hr25cO3fxxHbV8/WrIcrT59zuoSZ6g3uxKhqsjJySEsLMz2XFEUNBoNmZmZ+Pr6lnpN69atbc+9vLxITk4u91iRX375haeffpqwsDCmTp1a6Zi7dOlidwtYfWM2m4mKinKqe64qqTP71Md6yzh5GUihZZAXPXv0sL2elFFAaI6OwlKmqHu76fDy9KRJkyZlnuPp4UFggD/+GhfbH3fX8nS1jmYIaRyCsZQ/eF11GkIaBdLUL9z22m05Z9mXdJKEQje6d+9esZttIOrj56wuqO/1VhR/RdR4IqTVatHr9cVec3V1paCgoNRE6Ppris4v71iRgQMH8tlnn/Hmm2/yzjvvMHv27ErHXB8/CFXhjPdcVVJn9qlP9RaXbl02pGWQV7GYFY31DzpNKaMuNYoGlOLnqKpKwuk/OXP8EPGnjpGSeJ687EzMZjMarQ5Pb1+CQ8Np3r4LrSJ60rRVe2s5V8or9b00GhSNUiy+/q2DgZPsP5cOigZtHV//qDrUp89ZXeIM9VbhROjhhx/m008/xd3dnYkTJ5b41wrA0qVLyyzH19eXU6dOFXstNzcXFxeXMq+5dkf7a88v61gRnU5Hr169+Mc//sHUqVMrnQgJIQRcM1C6CjPGDIUFHPx5Iwd/2UzqhfgSz7GYTWRnpJKdkcqZ4wfZsfZLgsNa0P/WUYy+cxRQuV9MHZt44+WqI7vQRPSFLDqHlvxHpxDOqMKJ0N13321LMMaOHWv3G3bp0oXVq1fbnickJGAwGEptDSq6ZuPGjbbn0dHRtm08yjq2YcMGLl++zKOPPgo4R2YrhKg+Z22LKXpU+lqz2cy+nzexbc2X5GRY/3hz0bvSrkd/mrfvTJt2nejSJoy4LAtZ2dnkZKaRdCaG8yeOcuroXi4nnGP9lx/y28ZVDBn3CJ36RqKU1ix0HZ1WQ68W/uw4eZndZ1IlERLiGpVKhEr6f2X17t2b7Oxs1q1bx1133cXChQsZMGAAWq2WnJwcXF1db2jRiYyM5I033mD37t306tWLRYsWMWjQoHKPtWrVildffZVmzZrRsWNHPvjgA4YPH2537EII52bvGkKpyUl88eY7nDx+FAC/4MYMHDWeiL634OpuLcvbVUdQIy8umbJQ9O74BjYitFUHeg8bTUFuDlG7trFr8yrSUi6x9tN3OLBjC2OeeAHfwIotZNu3ZSA7Tl5mz9k0ptzcqlLxC9GQ1fgYIZ1Ox9y5c3nuuef497//jdlsZtmyZQCMHj2a2bNnM2zYsGLXBAQEMHPmTKZMmYKXlxceHh62jV/LOhYREcFrr73G22+/TXZ2NsOHD2fWrFk1e8NCiAbBaLaQYBsjVPFE6MjvW/lh6f8wFBbg6u7BLXdN5KbIO9G56Mu/+Ao3Ty96DxvDwGEjifp5Hev+bxnnTx7l039M5c7JT9Opz+Bi55c0cKFoYcV959KwWNQ6v0+aEDWlxhMhgGHDhvHjjz8SFRVFz549CQiwfoNu37691GsefPBBBg0aRGxsLH369Cm2VUZZx8aMGcOYMWOq72aEEE4hPi0Ps0XFQ6+lkbdrueerFgvbVi9i16ZVAER068kdk5/Fwy/Y7hhc9K7cOW4CTTsPZNUn/yYxNpo1H73F5aQ4Bo95EEVR0GoUzBaVhPS8YtcGeLjg7qIlI8/Iwbh02W5DiCvsSoQyMjJYvHgxzzzzDHFxcbz99tuoqsoLL7xQbCp7WUJCQmxjeSoqPDyc8PDwSh8TQoiqOmfbdd6z1MkiRUxGA99+8i9OHPgdgFvvfoip06dzMjm31OnzlREQ0pRJs99j+6pF7PphNTvXfUV6chJ/eexZtK46cg1mTiXn3LCSdLMAd2KSc/j9dIokQkJcYdfu8y+88AIxMTEAvPHGG3h7e+Pn58fLL7/s0OCEEKKuOJdStLVG2QOlTQYDqz54gxMHfkerc+GuJ2Yy/L7JDp+oodFqGXb/44ya9HcUjYaoXdtY+8nbmE3WRR2NZguFpuKP8CvbghyKz3BoLELUZ3a1CO3fv59NmzZRWFjIgQMH2LVrF1lZWXat2iyEEPVBRXadNxkMfPPf14g9dgCd3pX7n36Dlp26V2tcPYeMxNs/yJp87f+N5f+dyytv/qvEc1teSYSOxGegqmq5LVtCOAO7WoT8/f05fPgwmzdvpkOHDri5uXHy5EkCAwMdHZ8QQtQJ5SVCFouZbxfOI/bYAVz0rkx4Zm61J0FF2nbrw31PzUGrc+HYvt/46N23UFX1hvPC/N3RaRTS84zEXs6pkdiEqOvsahH6+9//zgsvvICLiwsLFizg0KFD/PWvf+Wll15ydHxCCFEnFCVCrYJvTIRUVWXTsk84sf83tDoX7n/mDVp07Faj8bXp2pt7//Yq37w/h1+2bgYPfwbf/Uixc3RaDS2CPDl9KYcfjl3krh6ld9d5u7ng6176QrdCNBR2JUJjxozhtttuQ6vV4urqSkZGBuvWraNly5aOjk8IIWpdgdFMUqZ16nyLwBsTobUrV7D7x3UAjHn8eVp07F6D0V3Vtlsfxk15llUL3+WX71bg5R9MzyEji58T7MXpSzlsP3GJJr7uJZbjotXQM9xPEiHhFOzqGgPw8PDA1dU6hdTPz0+SICFEg3U+NQ9VBR83HQGexdf/2b17Nwv/twCAYeMfJ6LvkJoP8Bq9h45g/COPA7D5qw9JOP1nseNtGlmXFzl9KYcCo/mGAdWFJssNs82EaMjsSoR+/PFHIiMj6dixo+3RoUMHOnbs6Oj4hBCi1tnGBwV7FRtgnJiYyDPPPIPFYqHHzbfR745xtRViMfc9/BgRfW7GYjax+n9v2rb0AGuLlk6rkFVgIi3XUItRClE32NU19tprr3H33Xdz7733lrlZqhBCNAS2ROiaqfMGg4Gnn36ajIwM2nboyOjJf8dSR2ZhKYrC2MefJznhPClJcaz56C0mzvw3Gq0WvU5D+xBvjidlcTYll0Cv8heHFKIhs6tFSFEUxo8fT4sWLQgNDS32EEKIhuZsinWGVcugq6vWv//++xw7dgxfX19e++c7uOjrVkLh6u7BfU/NQe/mQVzMMX5dv8J2rMuVTVeLEjwhnJldidDTTz/N3LlzSUtLK/9kIYSo52yLKQZZW4R+//13Fi1aBMBbb71Fo8ZNai22sgQ2DmPkI38D4Nf1K4iLOQZIIiTEtezqGlu/fj2nT58mMjKSVq1aFdvba+nSpQ4LTggh6oIzRVPng7xIT0+3LRVy//33c+utt96wr1dd0qV/JLFR+4n6YxvrPp1Hq39/RqewYDQKZOQbSc814O9Z8Q1ghWho7EqExo4d6+g4hBCiTsouMJKSUwhYW4TmzJ5JSkoKrVu3ZubMmbUcXcWMmDiDhFN/kn75At8v+4RZr7xGM38PzqflcTYlVxIh4dTsSoTuvvtu2/8NBgM6nbUYjcbu2fhCCFEnFXWLBXm5smvnz2zevBmtVsu//vUv3Nzcajm6inF192T0lOf48l8vsO/nzRy64w5aBfvZEqGe4f61HaIQtcauzCUnJ4dXXnmFAQMG0L17d2JiYhg8eDDHjh1zdHxCCFGrzlwZKN3c08Lrr78OwJQpU+jcuXNthlVpzdt3oc+wMQB89O5bNPOyznAruj8hnJVdidDs2bO5ePEi8+bNw93dHW9vbyZOnMgbb7zh6PiEEKJWFbUIZe9dQ1paGm3btmX69Om1HJV9ht4zmYBGTUi9fIkzP3+DRoH0PCMZebKekHBediVCf/zxB3PnzuXmm29Go9GgKApjxozh1KlTjo5PCCFq1dmUHDSXT5NweCeKojB37lz0+vo5pkbv6sY9TzwHwMEdGwk2JgNXB4ML4YzsSoRatWrFt99+C1jXFFIUhUOHDtG2bVuHBieEELUtNjkDlyNrABg/fjzdutXsZqqO1iaiB0NuH4mqqpj2rQSLmbOXJRESzsuuwdKvvPIKjz/+OCtWrCA3N5dnnnmGxMREPv74Y0fHJ4QQtUZVVc78tgFN7mX8AwJ55plnajskh3hk6lPs+eNX8i7FoTvzG2e8htV2SELUmkonQllZWeTl5fHqq69iNBq5fPkyQUFB3HrrrXh7e1dHjEIIUStOnInHHP0TCvDCizPx8fGp7ZAcwtfPn+H3P866z+ejO/kj6c16ynpCwmlVOBEyGo288cYbti4xf39/FEUhPT0djUZDTEwML774YrUFKoQQNe29+fNRzEZ0jVpz1+g7azsch+o5eDh7tn3PhbMxuJzYwtn+HSUREk6pwmOEFixYwC+//MInn3zCkSNH+PXXX9m5cydHjhzhk08+YfPmzSxcuLA6YxVCiBpz5MgRft++BYA2tz1UbNf5hkCj0XD7/U8AoD23hz9PnKjliISoHRVOhDZt2sRrr73GoEGD0Gq1VwvQaOjfvz+vvvoqq1atqpYghRCiJqmqyr/+9S8ATM161bs1gyqqefsuNOvSDwWVc9tXoKpqbYckRI2rcCJ06dIlunfvXurxrl27kpSU5IiYhBCiVm3atInDhw+jcXHF2HEELYM8azukajPigSdQNVrU5BgO7fm9tsMRosZVeIyQ2Wxm0qRJxVqDrmUymbBYLA4LTAghakNBQQHvvfceAN7dhpPr7tugE6GQJqF4RNxKftSP7Fj1Od169QOdjBUSzqPCidDbb79dnXEIIUSdsHjxYi5cuEDjxo25EDYAVBp0IgTQaehY9sf8QW7qBfZv38DgkeNqOyQhakyFE6FrN1oVQoiG6NKlS3z22WcAPDbtKf5xUIdOoxDm717LkVWvtmFB7OpwB/ojq9n53TJ6Db4NCKjtsISoEbJdvBBCXPHpp5+Sn59P165dadljEACh/u5czCogIT2vxEdSRh6Fxvo9LCA8wBNa9MXi04SC3Bx+/X5lbYckRI2xa2VpIYRoaBITE20zX5955hlOp1o3Ww31c+fg+QyM5pKTHU+9jvAgjxqLszrodRrCAjyJ7zgC1z2L2P3jd6Q+8Shh/uG1HZoQ1U5ahIQQAvjoo48wGo3069ePfv36cfbKRqTNAjwwmi0Umkp+lJYg1Tctgz2xhHTELaQVRkMh/7d0cW2HJESNkERICOH0zp49y7p16wB4+umnAThXlAg18PFBRVoFeYGiYOo0AoCN362VJVGEU5BESAjh9D744AMsFgtDhw617S5/bYuQM2ge4IFWUcj2aUmz9l0xGo189NFHtR2WENVOEiEhhFOLjo5m8+bNADz11FMAGM0W4tKsY4Qa+oyxItZxQtZ7bT74XgDWrVvHuXPnajEqIaqfJEJCCKf23//+F4CRI0fSoUMHAM6n5mKyqHjqtTTydq3N8GpUqyAvANLcmtBv4M2YzWb+97//1XJUQlQvSYSEEE7r8OHD7NixA61Wy1//+lfb66cv5QDQupFXg9tstSytgq0LR8ZezuWRKVMB63YjMTExtRmWENVKEiEhhNMqag0aM2YMLVu2tL1elAi1CfaqlbhqS/MAD7Qahcx8I67BzbnjjjtQVdVWT0I0RJIICSGc0uHDh9m1axc6nY7p06cXOxZ72TpQunUj50qEXLQamvlbB4cfisvgb3/7G4qisG3bNk6ePFnL0QlRPSQREkI4pY8//hiA0aNHExoaWuyYrWvMyVqE4Gr32MG4dFq1asUdd9wBwCeffFKbYQlRbSQREkI4nePHj7Nz5040Gg1PPPFEsWMWi0rs5StdY07WIgTQ6soGs4fiM1BVlalTrWOFtmzZQmxsbG2GJkS1kERICOF0ilo3Ro0aRXh48W0kLmQVkGcwo9MohAc6xxpC12oW4IFOo5CaY+BsSi7t2rXj1ltvRVVVPv3009oOTwiHk0RICOFUYmJi+Omnn1AUhSeffPKG40XdYi2CPHHROt+PSBetxpYA7jqTCsC0adMA2LhxI3FxcbUWmxDVwfm+y4UQTq2oNWj48OG0bt36huPOOmPsWkVjo3afSQMgIiKCwYMHY7FYWLhwYW2GJoTDSSIkhHAaZ86c4YcffgCwjX25njOPDypSdO+7z6Siqipwtb6+++472YNMNCiSCAkhnMann36KqqrceuuttG/fvsRzri6m6FmTodUpzQM80Gs1XM4utC0l0KNHD/r164fJZOLzzz+v5QiFcBxJhIQQTiE+Pp6NGzcCV8e8lCTW1jXmXSNx1UUuWg2dQ30Aa6tQkaJ6W716NZcuXaqV2IRwNEmEhBBOYfHixZjNZm6++WYiIiJKPCc910BqrgFw7hYhgB7N/YDiiVDv3r256aabMBqNfPnll7UUmRCOJYmQEKLBS09P59tvvwXgscceK/W801fGB4X6ueOh19VIbHVVz+b+gHXAdNE4IUVRmDJlCgArV64kKyur1uITwlEkERJCNHgrVqygoKCAiIgI+vTpU+p5Jy9mA9AuxHkHShfp2MQHV52GlJxC2wBygFtuuYW2bduSm5vLypUrazFCIRxDEiEhRIOWn5/P8uXLAXj00UfL3E0+JvlKItTYeccHFdHrNNwUbm0V2hV7tXtMURQeffRRAJYuXUphYWGtxCeEo0giJIRo0NatW0d6ejqhoaHcfvvtZZ574kqLUPsQSYQA+rcKBK6uJ1Rk1KhRNGnShJSUFL777rvaCE0Ih5FESAjRYJnNZpYsWQLApEmT0OlKH/ejqurVFiFJhADo17ooEbq6nhCAi4sLDz/8MACLFi3CbDbXSnxCOIIkQkKIBmvbtm3ExcXh6+vL2LFjyzz3cnYhGXlGNIpzL6Z4rW5hfri5aEjNNXDqUk6xY/feey++vr6cP3+ebdu21VKEQlSdJEJCiAZJVVW++OILACZMmICHR9kbqJ680hrUIsgTNxdttcdXH+h1GnqFBwDFp9EDeHp6cv/99wPwxRdfFGsxEqI+qZVEKCYmhnHjxtG7d2/mzZtXoW+gvXv3MmLECPr27cvixYsrfGzlypUMGjSIiIgIHn30UVkETAgnceDAAY4ePYper+fBBx8s9/yTMj6oRP1alZwIAUycOBFXV1eOHj3Kvn37ajo0IRyixhMhg8HA1KlTiYiIYM2aNcTGxrJ27doyr0lLS2PatGmMGjWKlStXsmHDBnbv3l3usf379/P+++/z73//m23btlFYWMi8efOq/R6FELVv0aJFANx1110EBQWVe/7VqfOSCF2rf+urA6YtluJ/tAYGBnL33XcDyLYbot6q8URo586d5OTkMGvWLJo3b86zzz7L6tWry7xm/fr1BAcHM2PGDFq0aMH06dNt15R17OzZs7z22msMGDCAxo0bM3bsWI4dO1bt9yiEqF2xsbH8/PPPKIrCpEmTKnRN0UDp9jJ1vpguoX64u2hJK2GcEMDkyZPRaDT8+uuvnDx5shYiFKJqanzp1BMnTtCtWzfc3d0BaN++PbGxsWVec/LkSfr162db/6Nr167Mnz+/3GP33ntvsXLOnj1LeHh4pWN2phkRRffqTPdcVVJn9qnOeitqDRo6dCjNmzcv9z0sFpWYZOsv+bbBHsXOVy0qFosFi8VS8rWqBdSaOgdAg0W1UMop5ZZTofexWO/bbDajVeCmcD9+O53KH6cv0ya4+Fir0NBQbrvtNrZs2cLnn3/Ov/71r5IDqyXy/Wmf+l5vlYm7xhOhnJwcwsLCbM8VRUGj0ZCZmYmvr2+p17Ru3dr23MvLi+Tk5HKPXSs9PZ2VK1fyzjvvVDrmqKioSl9T3znjPVeV1Jl9HF1v6enprF+/HoCbb76Zw4cPl3vNxRwT+UYzLhpIjz/F4UTrH1ZarRaTqw+JScnkG0wlXuvv5UZTLw0XLlwgt9BQ7eeEeYeSfDHZ7nIq8j7ueh3JXiZS47Mwm82EuxXyG/DDoTN0dU+/4fxBgwaxZcsWNm3axLBhwyrUFVnT5PvTPs5QbzWeCGm1WvR6fbHXXF1dKSgoKDURuv6aovPLO3at119/nR49ejBkyJBKx9ylSxe0WueYRWI2m4mKinKqe64qqTP7VFe9LViwAJPJRI8ePW5oFS7N1j+TgRTahnhzU88exY4lZRQQmqOj0FRy64m3mw4vT0+aNGlS7ed4ulpHM4Q0DsFYyh+85ZVTkfdx1WkIaRRIUz9rC7olIJ3lx/YQk26ha9duaDTFV+fu3r07GzduZPfu3ezbt49Zs2aVHFwtkO9P+9T3eiuKvyJqPBHy9fXl1KlTxV7Lzc3FxcWlzGvS0tJKPL+sY0VWr17N/v37WbdunV0xa7XaevlBqApnvOeqkjqzjyPrLTc3l2+++Qawbq5a0XJPXcoFoH1jnxuuUTTWVmtNKSMqNYoGlBo858q/9pZToffRaFA0iq0uujcPwFOvJT3PSMzlXCKa3vhH65QpU9i9ezdr165lxowZ+Pv7l1x4LZHvT/s4Q73V+GDpLl26cOTIEdvzhIQEDAZDqa1BJV0THR1NSEhIuccAjh49yj//+U/mz59fJ5trhRCOs3r1arKysmjZsiVDhw6t8HXHk6y7qHdsIgOlS+Ki1dD3ynYbv59OKfGcAQMG0LFjR/Lz8/m///u/mgxPiCqp8USod+/eZGdn21pnFi5cyIABA9BqteTk5GA0Gm+4JjIykgMHDrB7925MJhOLFi1i0KBB5R5LSUlh6tSpPP7440RERJCbm0tubm6N3asQouYYjUa+/PJLwLqdhqa05o4S/HnBmgiV1NIhrAa2sf4h+eupkhOhazdjXb58uWzGKuqNGk+EdDodc+fOZc6cOQwYMIAtW7bw3HPPATB69Gh++eWXG64JCAhg5syZTJkyhUGDBnHq1CmmTZtW7rHvv/+e1NRUFixYQM+ePW0PIUTDs2XLFi5cuEBQUBBjxoyp8HVZBUbi0vIAiGjqU13h1Xs3t7UmQvvOpVFQygCl4cOH06RJE1JTU2UzVlFv1PgYIYBhw4bx448/EhUVRc+ePQkIsK5cun379lKvefDBBxk0aBCxsbH06dMHLy+vco9NmjSpwmuICCHqL1VVbVPmH3zwQVxdXSt87Z9XusVC/dzx89CXc7bzatvIi0berlzKLuTg+XQGtLlxqIGLiwuPPPII//rXv1i8eDH33HNPpVrmhKgNtfYJDQkJYdiwYbYkqCLCw8OJjIwslgRV5JgQomHbtWsX0dHReHh42Pa/qqii8UGdpDWoTIqiMKioe6yUcUIA99xzDz4+Ppw7d67MP26FqCskVRdC1HtFrUHjxo3Dz8+vUtceT8oEpFusIgZd6R4rbcA0WDdjHT9+PHD16yJEXSaJkBCiXouOjub3339Hq9XyyCOPVPr6oq4xGShdnFLCa0UDpqMSM0nPLXkxRoCHHnoIFxcXDh06xKFDh6opQiEcQxIhIUS9tnjxYsA6UDc0NLRS1xYYzbb9s6Rr7CqtRsFsUUlIzyv2MJottAzyRFXh+6NJZObfOMsXoFGjRvzlL38B4IsvvqjJ0IWoNEmEhBD1VlJSEps2bQKwTd2ujFPJOZgtKn4eLjT1dXN0ePWWVlHINZg5eD6DPWfSij3C/K37RG4+dpHsgpITIbj69di+fTtnz56tkbiFsIckQkKIemvp0qWYzWb69etHREREpa+/dnxQ0cbN4iqj2UKhqfijZZAnACcvZpd5bevWrRkyZAiqqrJkyZIaiFYI+0giJISol7Kysli1ahVgX2sQXJ0xJuODKq5loCcaBVJzDSRm5Jd5btHXZd26daSklD7AWojaJImQEKJeWrlyJXl5ebRr1862mnxlHZMZY5Xm6qKleYAHYF1csSy9evWia9euGAwGli9fXhPhCVFpkggJIeodg8HA0qVLAZg8ebJd3VoGk4XjidYWoUberjcMDE5IzyMpI49CY8k7tDuz1o2s67XtP5de5nnXbrvx9ddfk5eXV+2xCVFZtbKytBBCVMWGDRtISUkhJCSEkSNH2lVG9IUsDGYLHnotien5JGUU3HCOp15HeJBHVcNtcNoGe7Et+hIHzqdjtqhoNaUnosOGDaN58+bExcWxdu1aHnrooRqMVIjySYuQEKJesVgstinzDz/8MHq9fdtiHI7PAKB5gAcGs3rDoOBCkwWjWVqDShLq74GbTkN2gck24Lw0167vtGTJEkwmU02EKESFSSIkhKhXfvnlF2JjY/Hy8uK+++6zu5xrEyFROVqNYuseK203+mvdfffd+Pv7k5iYyNatW6s7PCEqRRIhIUS9UrRtw/jx46u0t+ARSYSqpF2INwA7Yy6Xe667uzsPPPAAYP36qaparbEJURmSCAkh6o2jR4+yf/9+XFxcePjhh+0uJzPPyJmUXEASIXt1bGxNhPafTyerjIUVizzwwAO4urpy7Ngx9u3bV93hCVFhkggJIeqNotagO++8k0aNGtldzuGEDADC/N3xdJU5I/YI9HIlPMADs0Xltwp0jwUEBHD33XcDsu2GqFskERJC1AtxcXG28SWTJ0+uUlmH4zIA6NhE1g+qin6tAgD4+cSlCp0/adIkFEVh586dnDp1qjpDE6LCJBESQtQLS5YswWKxMHjwYNq2bVulsg7HW9e/6SSJUJX0ax0IwI6YyxUa9xMeHs5tt90GXN0sV4jaJomQEKLOS09P59tvvwXgscceq1JZqqpyJME65btTU+8qx+bMuoX54aHXcjm70LZdSXmKFlj8/vvvSU5Ors7whKgQSYSEEHXeihUrKCgooHPnzvTu3btKZZ1JySUt14Bep6FtI0mEqkKv0zCwTRAAO05WrHusW7du3HTTTRiNRr766qvqDE+ICpFESAhRp+Xn59v2qXr00UervEv83rPW/bF6NPNDr5MfgVU1tL110Pr2Co4TgquteitXriQnJ6da4hKiouSngBCiTvv2229JT08nLCzMNr6kKooSob4tA6pcloChHYIBOBSfQWpOYYWuueWWW2jVqhU5OTmsWrWqOsMTolySCAkh6iyTyWQbVDtp0iR0uqpPdS9KhPq0DKxyWQKa+LrTOdQHVYVtFWwV0mg0tpl/S5cuxWgsfx0iIaqLJEJCiDpry5YtJCQkEBAQwNixY6tcXkJ6HokZ+eg0Cj3D/aoeoABgWMcQALb+WfHBz6NHjyYoKIiLFy+yadOm6gpNiHJJIiSEqJNUVeWzzz4DYOLEibi7u1e5zKLWoC5hvnjoZSFFR7mtkzUR+vXUZfIN5gpdo9frmThxIiDbbojaJYmQEKJO+vXXXzl58iQeHh5MmDDBIWXuOVPULSbjgxypUxMfQv3cKTBa+O10+atMFxk/fjweHh7ExMTw+++/V2OEQpROEiEhRJ1U1Bp0//334+vr65Ay956TgdLVQVEUW6vQ1j8vVvg6X19f7rnnHkC23RC1RxIhIUSdc+jQIdvmqo888ohDyryUVcDZlFwUBW4Kl0TI0YrGCW2LvoTZUvFurocffhitVsvu3bs5fvx4dYUnRKkkERJC1Dmff/45AGPGjKnS5qrX2nUmFYCOjX3wdXdxSJniqr6tAvB205Gaa+DA+fQKXxcaGsqIESMA6zYqQtQ0SYSEEHXKqVOn2L59O4qi2LZjcIRfYi4DcHPbIIeVKa5y0Wps3WOboi5U6tqir/PmzZtJTEx0eGxClEUSISFEnVI0VuT222+nZcuWDilTVVV+PWUdxHtLu2CHlCluNKpLEwA2H7uApRLdYx07dqR///6YzWaWLl1aXeEJUSJJhIQQdUZiYiIbN24EYMqUKQ4rN/pCNpezC3F30XJTC3+HlSuKG9Q2CG9XHclZhRyIq3j3GFzddmP16tWkp1fuWiGqQhIhIUSd8eWXX2Iymejfvz+dO3d2WLk7T1m7xfq3DsRVp3VYuaI4V53W1j228WjluscGDBhAx44dycvLY9myZdURnhAlkkRICFEnpKen2/adevzxxx1a9i8nrYmQdItVv5F2do8pisKTTz4JwLJly2QzVlFjJBESQtQJy5Yto6CggM6dO9OvXz+HlZtbaGL/eev6QYMlEap2N7e72j12sJLdY7fddhutW7cmKyuLr7/+upoiFKI4SYSEELUuNzeX5cuXA9bWIEVRHFb27jOpGM0qzQLcaRHo4bByRcmu7R5bfySpUtdqNBpba+CSJUvIz893eHxCXE8SISFErfv666/JzMwkPDycW2+91aFlb7+yI/rgtsEOTbBE6cb0CAVgw5EkDCZLpa4dNWoUYWFhpKWlsXr16uoIT4hiJBESQtSqvLw8Fi9eDMDUqVPRah03mNliUfnxyo7oRa0UovoNbB1IsLcr6XlGdl5Zv6midDqdrVXoiy++wGAwVEeIQthIIiSEqFWrV68mLS2NZs2aMWrUKIeWfSg+ncvZhXi76hjQWhZSrCk6rYbR3ZoC8O2hyi+QeNdddxESEkJycjLr1q1zcHRCFCeJkBCi1hgMBhYtWgTAE088gYuLY7e++OGYdQPQWzs2Qq+TH3c16e4r3WNbo5PJzDdW6lq9Xs/kyZMB63YrJpPJ4fEJUUR+Mgghas2OHTtISUmhadOmjB492qFlq6rKD8etidAdnRs7tGxRvoimPrRt5IXBZOGHY5VbUwjg3nvvxd/fn/j4eNsim0JUB0mEhBC1orCwkA0bNgDW1iC9Xu/Q8v+8kEV8Wj5uLhqZNl8LFEXh7p7WVqHVBxIqfb2HhweTJk0C4JNPPpFWIVFtJBESQtSKb7/9lvT0dEJCQrj77rsdXv6WK91it7QLxkOvc3j5onxje4ShVRT2nUvnt1OXSUjPK/FRWtfZgw8+iJ+fH+fOnZNWIVFtJBESQtQ4g8HA559/Dlj3FHN0a5Cqqmy8sgP68AjpFqstjX3d6N86EICFO8+w50zaDY+D5zPILig5EfL09LTtTP/RRx9Jq5CoFpIICSFq3Lp167h48SJ+fn6MHTvW4eUfScgk9nIubi4amTZfy0Z3t265sf98OrmFJgpNlmIPo7nsdYYeeOAB/P39iYuLs3WlCuFIkggJIWqUwWDgk08+AeDOO+/E1dXV4e+x+kA8AHdENMbbzbEz0UTl9G0ZiK+7C3kGM8cvZFX6ek9PT9vO9B9//DFGY+VmoAlRHkmEhBA1atWqVVy4cIFGjRoRGRnp8PILTWY2HLF2i427Kczh5YvK0WoU+rQMAGDf2TS7ypgwYQKBgYHEx8ezfv16R4YnhCRCQoiak5+fb2sNqo6ZYgDboi+RmW+ksY+bLKJYR/RtGYACnEnJJTmroNLXe3h4MGXKFMDaKiSrTQtHkkRICFFjVqxYQUpKCqGhoYwbN65a3mPNlanad/cMRauRvcXqAn8PPR2b+ADwR2yqXWWMHz+eoKAgEhMTZbVp4VCSCAkhakROTg6fffYZAH/9618dvoo0QHJWATuu7G01rqd0i9UlA9pYZ48djk8nz1D52V/u7u62VqFPPvlEWoWEw0giJISoEV9++SWZmZm0bNmSO++8s1reY/nu85gtKr1b+NOmkVe1vIewT8tAT5r4umE0q+w7l25XGePHj6dRo0ZcuHCBlStXOjhC4awkERJCVLuMjAyWLFkCwN/+9jd0OscvcFhoMrN8TxwAkwe2dHj5omoURWHAlTWFdp9JxWxRK12Gm5sbM2bMAKytQrm5uQ6NUTgnSYSEENXuiy++ICcnhw4dOjB8+PBqeY/vj1wgNddAE183bpe1g+qkrmF+eOq1ZOYbOZaYaVcZY8eOpUWLFqSlpbF48WIHRyickSRCQohqdfnyZZYvXw7AU089hUbj+B87qqqy5I9zAEzsH45OKz/a6iIXrca20vQvMZdR1cq3Cul0Op5++mkAFi9eTEpKiiNDFE6oVn5axMTEMG7cOHr37s28efMq9M2wd+9eRowYQd++fW/4K6CsYwDnz5+nT58+DotfCFFxH374Ifn5+XTr1o0hQ4ZUy3vsP59OVGImrjoN9/duXi3vIRyjf6sg9DoNF7MKOJmcbVcZt99+O126dCEvL8+2HIMQ9qrxRMhgMDB16lQiIiJYs2YNsbGxrF27tsxr0tLSmDZtGqNGjWLlypVs2LCB3bt3l3sMID4+nieeeILMTPuaYYUQ9jt9+jSrV68G4IUXXkBRqmc6+wfbTwMwtmcoAZ6OX5tIOI67XkvfKwss/nLysl1lKIrCs88+C8A333xDfHy8w+ITzqfGE6GdO3eSk5PDrFmzaN68Oc8++6ztB2Vp1q9fT3BwMDNmzKBFixZMnz7ddk1ZxwCefPJJ7r333mq9JyFEyd577z3MZjPDhg3jpptuqpb3OBiXzs6Yy2g1CtNuaVMt7yEca2CbIHQahfNpecRezrGrjH79+jFw4ECMRiP//e9/HRyhcCaOn7pRjhMnTtCtWzfc3d0BaN++PbGxsWVec/LkSfr162f7a7Jr167Mnz+/3GMAn376KYqi8M4779gds9lstvva+qboXp3pnqtK6qxke/fuZceOHbYxHdfXj6PqbcHWGADu7t6UUD9XW3lZBSZyCkpfr0ajQIHJgsVifZTEolpAVevQOQAaLKqFUk4ptxyHxWIB1aKW+/VTLTeW46XX0qO5H/vOpfPj8YtM6N3Mrs/B008/ze+//87333/PpEmT6NChww3nyPenfep7vVUm7hpPhHJycggLu7rQmaIoaDQaMjMz8fX1LfWa1q1b2557eXmRnJxc7jGAZs2akZCQUKWYo6KiqnR9feSM91xVUmdXWSwW3njjDQCGDh1KRkYGhw8fLvHcqtTbqTQDO0+loVFgaEih7T20Wi0mVx/2n02lwFhyMuTn4UZEixAuXLhAbmHJi/P5e7nR1EtTp84J8w4l+WKy3eU4KhZ3vY5kLxOp8Vml/tIp+jokJiWTf90iim29LBxQ4PTlXLYdPUN3f7Ndv3T79evH7t27mTNnDi+99FKp3a/y/WkfZ6i3Gk+EtFrtDfsLubq6UlBQUGoidP01ReeXd8xRunTpglardWiZdZXZbCYqKsqp7rmqpM5utGHDBs6dO4eXlxevvPIKAQEBN5xT1XpTVZV3F+0D4O4eodwxqEux40kZBQTm6Cg0ldyi4e2mw8vTkyZNmtSbczxdraMZQhqHYCwlZyivHEfF4qrTENIokKZ+4SUHckVSRgGhpXwdeucksedcOmuPZfLQtH52jSGbM2cOo0eP5vjx42RkZDB06NBix+X70z71vd6K4q+IGk+EfH19OXXqVLHXcnNzy1xu39fXl7S0tBLPL+uYo2i12nr5QagKZ7znqpI6syooKLCN2XjiiScIDg4u83x7623rn8nsOpOGXqfh6WHtbihD0Vhbm0ubra9RNKDUw3Ou/GtvOQ6LRaNB0Sjlfu3K+joM6RDCgbgMjiZm8seZdAa3K/uzUpIWLVowadIkPvvsM9555x0GDx5c4ma+8v1pH2eotxofLN2lSxeOHDlie56QkIDBYCi1Naika6KjowkJCSn3mBCi5n311VdcuHCBJk2aMHHixGp5D4PJwlsb/wRgyqCWNAvwqJb3EWWr6hxAX3cX22rT72w5icWO1abBOikmKCiIuLg4li1bVsWohLOp8USod+/eZGdn23YPXrhwIQMGDECr1ZKTk4PRaLzhmsjISA4cOMDu3bsxmUwsWrSIQYMGlXtMCFGzLl26ZFvX5amnnsLNza1a3mfprnOcS80jyMuV6UNlplht0GoUzBaVhPS8Uh9JGXkUGksZ1X1FZIdGuOu1RCVmsuFokl2xeHp68swzzwDw8ccfk5pq3w73wjnVeCKk0+mYO3cuc+bMYcCAAWzZsoXnnnsOgNGjR/PLL7/ccE1AQAAzZ85kypQpDBo0iFOnTjFt2rRyjwkhata7775LXl4eXbt2ZfTo0dXyHhcy81nwk7V7/YXh7fByrfEefgFoFYVcg5mD5zPYcyatxMfR+CwM5rITIW83Fx7qa10E898/nKSgtMFP5bjrrruIiIggJyeH999/364yhHOqlZ8gw4YN48cffyQqKoqePXvaBlJu37691GsefPBBBg0aRGxsLH369MHLy6tCxwDCwsI4efJk9dyMEA1AZr6R7IIbW2Ov5e3mgq976ePv9u3bx4YNG1AUhVdeecXurTTKikVVVWauiSKn0EREUx/6tQokIT3vhvM0CuW2RAjHMJotpQ6o1msr9jUY37sZG45cIDEjn6W7zvHE4NblX3QdjUbD7NmzefDBB1m9ejUTJkygY8eOlS5HOJ9a+1MqJCSk0mN5wsPDCQ8veYZCWceEEGXLLjBy8HwGxlL+enfRaugZ7ldqImQymXjzzTcBuO++++jcuXO1xHIwLp0/YlPRaRVGd2vK/nPpJZbhqdcRHiTjhuoLNxctz97ejhdXH+WD7acZ1zOMQC/XSpfTs2dPRo4cyaZNm3j77bf58ssvqyFa0dDIzoRCCODqX/YlPUpLkIp8/fXXxMTE4Ovry9///vdqiSUlp5BvDyUCMKF3c4K8XO2OV9Q943qGEdHUh+wCE+9ssb8F/7nnnsPNzY19+/axceNGB0YoGipJhIQQVZKSkmKbLv/MM8/g7+/v8PewqCqrDiSQZzDT1M+Ne3uFlX+RqFe0GoXXR0cAsHJ/PEfiM+wqp2nTpjz55JMA/Otf/5J9JkW5JBESQlTJ/PnzycnJoVOnTtxzzz3V8h6/nUrh9KUcXLQKk/u3xEUrP7oakqJp+L1aBDC2RyiqCq+uP273dPpHH32U1q1bk5qayoIFCxwWp2iY5KeJEMJuBw8e5NtvvwXglVdeqZaF1+JSc/nxz4sA3Nm1KY19q2dKvqgd10/Df3hAOB56LUfiM/jol9O21zPzyx7Mfy29Xs+cOXMAWLVqFTExMdUVvmgAJBESQtilsLCQV155BYCxY8fSvXt3h79HZr6R5XvisKjQJdSXXuGO73YTtev6afixl3K5rZN1Is3/tp3mx+PJHDyfUe6sxuv17t2bsWPHArBo0aIS16gTAiQREkLY6eOPP+bMmTMEBQXx4osvOrx8o9nCst3nyS400djHjbE9Q+3ai0rUD9cOkO/dIoAwf3cKTBbWHEywe/D7888/j7+/PwkJCSxdutTBEYuGQhIhIUSlRUdH8/nnnwPWLrGytsixR9Hg6MSMfDz0Wh7qF46rrmHvdySu0igKd/cIRaPA8aQsohLtG/Ds7+/P888/D1gT94SEBEeGKRoISYSEEJViMpl4+eWXMZvNDB8+nNtvv92h5auqyreHEjmWmIlWUXigT3MCPG/cRFM0bE183bm5rXUT1tUHEkjPM9hVzujRo+nUqRMFBQXMmTMHVbVvALZouCQREkJUyuLFi4mOjsbX15eXX37Z4eUv+u0cf8SmogD39gqjVbBXudeIhunWDo0I8XElp9C6tpA9SYyiKEyePBk3Nzf++OMP/u///q8aIhX1mSRCQogKO3v2LP/73/8AeOmllwgODnZY2aqq8p+tMSz+4xwAf+nWlK5hfg4rX9Q/Oq2Ge29qhkaBnTEprD2YaFc5TZo04emnnwbgnXfe4fz58w6MUtR3kggJISrEbDbzj3/8A4PBwMCBAxkzZozDylZVlXd/PMn726ybqY7q0oR+rQIdVr6ov5r6uTM8ojEAc9Yf52xKrl3lPPDAA/Tt25f8/Hxmz56N2Wzf5q6i4ZFESAhRIV8vXcTBgwfx9PTk9ddfd9gMLqPZwktrovjw51gA/hbZhsgOjRxStmgYhrZvRLcwX3IKTcxYftCuHeo1Gg1vvfUWnp6eHDx4kCVLljg+0Otk5htt6yCV9KjM2kii+kgiJIQoV9ypP/lq0WeAdZZYaGioQ8rNNViYsvQAK/fHo1Hgzbs6M753M4eULRoOrUbhtdERBHjq+fNCFnO//9OuckJDQ5k1axYA77//frUvtFi0gfCeM2k3POxZG0lUD0mEhBBlKszPZdVHb2Mxmxk1ahSjR492SLlRiZk8/1Mqv51OxUOv5fNHevFQv3CHlC0anmBvV/4zvjsAy/fE8X974+wqZ+zYsdxyyy0YjUZeeuklDAb7ZqNVVGmbGcvGwHWHJEJCiDJt/upD0i9fJKRxE+bMmVPlLjGzReXzX89w36e7uZRrJszfnW+e7E9khxAHRSwaqlvaBfPMsHYA/GPdMXafSa10GYqi8MYbb+Dr60t0dDTz5893dJiinpFESAhRqmO7fybqj20oioaXXnsTb2/vqpWXmMndH/3OmxujMZhV+jR1ZcOMAXQOdeyCjKLheurWNtzZtQkmi8q0ZQfsGjzdqFEj/vnPfwLw5ZdfsnXrVkeHKeoRSYSEECXKuHyRTV/+F4Ahdz1A567d7S7rzOUc/vb1If7yv984mpCJt5uOt+6K4MUBfvi4uzgoYuEMFEXh3Xu70S3Ml/Q8Iw99vofEjPxKlxMZGcnkyZMBePnll4mPj3d0qKKekERICHEDY2EB33zwBoX5eYS27siQux6qdBkFRjM/HLvII4v2cuv8X9hwJAlVta4PtO3ZW7i/dzPZO0zYxc1FyxeTetMq2JPEjHwmfr6Hy9mFlS7nmWeeoXv37mRnZ/PMM89U+3ghUTdJIiSEKEZVVTYu+S/JcbF4ePsybvpstNqy9/lSVZXUnEL+iE3hs51nmPLlPnq8sZWpyw7wS8xlVBWGdWzEpqdu5oMJPWjk41ZDdyMaqiAvV5Y91pdQP3fOpORy36e7iE/Lq1QZLi4uzJ8/Hz8/P44fP868efOqKVpRl+lqOwAhRN2y76fviNq1DUWjYey02Wi9AohPz6MgxozBZOFSdiHpuQbS8wyk5xlJyzVwISOfXMONa7uE+Lhyd48wJvRpRnigZy3cjWjImvq5s+Lxvjzw2R7OpuQy9uM/+HJyHzo19alwGU2aNGHevHk8+eSTrFixgptuuomRI0dWY9SirpFESAhhE/vnYX78+lMAPHuPZclpHcaT0RW+PtTPnS6hvnRt5sst7YLp1MRHur9EtQoP9GTt9AE8smgvJy5mM+7jP3jzrs6MuymswmUMHjyYxx9/nM8++4yXX36Z8PBwIiIiqjFqUZdIIiSEkzOZLeyKTWXRj4c4+81cFIsFU1hPLof0BbOKAni76Qj1d6dlkCeNvN0I8NTj7+GCv6cefw89TXzdaOrnTqHJUmyRuJIGsXq7ueArA6SFA4X4uLHyyf7MWH6Q306n8NyqI/wRm8o/RnXEx63sbt0iTz31FNHR0fz2229Mnz6db775hpCQ0pd0yMw3lrkgokaBQqOsFVQfSCIkhJPKM5hYsSeOL347y4XUTFx/+xhNYQ6KXyhdRz9Oy8b+hPm5E+Clx1Ovo2+rAML8PcosMyWnkIPnM0pdLM5Fq6FnuJ8kQqLSymtX9HV34ctH+/Dhz6dZ8FMMaw4msO1EMs8Na0s7l/J3rdfpdMyfP58JEyYQGxvLtGnTWLZsGR4eJX/ms/IN7D2bbtvuw1WnKdb66anXER5U9veLqBskERLCyRSazHy16zwf/nya9DwjWMx4HFyGmpmAq6c3U2a/RUCjJnaXX7SSrhCOotUomC0qCellD4b2dnPhqVvb0r91IP/49hgnk7N5Zf2fBLhreCz7DPf0akZIGQP1vb29+eSTTxg/fjzR0dG8+OKLvDP/P5xJyePEhWxOXMzixMVsEtLzSczIx3DN59xFq+Dj5kKzAA9aBnlyU3N/SYTqCUmEhHASqqqyKeoib2+OJiHd2mUVHuBOk1PrOHIhGhe9Kw88M7dKSZAQ1UGrKOQazJxKzqlQa2PvFgFsfGoQX+22JvwpOQbe+TGGd36MoXOoD31bBtIuxIvmAZ54uepwddGQZzCTXWAkPs1C7wee48eP57Bt2za63fN3DJ1GlRuj0aySmmsgNdfA4fgMvjucSP9WgXRr5lduS6qoXZIICeEEzqbk8up3x/j1VApgnc313G3tSfp9LZ/+thWNRsP4v75MWJuO1R7LtV0c5U3LF+JalWlt1Gk1TB7YkvG9wvjo+z38nqxwOD6DY4lZHEvMKudqV7Td7kN/cAXaUz/j5R1AxOBRdGziQ/vG3rQM8kRR4HRyDiaLikVVySkwkZZn4FxKHqcvZROfns/vsan8HptKh8bejOzchCBv16pXgnA4SYSEaMAsFpVFv5/lnS0nKTRZ0Os0TL2lNdNuac13a1fx6aefAPD3F2YR2KV/tXdpXdvFoVpUTK4+JGUUoGis6ZEMMBWO5qrTMLSFO8/c1Z30fBM/HLvI0YQMzqXkcjGrkAKjmUKTBTcXDR56HSE+rrQO9qLDmAiO/+TGdysWYT64hvvG9mDc6P62chPS80hIy7d9z7h6aQn0cqVtI29u6xRCdr6RI4kZ/HDsIicuZnMqOYdhHRtxc7tgNDKTsk6RREiIBup8ai4vrDrK3nNpAAxqE8TcuzrTMsiTzZs3M3fuXABmzJjByDFj2XMmrdpjuraLo9BoIjEpmdAcHRqNdW1XGWAqqlOQlytD2gfj4+ZC35aBJZ5T1MUW5u+B2u95/PUWlixZwiuvvIKbmxujRpXfTQbWNY4Gtw+mS6gv6w4lcTI5my1/JnPqcg739WpGsJe0DtUVsrK0EA2MxaKydNc57ljwK3vPpeGh1/LW3Z356rE+tAzyZOPGjbzwwgtYLBbuueceZsyYUeMxFnVx5BtMFJostkdp4z+EcKSiz19Jj2s/g4qi8OKLLzJ+/HhUVeWll15i+/btlXqvRt5uPNw/nLE9QnHRKpy5nMtHP58ud+C3qDmSCAnRgMSn5fHQF3t49bvj5BvN9GsVwJanB/Ng33AURWHDhg28+OKLmM1m7r77bl577TVZ8FCIMiiKwquvvspf/vIXTCYTTz/9NL///nuly+jVIoC/Dm1LsLcrWQUmPvw5lt+ujNkTtUsSISEaAFVV+XpvHHcs2Mkfsam4uWh47S+dWDGlH80CrF1N69at46WXXsJisTBu3DjefPPNSg1WlnRJ1HWlfUarOihfo9Hwz3/+k9tuuw2j0ci0adP47ZfKtQwBBHu7MnVwa9o08sJgtjD72yjWHUqsUmyi6mSMkBD1WGa+kdhL2fzrh5PsPWsd49Ml1JeXR3UgzN+DpMx8vN1c2LZ5A//4xz9QVZX77ruPOXPm2MblVERF1nGRgc6iNpX2Gb12UL5Wq9j9GdXpdLz77rs8//zzbN26lbkvz2T0o0/TZdDwSpXjrtfySP8WrD+SyL5z6TzzzWEKTWbG925uV1yi6iQREqKeslhUlu0+zwfbT1FgtKDTKIzo3JjB7YJJTC8gMb0AnUbhxM9rWPLZxwDcf//9vPLKK5VKgqBi67jIQGdRm0r7jFosFtugfG83fYU+o6W1LOn1ev7zn//w2muvsXr1atZ9Pp/srEwGjLyvcrFqFO7r1Ywwf3e+PZTEzDVRFJosPNy/RaXKEY4hiZAQ9dDZlFxeWnOUPVdagcL83bmnZxiNfNwwmlVAxWwysmXpBxzYuQWA+x58mEenP0VSZkGxsirTklPWOi56rbQGidp3/WfUYrk6KN+tAoPxK9L6OfXZl8DVk9XLv2TbN1+Ql5XJrfc9hlKJPzBctBqevrUteq2GlfsTePW741zMLOCBvsVbhmRvvuoniZAQ9YjRbOHzX8+y4KcY29onwzs1pnfLgGJrkxTk5rDqf3M5F30YjUbLmEl/o2vkKPaeTb+hTGnJEeKqirZ+PvDYdHJUV35YsZBdP6wm7VISYx5/AVf3in0vaRWFPKOFAa2DSM018FP0JT7aEcvZlFyGdbRu9ip789UMSYSEqAdUVWXHycu8ufFPYi/nAnBz2yD+FtmG+GsWdQNIu5TEygVzSEmKQ+/mzotz/olbs87SkiNEJVSk9XPQyHvRe/qwcfH7nDz4B4vm/p37nppDYOOwCr+PyaIS2SEEUPgpOpnNxy5iMFm49UoyJKqfzBoToo47eTGbhxftZfKSfcRezsXfw4V37+3G0kf70NTPvdi5f+7dyedzZpCSFIe3fxDTX3ufnn0H1FLkQjR83QbexiOz3sXbL5CUpDi+eP1vxBzeXelyIjs0YnhEYwC2nbjET9HJqKrq6HBFCaRFSIg6Ki41j49/Oc3KffFYVOvu1pMHtmTG0DY3NJWbDAZ+/L9PObD9ewCatY1g7PTZNG3cuDZCF8KphLbuwJTX/sfqD98k/tRxVr7/Gql3P0SLqVMrVc4t7YLRKLD52EW2n7iERoG+rQKqKWpRRBIhIeqY40mZfPLLGTYeTcJy5Q/CEZ0b89KIDoQHet5wfsrFBL7+75skx8UCMPDO8Qy5+xE0sqGpEDXGyy+AiTPnsWXFJxzY/j0/rf2Kc8cPMOqx5/FpFFrhcm5uG4yiKGyKusBP0ZcI8XHjzbs6y8Kn1UgSISHqAJPZwq+nUljyxzl+iblse/2WdsH8NbINvVvc+Feh2Wxmzf8t54tPP8JYWICHty93PfEirbv0qsnQhRBXaHUujHz4bzRrG8GWZR9y+uSffPSPaUTe+xi9b/1LhWeVDWoThAJsjLrA8j1xqMDcMZ3RaiQZqg6SCAlRi2Iv57BqfwJrDyZwKbsQsE5nv7NrU6be0ppOTX1KvO7kyZO88sorREVFARDeoSt3PTkTH/+gGotdCFGyLv0j6dSlBxsXz+fIgb1sWf4RMYd3MfKRpwho1LRCZQxsE4S7i5Y1BxNYsSeOzDwj793XDTcXael1NEmEhHCwzHwj2QXGUo9fzCpgd2wa204kcyguw/Z6gKeeu7qHMmlAC5oHepCZb7xhLZPCwgKWL/6Cb5Z/idlsxtPLi2HjH6fLwNsrtYaJEKJ6+QUG88q891ny1XJ++Pozzh4/xCezn6DfHeMY9JcJ4OpVbhn9WwfStZkvc7//k41RF0jOKuDTiTcRKDvXO5QkQkI4WHaBkYPnM4qtQZKWa+BIQgZHEzKJS7ua3Gg1CkPaBXNvrzAiO4Sg12lKLMdiMXPo161sW7OUrDRr11nXPjfz1PMzuWhwLXWarxCi9mg0GvrdNobmHXvww1cfcub4QX7//v+I+uMn7nxoKq3H3FluGZEdGtE62Iupyw6w/3w6Yz78nc8e7kXHJiW3FovKk0RICAe4flNHo9lCaq6BqMRMjsRnFEt+FKB7Mz/u6hHKiM6NaeTjVmq5BpOZ4wf3sG3VF1xOOAeAT0Awtz8wlT4DhxAQ5MXFpKzquCUhhIMENg7jgef/ycmDu9j69SdkpCSz4r9vcnD7evrd+SBh7buVORh6YJsgvp0+kEeX7CMuLY+7PvyduXd15r5ezWrwLhouSYSEqISSur2u3dSxwGTmp+hLrDuUxKlL2bZZXwrQMsiTLmG+3NTcnyHtg9FoFAxmS4lL+Suo/P7rbyxZ/AXnTljHAbl5eDHwzvvpM2wMOr2+um9VCOFAiqLQ4aYBtO5yE7s2r+aPjSs5cewoJ44dpVnbCAaPeZCWET1LTYjaNPJi3YyBPL3yMDtjLvPi6qP8cTqF10ZH4OchPw+qQhIhISqhpG4vg9HE79HxxOUkEX0x68peX1Zh/u50C/OjS6gvPlfW/vF21ZW6hL/JZCRq1w7+2LSKC/FnAetMlD7DxjDwzvG4e0lzuBD1mYvelcFjHmTQsFEc3raGLRu+Jf7UcZa/O5uwNh3pO3wc7Xv0R6u78ddzgKeeJZN689GO08zfGsO6w0n8EZvKm3d15rZOITLF3k6SCAlRSUazhXyjmTOXczmakMGxxEwKrhmjE+bvTkRTHyKa+hJUxqDGa5fwz0y9xJHftnJwxyay01MAcHP3oOctI+h12134Bjaq3psSQtQo34AgHvvrc0QMvZsd61dycMcmEk5Hk3D6Tbz9Auk5dCT9IkcBxZfO0GgU/hrZlgFtgnh+1RHOXM7lia8O0LdlAE/d2qbEtcZANm8tiyRCQlSQqqpEX8jiu8OJHIrPILvAZDvm6aLQvXkAA1sHMaRDMNEXsssdwGw0GDi+7zcO//ojZ44fhCvL6Xv5BnDziLFMmDCeuGxkILQQDZiPfxDDH5zGgFH3sX/bBg79spnsjFR++fYrfl2/gt9vvoV77x7D4MGDcXO7Op6wZ3N/Nj11M+9vO8VnO8+w52waE7/YS68WAdzWMYQAz6vdZbJ5a9kkERKiHKcv5bD+SBLrDydyLvXqeB53Fy2dQ33pGuqDNj+V5s0a4+uuL7N52lBYQNThg3x/bA97//iVgrxc27HwDl3pfvNwOvUZjL+XB17eXpAtA6GFcAbefoEMHTeJm0c/QPT+39i/bQMJp//ktx3b+W3Hdjw9Pbn11lsZNWoU/fr1Q6/X4+aiZeYdHRjcNoi530fz54Us9p5NY/+5NLqF+TGgTRCh1+1HKG4kiZAQ11FVleNJWfx4/CI//pnMiYvZtmOuOg0dm/jQJdSXtiFe6DQaLBYL8QlppZaVlpzEuejDnD66lzPHDmIyGmzHfQKC6DbodroNuh3/Rk2q/d6EEHWbzkVPl/6RdOkfSVriWS7/+Qe/bt/KhQsXWL9+PevXr8fDw4O+ffty8803M3jwYJoF+PPYoJbEJGez7cQlTl/K4VB8BofiM2jm706vFgG0b+xFmL9Hbd9enSSJkLiBxgkX5ruYWcD+82nsPZvGT38mk5RZYDum1SgMbhvEmO6hdGrqTVRCVqndVRaLhYTzZzm4az+njx/mXPRhstJSip0T0KgJg24ZSkjH3jRq0R6NRlaKFULcqEl4a+4a2ps5s2dy+PBhNm7cyI8//khKSgo///wzP//8MwChzZoT0rIjoW0iGNMugryOrfgjNpWoxEzi0/OJT09k/ZEkhrYP5q4eodzSLhhvN+kmKyKJkLiB3suXpIwClDL2talrA+/KW80ZrDG76jScT83jbEou51Jz+TMpiwPn00nMyC92rruLlsHtgri9U2MiOzTC/0p/+7VT3c0mE6nJCVyKP8ep44fZmXKBi+dOUZCfW6wsrc6FsNYdaRnRg3Y9+tG6dVvaNvbmz6TSEyohhCii0Wjo2bMnPXv25B//+AcnTpzg119/ZefOnRw+fJjE+DgS4+M4uHMLAB7evjRp0ZaBTVuQ79GYRDWAC2Yvfoq+xE/Rl9BpFHq3CGBoh2CGtm9Em0ZeTj3jrFYSoZiYGGbNmkVcXBz33HMPL774YrlfhL179zJnzhzS0tKYOnUqkydPrvIxUbJ8E5yKS8dcyu/omh54ZzJbKDBZyDeYKTBaH/lGs/X5ldeTMvKISc4h32jGaLJgMFsoNFrIKTSRazCRZzBTaLRwOaewxPfQKNCpqQ89m/szuG0wg9oG4eaixWAwkJSUxJ+HE0lISCD69FmOnzpHcuJ5Ui8kYDGbbihL7+pKk/C2hLbpRMtO3WnWNgIX16uDHJ35B44QomoURaFjx4507NiRJ554gqysLLb+uputO3dz9uQxks6cJC87k9io/RC133adt4ser4AQ8l0DyHHxY++ZIPbsCeJtzyCCghvRu1UgPZv706tFABFNfXCmfoEaT4QMBgNTp05l0KBB/Oc//+HNN99k7dq1jBs3rtRr0tLSmDZtGpMnT+bOO+/k2WefpWPHjvTr18/uY86o0GQmu8BEXqHZliDkFprILTSTazBhMFkwmc3EJaeRUqDBZFGxqKBiXRAQQFGsidDpS9n4e+rRKAqKYv3m1ChYn2P9V0XFYLJQYLRQaDJTaLJQYLT+W3jltQKjdSr6tQnO9a9duy5PlakqXi4qzb0VmnhAiJuFJm4mfMgnO/MsKYdS+O6nVL5ISeHixYskJyejqqW/v97Ng+DQ5rj7BdGuc0/adezMwJsiOJmcJ609QogqK+/PJh8fH/oOGASNO1FosmA2GbkYF8vF87FcPH+a5LgzXEo4i9FQSEZyPBDP9X/CZisatrt6s83NB9XNB42HLwFBwfh5e9G53QnaN29M+2YhtAkLJsDfH30DW9C1xhOhnTt3kpOTw6xZs3B3d+fZZ5/l9ddfLzMRWr9+PcHBwcyYMQNFUZg+fTqrV6+mX79+dh+rK1TVmmyYLSoWVcVsUTGrKhbLtf+/unZNQQmJQk6hiax8E1kFRrLyjWTmW//NKjBY/803kV1gtP5ivuGXulrsnxKeXHdNWccqcI6qgmoGVUW58i+qBSxm63UWi/W5akG58q9Gvfqaq2LBBTMumNEpZnSqGS1mMBsxFBaCxYhiNqFYTGAqRDUWYDHkYzHkoxrzKczLxWQycRY4W87XpoibmxuhoaGEhYXhF9wYg94P35AwGoW1wCcgGFVViU+Ip1lYM3zd9Wi10uMshKg6rUbBbFFLXH2+iEaBQuPVP7q0OhdCW3UgtFUH22suGpUW7oUUZlzi/PnzxR6JiYmYTCYoyEQpyLRdk34G0oGz22DD9e/p4oqLuyeubu64urnj7u6Oh4cHnh4eeFx5eHl64OnpgYebGx5uelxdXXHV63F11aPXu+Cmd8XVVY+npyddu3at1bGpNf4T+8SJE3Tr1g13d+uUvvbt2xMbG1vmNSdPnqRfv362LoWuXbsyf/78Kh2riKKWAIPBcMNeUlVxNOY8T06bhiUv87oj1ycl5ScZFe1k8bzyaChUwHjlURkuLi64uFj/HvLy8sLHx4eAgIAbHoGBgQQFBdG0aVMCAgJsn6ELmQUcjr92ZWkVi2rBy1WHXmtBp1hQzWbrv5qSW4TkHOs5eu3VeisajlaX460L57gogAouGkup3/vllVPX7qm6z7EodfP7syJluGo05OQbOJ+ai6mUlnE3vZZQP/eyPzdaDY1CGtOkXQv69OlT7JjJZCItLY3Lly+TkpJCSkoqsfFJnE+8yPmEBAryC8jLzcZckAfG/KufO2M+RmM+xmzIKfFdK+7mO+/jnX88W8VSijObzQBltugXqfFEKCcnh7CwMNtzRVHQaDRkZmbi6+tb6jWtW7e2Pffy8iI5OblKxyrCYrF+qP78888KX1MRCrBwwTyHlimqR1JSEklJScVeCwOu70BvHaoH0sEE+ckln2Mj51jP0V5Tb7UdS305xwxkQ7OqlFPX7qkGzqmT35+VKKPMdeULK1COCilxl0kp5XCRoj8E27VrW86ZjhcVFVUt5Rb9Hi9LjSdCWq32hv5FV1dXCgoKSk2Err+m6PyqHKsInU5Hly5d0Gg0MsBVCCGEqCdUVcVisaArYc+269V4IuTr68upU6eKvZabm2vrrijtmrS0tBLPt/dYRWg0mgY3KEwIIYQQV9X46KQuXbpw5MgR2/OEhAQMBkOprUElXRMdHU1ISEiVjgkhhBBC1Hgi1Lt3b7Kzs1m3bh0ACxcuZMCAAWi1WnJycjAabxz+GhkZyYEDB9i9ezcmk4lFixYxaNCgKh0TQgghhFDUigypdrCffvqJ5557Dk9PT8xmM8uWLaNt27ZERkYye/Zshg0bdsM1y5cv5+2338bLywsPDw+++eYbgoKCqnRMCCGEEM6tVhIhgOTkZKKioujZsycBAQEVuub8+fPExsbSp08fvLy8HHJMCCGEEM6r1hIhIYQQQoja5kzbiQghhBBCFCOJkBBCCCGcliRCQgghhHBakggJm5iYGMaNG0fv3r2ZN29ehfZocQY//fQTt956K506deLee++17Y1XVn1JXV712GOPsXbtWkDqrKLeffddpk6dansu9Va6devWMWTIEHr06MGkSZNISEgApM5Kkp6eTmRkpK2OwP56akh1KImQAKwby06dOpWIiAjWrFlDbGys7ZeXM4uLi2P27Nk899xz7Ny5k6ZNm/Lyyy+XWV9Sl1etX7+e3377DSi7XqTOroqJiWHFihXMnj0bkHorS1xcHAsWLODDDz9k48aNNG3alFmzZkmdlSAtLY2pU6eSmJhoe83eempwdagKoarq1q1b1d69e6t5eXmqqqpqdHS0ev/999dyVLVv+/bt6ooVK2zPd+3apUZERJRZX1KXVunp6eqAAQPU4cOHq2vWrJE6qwCLxaKOHz9eXbBgge01qbfSbd68WX3qqadsz/ft26cOHDhQ6qwEjzzyiLpkyRK1Xbt2anx8vKqq9n+2GlodSouQAODEiRN069YNd3d3ANq3b2/rAnJmQ4cOZcKECbbnZ8+eJTw8vMz6krq0mjdvHsOGDaN79+5A2fUidWb1zTffcOLECcLCwvj5558xGo1Sb2Vo06YNu3fv5s8//yQ7O5sVK1YwcOBAqbMSzJ07l0ceeaTYa/bWU0OrQ0mEBAA5OTmEhYXZniuKgkajITMzsxajqlsMBgOLFi3igQceKLO+pC5h9+7d7Nq1ixdeeMH2mtRZ2XJzc1mwYAHh4eFcvHiRxYsX89BDD0m9laFNmzYMHz6cu+++m169enHkyBFmzpwpdVaCZs2a3fCavfXU0OpQEiEBgFarRa/XF3vN1dWVgoKCWoqo7lmwYAEeHh7cd999ZdaXs9dlYWEhc+bM4bXXXiu2krvUWdm2bt1Kfn4+X375JTNmzGDRokVkZWWxZs0aqbdSHD58mJ9//plVq1Zx8OBB7rzzTh5//HH5rFWQvfXU0OpQEiEBgK+vL2lpacVey83NxcXFpZYiqlt+//13/u///o/33nsPFxeXMuvL2evyo48+onPnzgwZMqTY61JnZbt48SJdu3bFz88PAJ1OR/v27SksLJR6K8WmTZsYNWoUXbt2xdPTk6effpqEhAT5rFWQvfXU0OpQEiEBQJcuXThy5IjteUJCAgaDAV9f31qMqm6Ij4/n+eef57XXXqNNmzZA2fXl7HW5YcMGtm/fTq9evejVqxfff/89r7/+OuvWrZM6K0Pjxo0pLCws9lpSUhIzZ86UeiuF2WwmJSXF9jw3N5e8vDx0Op3UWQXY+3OsodWhJEICgN69e5Odnc26desAWLhwIQMGDECr1dZuYLWsoKCAJ598kmHDhnHrrbeSm5tLbm4uvXr1KrW+nL0uV6xYwYYNG1i3bh3r1q0jMjKSp556imXLlkmdlWHIkCHExsby9ddfc/HiRZYuXUp0dDSDBg2SeitFz5492bp1K0uWLGHDhg1Mnz6doKAgJk6cKHVWAWXVhb3H6qXanrYm6o6tW7eqXbt2Vfv376/26dNHjYmJqe2Qat3WrVvVdu3a3fCIj48vs76kLq+aOXOmumbNGlVVy64XqTNVPXTokDp+/Hi1a9euamRkpLp161ZVVaXeSmOxWNQPPvhAHTJkiBoREaHeddddalRUlKqqUmeluXb6vKraX08NqQ5l93lRTHJyMlFRUfTs2ZOAgIDaDqfOK6u+pC5LJnVmH6m3ypM6qxh766mh1KEkQkIIIYRwWjJGSAghhBBOSxIhIYQQQjgtSYSEEEII4bQkERJCCCGE05JESAhRZaqqFlvYTggh6gtJhIQQFbJx40ZefPFF2/PHHnuMX3/9FQCLxcLAgQPJzc0tdo3ZbKZ9+/YYDIYSy3z++efZsmVLsdd+++03Ll68CEB+fj4HDx60HevcuTO//PILAGfPnuX06dPFrk1JSaFz584lvldGRgbff/+9bRG4aw0aNIjx48czceLEGx6jR4/m4YcfLrHM8qxYsYL58+dX6NyVK1fy9NNPl3gsLS2NCRMmkJqaalccQojSSSIkhKgQo9Fo2wIiJyeH3bt3k52dzcGDB9FqtWi1WhYuXMjy5cuJi4vjoYceQlVVXFxc0Ov1PPnkk5w5c4bnnnvOlsDk5eVhMpmKvc+3337L2LFjOXbsGHv37mXy5MnExsYC2MoCeOONN3j33XdRVZUTJ04we/Zs3nvvPVRV5eWXX+aFF15g1apVTJ06leHDhzNx4kSOHDlS4uq3rq6umM1mTCbTDQ9VVXFzc6t0fa1du5bNmzfz+OOP215buHAhEyZMsD3i4+Nt96/T6fDw8ACsLWz5+fkUrW4SEBDAxIkTeeyxx8jLy6t0LEKI0ulqOwAhRP2g0WjQaDT89NNP5OTk0KlTJ/bs2cOpU6dYsWIFGo2GqVOnsnz5cpo3b46rqysrVqxAURTWrl2L0WikVatWjBw5kkmTJvH555+X+D7vvPMOL7/8Mnv27OGxxx5j9OjRfPDBByxYsACNRoOiKKxevZr4+Hi+++47FEUhLCyMxx9/nMLCQlvyYTAY8PT0pHfv3rz//vvcfPPNjB07tsT3tFgsTJ8+vcRF4aKiotixY0el6urcuXMsWrSIFStW4O3tbXs9MTGRgQMHMmLECCZNmsSKFSvYsmULWq2W3NxcCgsL2bdvH6qqUlBQwHfffUdgYCAAI0eO5NKlS7z55pv885//rFQ8QojSSSIkhChTSkoKEydOZMaMGWzbto28vDzi4+N55JFHUFWVXbt2MWTIEIxGIyNHjkSn0zFlyhReffVV9Ho977zzDv7+/rz55puAdU+tF198kWPHjt3wXmazGa1Wy9tvv2177YUXXrC14iiKgqIo/OUvf6Fv3754enoCkJmZydixY/Hy8qKgoICHHnqIwYMH8+KLL3LmzBkuXbrEjh07OHLkCHFxcXz44Ye21heACRMmFNtE8np33HFHpersiy++4G9/+xs+Pj7FXtfr9QQGBtK6dWtcXFx4+OGHefTRR/H29mbTpk0cOHCAt956i4KCAnQ6HTpd8R/RkyZNYsyYMSQmJhIaGlqpmIQQJZNESAhRprS0NFu30YABA5g9ezb//e9/uXDhAgsXLuStt96iXbt2jB07lueee47bb7/dtuO8u7s7BoOBOXPmYDKZ+N///se8efP4+OOPCQgIYPv27cXe64svvuDnn3/m+eef56abbgJgwIABeHh4oCgKWq2Wp556CrB2z82ePZsHH3yQ0NBQDh06RFZWFrfccgu//fYbAP/73//44IMPAGjevDlDhgzh/vvvt3WvPfnkkyQlJeHl5YWrq2updbB//36WLl3KuHHjmDRpUrl1tnv3bl599dVyz1MUhYcffpiXXnqp2OuTJk1iypQpDBs27IZrRo4cyc8//8xDDz1UbvlCiPJJIiSEKFNKSgqhoaEUFhYSFBRE8+bNGTNmDNnZ2QQGBjJ06FA2bNhAly5d+Pnnn7nzzjttj4ULF/Lee+/x2WefERoaiqenJ927d2fChAl8+eWXN7zXo48+ip+fH++99x4ffvgh/v7+6PV6Vq1aRXh4eLFzJ06ciIuLCwAGgwGN5uqQR1VVKSwsZMiQIfTr148lS5YQGRl5Q9fYp59+isViYcWKFWXWgbe3N2PGjKlQfRUWFuLi4mKLrTwuLi54eXkVGwit0+lKvb5Zs2ZERUVVqGwhRPlksLQQokweHh6MGDGCjIwMW1dPWFgYL7/8MmPGjMHT05OlS5fy2muvcfjwYc6fPw9YB0IvW7YMjUbD1q1befbZZ1FVlVmzZnH77beTmZlpe4+4uDhyc3PR6XTcd999LF26FH9/f8A6NmnEiBF06tSp2GPv3r0oigLA0qVLGTp0KHfccQf5+fkMGzaMUaNG0blzZ3r16mVLKkwmE3FxcbbB10Xlv/XWW/j4+NC4cWN8fHx4//33ady4MY0bNyY/P7/U8UwlcXV1xWg0VqqOrx/AXdQFWJK8vLxi446EEFUjLUJCiDJ1796d7t2789prr9GoUSOMRiNffvklrVu3Zvr06fzrX/+iY8eOdO7cmUceeYRnnnmGRYsWsWDBAm6//XZWrlzJjBkzmDlzJkeOHCE/P58mTZrw7bffcvz4cfbv3094eDjz58+3jfl59tlnmTp1Kp06dQJg8+bNJbYIFZkyZQpTpkzh6aef5pdffmHhwoU0btyYd999l4sXL7Jv3z4OHDjAkiVLCAoKYtCgQbRu3dp2vaIoLF++HI1Gg8ViIT8/ny+++AKA3NzcUpOS0ri7u5OcnExISEi555rNZtauXculS5eIi4vj5Zdf5syZM5S2H/bRo0cZOHBgpeIRQpROEiEhRIVER0ezadMmWrZsSbt27Xj66ac5ffo0u3btsnVzPfjgg5w+fZpvvvmGHTt28N1337Fy5UoURWHo0KFMmzaNiIgI2rdvT/v27Tl8+DATJ05k1KhRtvdJT09n+/btxaadV8T27duJjo4G4MsvvyQ3N5cRI0bQtGlTcnJyuP3220ucNWY2m+nfvz+dOnVCo9FgMBiIiYmhT58+gHUto+vXRyrPnXfeyZIlS5g5c+YNx/7973+zYMECsrKysFgs3H777eTn5wPWLrhOnTqxf//+EluVUlJS+OWXX3j55ZcrFY8QonSSCAkhynXp0iXbNPnZs2czePBgkpKSyMrKYv369XzyySc89thjPP7443z00UdkZWXRp08ffH19bWUMHz6cESNGFCv3+sUUwbr+TufOnenSpYvttXvvvfeGVpmcnBxGjx4NWAczv/rqq/znP//hiSee4MUXX+T777/n1ltvRVEU3N3dbdclJyfj5eVla3366aefyM7OZv/+/YB1Kr3RaGTv3r2AdbyR0WjkwoULNGnSpEL19dBDDzFu3DgGDRpUrPXGYDDw4osvMmHCBCIjIzGZTPz973+33feBAwd48MEHuf322zEajaiqartvo9HIc889x1//+tcyB3YLISpHEiEhRLmWL1/O0KFD6dChA++99x4PPPAAEyZMYMqUKXz//ffs2bOHDh060LdvX9566y3mzZtHWFgYYE0sLBZLscHMRcxmc7EuoJycHBYtWsT06dOLnbNmzZobusaunTV17Ngx5s6da+vu8vLy4v7777cdVxSFjIwMAJYsWcL58+f56KOPABg4cCB9+/bFz88PgKysLEaMGMHXX39tiz8vL6/YdPvyeHh48J///Ifp06cze/Zs2+yv9u3b07x5cwC2bt1abGyQoihkZWUBEBwczKxZs/Dz82PmzJnk5eXx17/+lZYtW3LvvfdWOA4hRPkkERJClOnSpUssXbrUNrPqzTff5MknnyQkJITBgwfz/fff88ADDxAfH8+TTz7JmDFjSEhIICwszDbtvqCgoMREwmAwFNt+IyoqCj8/v2Lr9ly/PYfZbObFF18kIyODnj17AtimtF+8eJGCgoIb3mfIkCF88MEHLFu2DL1eb1vTaOXKlaxatapYi5HZbMZgMBQbgwTWsUJ///vfueWWWypUbx06dODLL78sNhvsgQcesP3/+gHS7du3580336RHjx5otVpcXFxYuHAhAG5ubtxzzz2MHDmyQu8thKg4RS1tRJ4QQlwRHx9Ps2bNAGs3VNeuXdHr9aSnp+Pj41Psl3pBQYFdW1JUhsFgsK0FJIQQVSGJkBBCCCGclqwjJIQQQginJYmQEEIIIZyWJEJCCCGEcFqSCAkhhBDCaUkiJIQQQginJYmQEEIIIZyWJEJCCCGEcFqSCAkhhBDCaf0/LEf0DFLCDYgAAAAASUVORK5CYII=\n"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.distplot(daily_data['燃料消耗量(吨)'], fit=norm)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 33,
"outputs": [
{
"data": {
"text/plain": "<Figure size 4000x4000 with 43 Axes>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAADFUAAAxICAYAAABKB0GsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZhe4+E//vdsiSxM7HuioYKIoEGFWqM0qJ2iltppFYkifJCKIvZ9r30XxFbUVmqv2oJGdGyJJUEiMtkms/z+8MvzNc1iEklmkuf1uq5elzn3Oc+5z+Sa53r3PM/73CUNDQ0NAQAAAAAAAAAAAAAAKDKlzT0BAAAAAAAAAAAAAACA5qBUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAKCoNDQ3NPQUAAAAAAAAAAFoIpQoAAADmua+//jpjx46d5+etqanJdtttlzvvvHO2X6O6ujojR45MktTW1uaAAw7Iv//97zk1RQAA/n81NTV54403Zpgb99tvv5xxxhkzPP7LL7/MiBEjZjg+duzYfP311z96ngAAzF3PPPNM7r777ibv//nnn+e+++7LlClTpjteVVWVurq6OTU9AADmoDn5gLwnn3wyRx555Bx7PWDBplQBAADAPHfuuedm0003LZQTmuqkk05K7969kyRjxozJVlttldtvv73Jx99xxx0ZNWpUfvGLXzT5mJEjR+b111/P3XffneOPPz6bbrpp+vXrl4aGhgwdOjTPP/982rZtO0vXAQDADxszZkz22GOPvPXWW9MdLysrS3l5+QyPv+iii3L00UfPcPy8887LIYcc8mOnCQDAXDBp0qTCfz/zzDO55557Cj9PnDgxn3322QyPfeSRR9K/f/+MHj06STJ69OicffbZ+fLLL/PZZ5+ld+/eeeedd+be5AEAmC0vvvhifvvb32bMmDFJklGjRuWTTz7J559/ni+++KLR/yZPnvyDr1dZWZm///3vefXVVwvb6uvrM3HixNTU1My16wDmTzP+tAEAAADmgsceeyz33XdflltuuVx22WU57bTTmnzslClTCk8Tbt++fT755JMmP1Xus88+y0UXXZTq6upsvvnm091n5ZVXzuDBg9OqVavCtgMOOCBjx47NwgsvnMmTJ+e0007LGmuskSR57bXXsuqqq2b11Vdv8jUAANA0UzNZRUVFYdsBBxyQXXbZJdtuu20qKipSWjrjZ0e1atWqUa6b3vj3XxsAgJZhypQpOeKII7LCCivktNNOS1lZWaPcd+edd+bSSy/Nn//852y77bbTHP/ggw9mjz32yNJLL50kefbZZ3PTTTflgAMOyHLLLZeVV145zz//fNZaa615dk0AAPywm2++OZWVlVl00UWTJBdccEH+9re/ZaGFFirsM2HChLRv3z6PPfZYWrdunSQ/+FC9vffee5pt/fv3z5577jmHrwCYnylVAAAAMM+89tprOf7443PggQdmjz32yI477pjFFlssRx11VEpKSn7w+LZt2xZujlVUVKSsrKxJq0RMnDgxffr0yfrrr59zzz13mvGHH344/fv3zxlnnDHNF+8GDRqUNm3a5Pbbb88DDzzQ6IPa1157LcOGDUuXLl2mec37778/q6222g/ODQCA6SsrK0uSRjlx5MiRmTBhwnT3/+CDD9K5c+dGx099jempqKhQqgAAaGHGjx+fvn375oMPPsjJJ5+cJNOUKnr27Jk2bdrkhBNOyL///e+ceOKJhRXMnn322bz//vu54oorCvs/8sgj+eUvf5klllgiSbL99ttn0KBBOfTQQ2da0gUAYN4ZMmRIXnrppTz88MNJkurq6px55pk588wzC/t8/vnn2XHHHXPiiSdmkUUWKWyfmgXvvvvuwue2J554Yvbcc89069YtSfLuu+/moosuyvnnn5+ysrLCZ84AU/l/hwAAAMwTzzzzTA488MBsvfXW6dOnTzp27JjLLrssN910U4444oiMHDmy0f4NDQ154YUXGi3HWlFRUbgpNj3nnXdennrqqUbbqqurc8QRR+Sbb75Jnz59MnDgwJSXl6ddu3Zp165dvv3225xzzjk55JBDsvbaa0/zmm3atJnuuWpqavLPf/4z119/fZ555pnC/w466KBUVlZm1VVXnYXfDgAAUzU0NGTChAmpra1NktTX12fChAmpr69PWVlZoyLEhx9+mHPOOSdbb711DjzwwJm+7ujRo7PVVlvllVdemavzBwBg9rz55pvZaaedMmrUqNx55535yU9+UhgrKSnJJ598kj59+mSHHXbIEksskRtvvDGPPPJIXnrppSTf5cjLLrssq666apZZZpkkyfvvv59nnnkmv/vd7wqvteuuu+arr77Ko48+Om8vEACA6WpoaMiZZ56ZP/7xj1l22WXz1ltvZcstt8ywYcMK+4wdOzaHHnpottpqq2y//faNjp9alC0vL09DQ0MqKiry9NNPZ+zYsWndunVat26d2travPjii1l44YXTtm1b5VpgGlaqAAAAYK765ptvcskll+TWW2/Nvvvum379+qWkpCR33XVX1l577dx8883p06dPfvnLX2afffbJHnvskRVXXDH19fXp169fVl555Vx33XU/eJ7q6upce+212W233bLFFlsk+a748Nvf/jajRo3K7bffns8++ywPPfRQ/vvf/+aKK65IfX19Dj300Kyyyir5wx/+MM1r1tXVZfTo0amoqMjkyZPT0NCQcePGpba2Nq+88krat2+fnj17Njrm008/TY8ePdyIAwCYTWPGjMmGG25Y+Hn//fdPkjz55JMpKSnJu+++m1dffTWvvPJKKioq0q5du6y77rqFMu5NN92Ul156KcOGDcu4ceNy2GGHpVOnTvnDH/6QTz75pFFOmzhxYqqqqlJXV5eampqsueaa8/RaAQD4f37yk59kp512yoEHHlhYTXby5MkZOXJk3n777eywww7p3bt3Hn744cIKZY8//njat2+fJBk8eHDeeOONdO3aNcn/+3LeZpttVnhCcZIsueSS2XvvvXPGGWdk4403bvSUYwAA5r3LLrsstbW12XfffTN58uScccYZ2WCDDQoPsRs5cmQOPfTQfPDBB1lppZXy9ddfZ/HFF5/mdYYOHZqddtop5eXlqa2tzVFHHVVYBbehoSFJss4666S2tjZ9+vTJIYccMu8uEmjxlCoAAACYK7766qvcfPPNuf3229PQ0JCLLrooW2+9dWH8rLPOynHHHZff/OY3eeCBB3LppZfmpptuyjXXXJPdd989AwYMyM4775wrr7wyX3zxReHpcjPy0ksvpb6+PrvuumthW6tWrXLGGWekoqIinTp1SqdOnXLHHXfkgAMOyF577ZWKiorU1NTk+uuvn+4KGCNGjMgvf/nLRtt69OiRn/zkJ+nQoUM233zzJMmgQYMyePDg3HLLLfnPf/6TPffc88f86gAAilqHDh3y4osvZvLkydlss81y9dVXp6SkJJdddlk++uijjBo1Kr/61a+y0korZaONNsqxxx6be++9t1CqWG655dK1a9eMHj06paWl6dmzZzp06FAoU3x/JbJ33303u+22WxoaGjJ58uS8++67zXLNAAAkiyyySA4//PBMmDAhzz33XB5//PE88cQTmTBhQnr27Jntt98+HTp0yIgRIzJixIi0b98+6667bpLk888/z1lnnZWVVlqp8Ho33nhjXnnllQwePHiac/3hD3/IE088keOOOy6XXHJJo9XQAACYd2pqanLrrbdmwoQJ6d69e2pqarLSSivl2muvTZI88cQT6d+/fzbaaKP89a9/zVlnnZXevXunX79+2XHHHZN8t9JtknTr1i3vvPNOysvLs+666+a8884rfJ776quvZu+9987bb7+dhoaG1NXVNcv1Ai2XUgUAAABzRUlJSQYPHpzNNtssf/rTnzJkyJC8/vrrWWeddZIkFRUVhSJD69at07dv3+y///657rrrst122yVJdtxxx1x++eV58MEHc/DBB8/0fE899VRWWWWVrLXWWo22r7HGGo1+XnXVVfOHP/whp556atZcc83cfPPN032SSZKsuOKKeeutt/Lee+9lt912S/fu3XPZZZdlwoQJGTlyZBZddNEk3z3ZZPz48UmSBx54ILW1tbP42wIAYKrS0tIstthi+fbbb5MkCy20UCorK5Mkiy66aI455pjssMMOOfTQQ6d7fK9evdKrV6988803GTp0aPbdd98kKeS1769U8bOf/Sw333zz3LwcAACaYOLEiTn33HPzzjvv5O23386UKVPSs2fPwr2++vr63H///YX9R4wYkcrKytx1111Jkttuuy2rr756NttsszzwwAMZPHhwBg4cmDXXXDPbbrvtdM/Zo0ePPPfcc7n22mtz+OGHz/2LBABgGq1atcott9ySdu3a5auvvsrBBx+cSy+9NB999FFOPPHEfPHFFznhhBOy8847J0nOOeec3HXXXfm///u/vPXWWznllFMyefLkJN/dR5z6+XN9fX0mT55cuCc4dZ/6+vqUlpZO94F7QHHzrgAAAMBcsfjii+fhhx9O+/btkyQXXHBB1l133UKpIkm+/vrrVFVVJUmmTJmStm3b5k9/+lNhvFOnTunatesPliomTpyYxx577Ac//Pzggw9yxRVX5IEHHsgOO+yQk046KQsttFDhJlqSlJWVFW6ilZaWpnXr1nn++ecL25588sn85je/SadOnTJ06NDCMVOXji0pKUm7du2a/HsCAOCHrbbaajnzzDOzww47THe8rq6uUVkCAID5S5s2bbLaaqtl9dVXzyGHHJLDDz88l1566Qzvs11++eV57rnnCj8fffTRGT9+fO69994k3z0s5Y9//GP22muvfPXVV+ndu3euvfba/PSnP02SHHTQQdlyyy1z9NFHZ+21157r1wcAwIytvPLK+fbbb/OnP/0pf/7zn/PTn/40kydPzuabb57f/OY3WWaZZRrtv9NOO2X55ZdP586dkySTJk1K8t3KZ1NNmjQpRx111DTnqqmpyUILLTQXrwaYXylVAAAAMNdMLVQkSbt27ab5EPTyyy/PNddck4aGhtTU1GSLLbbIRRdd1GifX/3qVzn33HMzbNiwGZ7nvvvuy8SJE/PrX/96mrEpU6bkmWeeyT333JN//OMfheVf77///kZPt5tqv/32y4knnlj4uaGhIffdd1969uyZ4cOH54ILLkhlZWU6deqUnXbaKTfccENh36FDh+aggw7KnXfemeWXX37mvxwAAH60hoaGPPzww7n77ruz9NJLN/d0AAD4EXbbbbckybvvvpskWW+99Wa4b0NDQ372s58Vfi4rK2v0Jbqf/exnhfEJEyYk+a6ou+SSSxaOb9u27UzPAQDAvDFy5Mj8/ve/z89+9rMsvPDCueWWW1JbW5tFF100m2222XSP6dq1a6FQO27cuLRq1SqVlZUZPXp0SktL8+qrrxYeivd9dXV1aWhomO4YUNyUKgAAAJgnSkpKpnl68KmnnlpYqnVGfvnLX6aqqiplZWUz3Gfy5Mnp3bt3llpqqUbbzz333Nx6660pKSlJz549U19fn2eeeWaap5lMtfPOO6dVq1aNtj3++OOZMGFCNtlkk/ztb3/L3nvvnffffz9Dhw7Nsssumw022CCDBw9Okqy66qpZdNFFM3DgwFx88cUzvS4AAJru7bffTmVlZaNtDQ0NSZJBgwalTZs2jYqx/2vq0+oAAJh//Otf/5rpShUvvvhik15n2LBhWWSRRbL44osXtnlCMQBAy3HhhRdmyJAhqaqqyrBhw9KpU6dsvPHG2WqrrfLrX/86rVq1ykMPPZRrr702999/f2prawsP0ku+K2VMLc8edNBB+fDDDzNhwoRUVlY2Kk+MHTs266yzTm677bZ5fo1Ay6dUAQAAQIvWqVOnnHXWWTPd53e/+910t++6665ZY401ssUWW+Srr77K448//oPn+355Y9KkSTnvvPOy//77p7z8u/8Lvc8++6S+vj69evXKTjvt1KgoUlpamiOPPDJHHnlk3n777ay55ppNuUQAAP5HTU1N4UtyRx99dMaNGzfNh52TJk1KTU1NrrvuupSUlGTkyJGpqakplGRra2vz2Wef5bDDDsuXX36Zm266aZ5fBwAAs25qeXZOeeKJJ7LRRhs1uo83adIkpQoAgBbimGOOyRFHHJEVVlhhmhUk2rZtmyRp1apVSkpKplu6/eijjwqr2N57771paGjIvvvum+7du+fYY49NkjzwwAPp379/zjzzTKtUANOlVAEAAMACa6WVVspKK60028e/8sorhZtu99xzT2H7448/ns8++2y6q2xstdVW6dy5cy699NJceeWVs31uAIBi9dVXX2XrrbdOdXV1Vlxxxey+++7ZZZddCk8Wnvolu/8tSdx111256667su++++a+++5LVVVV2rZtm3bt2mW//fab59cBAMDsmZr31ltvvZnu06NHj2m219fXNyplvPXWW7nvvvtyzTXXNDp23LhxWWSRRebgrAEAmF1LLbVURo8enddffz1VVVX573//m88//zwXX3xxk45/+eWX071798LPJSUlOeOMM7Lrrrtm2WWXTefOndO/f/+ce+65P+qzY2DBplQBAADAXDNp0qR88MEHad26dSZPnpyxY8emqqoqyXcfcH755ZeFn6cqKSlJ586dM3z48IwePTpt27YtPEXu22+/zZQpUxod8/3XqK+vz4QJE7LkkktmueWWm+6cNt1005nO+Re/+EXhvzfZZJNcc801hacdT/Xxxx9nyy23zIorrjjN8SUlJTn++ON9KAsAMJuWWGKJbLXVVtl0002z9dZbN3qicLt27fL8889ngw02aPREuYkTJ+bRRx9Nly5dMnny5Cy66KI577zzstVWW+Xbb7/Nl19+mQ8++CBJ8umnn6ZVq1b55ptvMnHixFRVVaWhoSFTpkxJu3bt0rFjx3l+zQAA/D/19fVJkn/961/TfRJxklx++eV5/vnnp9leU1OT2traJMlTTz2V448/PnvuuWc23HDDfP3113nyySfzwQcfZNKkSb5QBwDQAjQ0NGSbbbbJRx99lIqKiqy++urp1q1b1lxzzQwfPjwVFRVJvvucuK6uLl988UWSZMqUKamoqEirVq3yyiuv5Le//W2j111xxRVz9tln59BDD015eXn69u2bLbbYYp5fHzD/KGmY0+smAgAAwP/v/fffz0477ZTWrVs3aRnVhoaGrLrqqrn99ttzySWX5NJLL52t8x533HE58MADG20bPnx4evXqlUcffTRLLbXUdI/77W9/m4022qiwDOz33XzzzXn44Ydzxx13FLaNHz8+zzzzTB599NGMGTMmN99882zNFwCAprn//vvTv3//TJgwYZqxTp065cILL0yXLl1SVlZW2H7dddflwgsvTHl5eaOCxvfV19enpqYmW2+9dc4777y5Nn8AAH7YG2+8kT322KNRpvtfDQ0N6d69e6N7dUly8cUX5+GHH85DDz2UQw45JKuuumpOOOGElJSUpKamJjvvvHMWXXTR7Ljjjtlll13m9qUAANAEL730UsrLy7PWWmsVHnZ39tln59Zbb015efl0P2euqalJz549s+aaa+a2227LU089lVGjRuXzzz/Pf/7zn7z00kt5+eWXs/766ydJnn/++ay88spZY401stRSS2WxxRZLr169svzyy8/TawVaLqUKAAAAWqTq6uo0NDSkTZs2KS9v2kKLtbW1mThxYkpLS6d5il1VVVV69+6dZ555Jssss8x0j995553zs5/9LCeddNI0Y5dcckmeeuqp3HfffYVt9fX12WSTTVJWVpbjjz8+vXv3noUrBAAAAAD+16uvvpq99947r7322kxXqnjiiSdy7733zvB1amtrm3xfEQCA+dMHH3yQ999/P1tttVUOO+ywfPrpp1lzzTXTo0ePbLXVVunQoUOS5JtvvskLL7yQN954I//5z38yduzYDBo0qFDiAFCqAAAAoCjU1dVl/PjxWXjhhZu0akZTVVdXp3379nPs9QAAAACgmNXW1mbChAlZZJFFmnsqAAAAFAmlCgAAAAAAAAAAAAAAoCiVNvcEAAAAAAAAAAAAAAAAmoNSBQAAAAAAAAAAAAAAUJSUKgAAAAAAAAAAAAAAgKJU3twTAACAWVFfX5/a2tqUlpampKSkuacDAMznGhoaUl9fn/Ly8pSWev5ISyUDAgBzkgw4/5ADAYA5RQacf8iAAMCc1NQcqFQBAMB8pba2NkOGDGnuaQAAC5hu3bqlVatWzT0NZkAGBADmBhmw5ZMDAYA5TQZs+WRAAGBu+KEcqFQBAMB8ZWpjuFu3bikrK2vm2QAtVV1dXYYMGeK9AvhBU98vPJ2uZZMBgaaSA4GmkAHnH3Ig0BQyINAUMuD8QwYEmkIGBJqqqTlQqQIAgPnK1CVey8rK/B9j4Ad5rwCayjLyLZsMCMwq7xdAU8iALZ8cCMwK7xVAU8iALZ8MCMwK7xVAU/1QDlS9BQAAAAAAAAAAAAAAipJSBQAAAAAAAAAAAAAAUJSUKgAAAAAAAAAAAAAAgKKkVAEAAAAAAAAAAAAAABQlpQoAAAAAAAAAAAAAAKAoKVUAAAAAAAAAAAAAAABFSakCAAAAAAAAAAAAAAAoSkoVAAAAAAAAAAAAAABAUVKqAAAAAAAAAAAAAAAAipJSBQAAAAAAAAAAAAAAUJSUKgAAAFggVVRUNPcUAABoBnIgAEDxkQEBAIqPDAjMSUoVAAAALJBWX6NrysrKmnsaP0pdfUNzTwEAYL4zv+dAGRAAYNbN7xkwkQMBAGaVDAjMSeXNPQEAAACYGyrKy3LUHa/nv6Oqm3sqs2WVpdrnot+s09zTAACY78zPOVAGBACYPfNzBkzkQACA2SEDAnOSUgUAAAALrP+Oqs47n33b3NMAAGAekwMBAIqPDAgAUHxkQGBOKW3uCQAAAAAAAAAAAAAAADQHpQoAAAAAAAAAAAAAAKAoKVUAAAAAAAAAAAAAAABFSakCAAAAAAAAAAAAAAAoSkoVAAAAAAAAAAAAAABAUVKqAAAAAAAAAAAAAAAAipJSBQAAAAAAAAAAAAAAUJSUKgAAAAAAAAAAAAAAgKKkVAEAAAAAAAAAAAAAABQlpQoAAAAAAAAAAAAAAKAoKVUAAAAAAAAAAAAAAABFSakCAAAAAAAAAAAAAAAoSkoVAAAAAAAAAAAAAABAUVKqAAAAAAAAAAAAAAAAipJSBQAAAAAAAAAAAAAAUJSUKgAAAAAAAAAAAAAAgKKkVAEAAAAAAAAAAAAAABQlpQoAAAAAAAAAAAAAAKAoKVUAAAAAAAAAAAAAAABFSakCAAAAAAAAAAAAAAAoSkoVAAA0yZgxY7LFFltkxIgRhW3Dhg3LLrvskvXWWy8DBw5MQ0PDjx4DAKDlkAEBAIqPDAgAUJzkQACgmClVAADwg0aPHp3DDjssn376aWFbTU1NDjvssHTt2jX33HNPqqqqcu+99/6oMQAAWg4ZEACg+MiAAADFSQ4EAIqdUgUAAD+oT58+6d27d6Ntzz77bKqrq9OvX7907Ngxffr0yaBBg37UGAAALYcMCABQfGRAAIDiJAcCAMWuvLknAABAyzdgwICsuOKKOeOMMwrbhg4dmu7du6dNmzZJki5duqSqqupHjc2Kurq6H3VNwIKtvr4+ZWVlzT2NOcL7Hcxd/sZmTAYE5kcLSg70fgdzl7+xGWuJGTDxbwbM3IKSARPvdzA3+fuauZaYA/2bATMjAwJN1dS/MaUKAAB+0IorrjjNturq6qywwgqFn0tKSlJaWpqxY8fO9lhlZWWT5zRkyJDZvBqgGLRp0yZrrLFGc09jjnjvvfcyceLE5p4GUIRkQGB+tKDkQBkQaC4tMQMmciAwcwtKBkzkQKD5tMQcKAMCMyMDAnOaUgUAALOlrKwsrVq1arStdevWmTRp0myPzcpNtG7dui0wTx0A5rz6+vrmnsIc06VLl+aeAizQ6urqfDg3C2RAoKVbUHKgDAhzlww4a5o7AyZyIDBzC0oGTORAmJtkwFnX3DlQBgRmRgYEmqqpOVCpAgCA2VJZWZn333+/0bbx48enoqJitsdmRVlZmZtoQFHwXge0JDIgwLzhvQ5oSZo7AyZyIFA8vNcBLUlz50AZECgW3uugZSht7gkAADB/6tatW958883CzyNGjEhNTU0qKytnewwAgJZNBgQAKD4yIABAcZIDAYBiolQBAMBsWW+99TJu3LgMHjw4SXL11VenZ8+eKSsrm+0xAABaNhkQAKD4yIAAAMVJDgQAikl5c08AAID5U3l5eQYMGJC+ffvm7LPPTl1dXW655ZYfNQYAQMsmAwIAFB8ZEACgOMmBAEAxUaoAAKDJ3nvvvUY/9+rVK3//+98zZMiQrLvuullsscV+9BgAAC2LDAgAUHxkQACA4iQHAgDFSqkCAIAfZemll87SSy89R8cAAGjZZEAAgOIjAwIAFCc5EAAoBqXNPQEAAAAAAAAAAAAAAIDmoFQBAAAAAAAAAAAAAAAUJaUKAAAAAAAAAAAAAACgKClVAAAAAAAAAAAAAAAARUmpAgAAAAAAAAAAAAAAKEpKFQAAAAAAAAAAAAAAQFFSqgAAAAAAAAAAAAAAAIqSUgUAAAAAAAAAAAAAAFCUlCoAAAAAAAAAAAAAAICipFQBAAAAAAAAAAAAAAAUJaUKAAAAAAAAAAAAAACgKClVAAAAAAAAAAAAAAAARUmpAgAAAAAAAAAAAAAAKEpKFQAAAAAAAAAAAAAAQFFSqgAAAAAAAAAAAAAAAIqSUgUAAAAAAAAAAAAAAFCUlCoAAAAAAAAAAAAAAICipFQBAAAAAAAAAAAAAAAUJaUKAAAAAAAAAAAAAACgKClVAAAAAAAAAAAAAAAARUmpAgAAAAAAAAAAAAAAKEpKFQAAAAAAAAAAAAAAQFFSqgAAAAAAAAAAAAAAAIqSUgUAAAAAAAAAAAAAAFCUlCoAAAAAAAAAAAAAAICipFQBAAAAAAAAAAAAAAAUJaUKAAAAAAAAAAAAAACgKClVAAAAAAAAAAAAAAAARUmpAgAAAAAAAAAAAAAAKEpKFQAAAAAAAAAAAAAAQFFSqgAAAAAAAAAAAAAAAIqSUgUAAAAAAAAAAAAAAFCUlCoAAAAAAAAAAAAAAICipFQBAAAAAAAAAAAAAAAUJaUKAAAAAAAAAAAAAACgKClVAAAAAAAAAAAAAAAARUmpAgAAAAAAAAAAAAAAKEpKFQAAAAAAAAAAAAAAQFFSqgAA4EcZPHhwNttss6yzzjrZf//9M2LEiCTJsGHDsssuu2S99dbLwIED09DQUDhmZmMAALR8MiAAQHGSAwEAio8MCAAUA6UKAABm2yeffJILL7wwl112WR5++OEst9xy6devX2pqanLYYYela9euueeee1JVVZV77703SWY6BgBAyycDAgAUJzkQAKD4yIAAQLFQqgAAYLa9++676d69e7p27ZrlllsuO++8cz788MM8++yzqa6uTr9+/dKxY8f06dMngwYNSpKZjgEA0PLJgAAAxUkOBAAoPjIgAFAsypt7AgAAzL9WWWWVvPTSS3n33Xez4oor5rbbbstGG22UoUOHpnv37mnTpk2SpEuXLqmqqkqSmY7Nirq6ujl3IcACp76+PmVlZc09jTnC+x3MXf7GZp0MCLRkC0oO9H4Hc5e/sdkjBwIt1YKSARPvdzA3+fuaPTIg0FLJgEBTNfVvTKkCAIDZtsoqq2TrrbfOTjvtlCRZYYUVcvfdd+fqq6/OCiusUNivpKQkpaWlGTt2bKqrq2c4VllZ2eRzDxkyZM5dCLDAadOmTdZYY43mnsYc8d5772XixInNPQ2AAhkQaMkWlBwoAwItkRwItFQLSgZM5ECg5ZEBgZZKBgTmNKUKAABm2xtvvJGnn346d999d1ZeeeVcffXVOfjgg/Pzn/88rVq1arRv69atM2nSpJSVlc1wbFZuonXr1m2BeeoAMOfV19c39xTmmC5dujT3FGCBVldX58O5WSQDAi3ZgpIDZUCYu2TA2SMHAi3VgpIBEzkQ5iYZcPbIgEBLJQMCTdXUHKhUAQDAbPvb3/6WbbfdNmuttVaS5Oijj84dd9yRysrKvP/++432HT9+fCoqKmY6NivKysrcRAOKgvc6oKWRAQHmPu91QEskBwLMfd7rgJZGBgSY+7zXQctQ2twTAABg/lVXV5evvvqq8PP48eMzYcKElJeX58033yxsHzFiRGpqalJZWZlu3brNcAwAgJZPBgQAKE5yIABA8ZEBAYBioVQBAMBsW3fddfP444/nhhtuyIMPPpgjjjgiSyyxRPbZZ5+MGzcugwcPTpJcffXV6dmzZ8rKyrLeeuvNcAwAgJZPBgQAKE5yIABA8ZEBAYBiUd7cEwAAYP7Vu3fvfPjhh7nxxhvz5Zdf5qc//WkuueSSVFRUZMCAAenbt2/OPvvs1NXV5ZZbbkmSlJeXz3AMAICWTwYEAChOciAAQPGRAQGAYlHS0NDQ0NyTAABgwTRy5MgMGTIk6667bhZbbLEmj81MXV1d3njjjay99tqeZgLMUF1dXcrKyrLtxf/MO59929zTmS1dl1skD//xF809DVjgyRZzngwINKf5PQfKgDBvyBZzhxwINJf5PQMmciDMC3LF3CEDAs1FBgSaqqnZwkoVAADMNUsvvXSWXnrpWR4DAGD+JQMCABQnORAAoPjIgADAgqK0uScAAAAAAAAAAAAAAADQHJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAMwR5557bg477LDCz8OGDcsuu+yS9dZbLwMHDkxDQ0OTxgAAmH/IgAAAxUkOBAAoPjIgALAgU6oAAOBHGzZsWG677baceOKJSZKampocdthh6dq1a+65555UVVXl3nvv/cExAADmHzIgAEBxkgMBAIqPDAgALOiUKgAA+FEaGhpyyimnZL/99kvHjh2TJM8++2yqq6vTr1+/dOzYMX369MmgQYN+cAwAgPmDDAgAUJzkQACA4iMDAgDFoLy5JwAAwPztrrvuytChQ7Pbbrvl6aefzsYbb5yhQ4eme/fuadOmTZKkS5cuqaqqSpKZjs2Kurq6OXcRwAKnvr4+ZWVlzT2NOcL7Hcxd/sZmjwwItFQLSg70fgdzl7+x2ScHAi3RgpIBE+93MDf5+5p9MiDQEsmAQFM19W9MqQIAgNk2fvz4XHjhhenUqVO++OKL3H///bnyyiuzzjrrZIUVVijsV1JSktLS0owdOzbV1dUzHKusrGzyuYcMGTJHrwVYsLRp0yZrrLFGc09jjnjvvfcyceLE5p4GQIEMCLRkC0oOlAGBlkgOBFqqBSUDJnIg0PLIgEBLJQMCc5pSBQAAs+3xxx/PxIkTc+ONN6ZDhw459NBDs/322+eee+7Jzjvv3Gjf1q1bZ9KkSSkrK0urVq2mOzYrN9G6deu2wDx1AJjz6uvrm3sKc0yXLl2aewqwQKurq/Ph3CySAYGWbEHJgTIgzF0y4OyRA4GWakHJgIkcCHOTDDh7ZECgpZIBgaZqag5UqgAAYLZ98cUXWWuttdKhQ4ckSXl5ebp06ZJPP/00o0ePbrTv+PHjU1FRkcrKyrz//vvTHZsVZWVlbqIBRcF7HdDSyIAAc5/3OqAlkgMB5j7vdUBLIwMCzH3e66BlKG3uCQAAMP9aZpllMnny5EbbPvvssxx//PF58803C9tGjBiRmpqaVFZWplu3bjMcAwCg5ZMBAQCKkxwIAFB8ZEAAoFgoVQAAMNs222yzVFVV5fbbb88XX3yRm266Kf/5z3+y8cYbZ9y4cRk8eHCS5Oqrr07Pnj1TVlaW9dZbb4ZjAAC0fDIgAEBxkgMBAIqPDAgAFIvy5p4AAADzrw4dOuTaa6/NWWedlbPOOitLLLFELrjggnTq1CkDBgxI3759c/bZZ6euri633HJLku+WhJ3RGAAALZ8MCABQnORAAIDiIwMCAMVCqQIAgB9l7bXXzh133DHN9l69euXvf/97hgwZknXXXTeLLbZYk8YAAGj5ZEAAgOIkBwIAFB8ZEAAoBkoVAADMNUsvvXSWXnrpWR4DAGD+JQMCABQnORAAoPjIgADAgqK0uScAAAAAAAAAAAAAAADQHJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAMwxBx54YO69994kybBhw7LLLrtkvfXWy8CBA9PQ0FDYb2ZjAADMX2RAAIDiIwMCABQnORAAWFApVQAAMEc88MADee6555IkNTU1Oeyww9K1a9fcc889qaqqKtxcm9kYAADzFxkQAKD4yIAAAMVJDgQAFmRKFQAA/GjffPNNBg4cmJ/85CdJkmeffTbV1dXp169fOnbsmD59+mTQoEE/OAYAwPxDBgQAKD4yIABAcZIDAYAFXXlzTwAAgPnfwIED06tXr0yePDlJMnTo0HTv3j1t2rRJknTp0iVVVVU/ODYr6urq5tDsgQVRfX19ysrKmnsac4T3O5i7/I3NPhkQaIkWlBzo/Q7mLn9js685MmDi3wyYuQUlAybe72Bu8vf147gXCLQ0MiDQVE39G1OqAADgR3nppZfy4osv5qGHHsrpp5+eJKmurs4KK6xQ2KekpCSlpaUZO3bsTMcqKyubfN4hQ4bMuYsAFjht2rTJGmus0dzTmCPee++9TJw4sbmnAdCIDAi0VAtKDpQBgZaouTJgIgcCM7egZMBEDgRaJvcCgZZIBgTmNKUKAABm2+TJk3Pqqaemf//+ad++fWF7WVlZWrVq1Wjf1q1bZ9KkSTMdm5WbaN26dVtgnjoAzHn19fXNPYU5pkuXLs09BVig1dXV+XBuFsmAQEu2oORAGRDmLhlw1jVnBkzkQGDmFpQMmMiBMDfJgLPHvUCgpZIBgaZqag5UqgAAYLZdfvnlWXPNNbPZZps12l5ZWZn333+/0bbx48enoqJipmOzoqyszE00oCh4rwNaGhkQYO7zXge0NM2ZARM5ECge3uuAlsa9QIC5z3sdtAxKFQAAzLYHH3wwY8aMSY8ePZIkkyZNyiOPPJLll18+tbW1hf1GjBiRmpqaVFZWplu3bhk0aNB0xwAAaPlkQACA4iMDAgAUJzkQACgWShUAAMy22267rdHNsrPPPjvdu3fPTjvtlG233TaDBw/OjjvumKuvvjo9e/ZMWVlZ1ltvvYwbN266YwAAtHwyIABA8ZEBAQCKkxwIABQLpQoAAGbbMsss0+jntm3bZtFFF81iiy2WAQMGpG/fvjn77LNTV1eXW265JUlSXl4+wzEAAFo+GRAAoPjIgAAAxUkOBACKhVIFAABzzFlnnVX47169euXvf/97hgwZknXXXTeLLbZYk8YAAJi/yIAAAMVHBgQAKE5yIACwoFKqAABgrll66aWz9NJLz/IYAADzLxkQAKD4yIAAAMVJDgQAFhSlzT0BAAAAAAAAAAAAAACA5qBUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAOBHeeKJJ7LllltmjTXWyG677ZaqqqokybBhw7LLLrtkvfXWy8CBA9PQ0FA4ZmZjAAC0fDIgAEBxkgMBAIqPDAgAFAOlCgAAZtsnn3ySE088MX379s2zzz6b5ZZbLieddFJqampy2GGHpWvXrrnnnntSVVWVe++9N0lmOgYAQMsnAwIAFCc5EACg+MiAAECxUKoAAGC2VVVV5Zhjjknv3r2zxBJLZM8998zbb7+dZ599NtXV1enXr186duyYPn36ZNCgQUky0zEAAFo+GRAAoDjJgQAAxUcGBACKRXlzTwAAgPnX5ptv3ujnDz/8MJ06dcrQoUPTvXv3tGnTJknSpUuXwjKwMxubFXV1dT9y9sCCrL6+PmVlZc09jTnC+x3MXf7GZp0MCLRkC0oO9H4Hc5e/sdkjBwIt1YKSARPvdzA3+fuaPTIg0FLJgEBTNfVvTKkCAIA5oqamJtddd13233//DB8+PCussEJhrKSkJKWlpRk7dmyqq6tnOFZZWdnk8w0ZMmSOzh9YsLRp0yZrrLFGc09jjnjvvfcyceLE5p4GwHTJgEBLs6DkQBkQaOnkQKAlWVAyYCIHAi2bDAi0JDIgMKcpVQAAMEdceOGFadu2bXbfffdceOGFadWqVaPx1q1bZ9KkSSkrK5vh2KzcROvWrdsC89QBYM6rr69v7inMMV26dGnuKcACra6uzodzP4IMCLQ0C0oOlAFh7pIBfzw5EGhJFpQMmMiBMDfJgD+eDAi0JDIg0FRNzYFKFQAA/GjPP/987rjjjtx1112pqKhIZWVl3n///Ub7jB8//gfHZkVZWZmbaEBR8F4HtFQyIMDc470OaMnkQIC5x3sd0FLJgABzj/c6aBlKm3sCAADM34YPH55jjz02/fv3zyqrrJLku6eGvPnmm4V9RowYkZqamlRWVs50DACA+YMMCABQnORAAIDiIwMCAMVAqQIAgNk2adKkHHrooenVq1e23HLLjB8/PuPHj0+PHj0ybty4DB48OEly9dVXp2fPnikrK8t66603wzEAAFo+GRAAoDjJgQAAxUcGBACKRXlzTwAAgPnXc889l6qqqlRVVeWuu+4qbH/yySczYMCA9O3bN2effXbq6upyyy23JEnKy8tnOAYAQMsnAwIAFCc5EACg+MiAAECxUKoAAGC29erVK++99950x1ZYYYX8/e9/z5AhQ7LuuutmscUWa3TcjMYAAGjZZEAAgOIkBwIAFB8ZEAAoFkoVAADMNUsvvXSWXnrpWR4DAGD+JQMCABQnORAAoPjIgADAgqK0uScAAAAAAAAAAAAAAADQHJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAAAAAAAAAAAAAAEBRUqoAAAAAAAAAAAAAAACKklIFAAAAAAAAAAAAAABQlJQqAAAAAAAAAAAAAACAoqRUAQAAAAAAAAAAAAAAFCWlCgAAAAAAAAAAAAAAoCgpVQAAAAAAAAAAAAAAAEVJqQIAAAAAAAAAAAAAAChKShUAADSLYcOGZZdddsl6662XgQMHpqGhobmnBADAXCYDAgAUJzkQAKD4yIAAwPxEqQIAgHmupqYmhx12WLp27Zp77rknVVVVuffee5t7WgAAzEUyIABAcZIDAQCKjwwIAMxvlCoAAJjnnn322VRXV6dfv37p2LFj+vTpk0GDBjX3tAAAmItkQACA4iQHAgAUHxkQAJjflDf3BAAAKD5Dhw5N9+7d06ZNmyRJly5dUlVV1aRjpy4LW1NTk7Kysrk2R2D+Vl9fnyRZfZl2aT2fvlV0XrJd6urqUldX19xTgQXa1L8xS8/PfTIgMC/M7zlQBoR5Qwact+RAYG6b3zNgIgfCvCADzlsyIDC3yYBAUzU1BypVAAAwz1VXV2eFFVYo/FxSUpLS0tKMHTs2lZWVMz126v8xfvfdd+fqHIEFw54rJ1m5bXNPYzY15I033mjuSUDRmJoxmHtkQGBemn9zoAwI85IMOG/IgcC8Mv9mwEQOhHlHBpw3ZEBgXpEBgab6oRyoVAEAwDxXVlaWVq1aNdrWunXrTJo06QdvopWXl6dbt24pLS1NSUnJ3JwmAFAEGhoaUl9fn/Jyt8nmNhkQAGgpZMB5Sw4EAFoCGXDekgEBgJaiqTlQSgQAYJ6rrKzM+++/32jb+PHjU1FR8YPHlpaWTnMDDgCAlk8GBAAoTnIgAEDxkQEBgPlNaXNPAACA4tOtW7e8+eabhZ9HjBiRmpqaH3wqCQAA8y8ZEACgOMmBAADFRwYEAOY3ShUAAMxz6623XsaNG5fBgwcnSa6++ur07NkzZWVlzTsxAADmGhkQAKA4yYEAAMVHBgQA5jclDQ0NDc09CQAAis8TTzyRvn37pl27dqmrq8stt9ySn/70p809LQAA5iIZEACgOMmBAADFRwYEAOYnShUAADSbkSNHZsiQIVl33XWz2GKLNfd0AACYB2RAAIDiJAcCABQfGRAAmF8oVQAAAAAAAAAAAAAAAEWptLknAAAAAAAAAAAAAACwoPDMe5i/KFUAAAAwX6utrU19fX1zT2OuGTFixAzHpkyZkilTpszD2QAANN348ePz+eefz9ax991332wf29I1NDSktrY2kyZNyrfffpuRI0fmyy+/bO5pAQAAAMB846uvvkp1dXVzT2OG6uvrs+uuu2bo0KEZN25cc08HaILy5p4AAAAAc86rr76aVVddNYssskiS5KqrrkpJSUkOOeSQjBo1Ku+//34+/fTTvPHGG5k4cWIuuOCCPProo3n88cdz4oknpkOHDpk8eXJatWqV8vL/938Za2pqMmHChLRt2zatWrWa5rzV1dUZM2ZMRo0alZEjR+aTTz7JO++8k86dO+eYY46Z6ZyvvPLKfPbZZznttNN+8Pquu+66jB49Oscee2xh28EHH5wddtghO+64Y5N+R7169copp5ySTTbZpEn7T9WnT59su+222XLLLWe4z+WXX56//vWvqayszKhRo3LqqadmxIgRufXWWwv/JknyxRdf5NFHH03Hjh2neY1//OMfef/993PwwQfngw8+yI477phnnnkmiy666DT7XnTRRbn11lun+2/yfWPHjs1VV12VTTfddBauGABYEAwfPjxffvllSkv/3zOWLrzwwqy++urZeuutC9tqa2vTsWPHLLXUUtO8xv3335/hw4fnD3/4Q2HbsGHDsvLKK6esrGyG5x48eHBuvvnm3HPPPWnXrt0szfv000/P9ddfn2WXXXaG13XcccflxBNPTLdu3ZIk3bp1y3PPPZfKyspcfvnluf7667PwwgtnzJgxOfbYY7P33nvn5Zdfzv77798om03P1OLDk08+Od0cNiuGDBmSk046KQ888EAmTpyYjTbaKDU1NamoqMhKK62UTTbZJJ07d852223X6Pd59dVXp02bNtlnn30avd6AAQNSW1ubP//5zz9qXgAAza257mVOtfrqq+ehhx7KyiuvnIaGhpSUlMz1awYAWNDU1dVlwIABqa+vT9euXbPHHnvMk/NeddVV+eqrr3LBBRfMk/PNqn/+858ZP358OnfunG222SZnnHFGfv7znzf3tICZUKoAAABYgPzjH//Icccdl3PPPTfrrrtuJkyYUBi7/vrr8/LLL2eLLbbI+uuvn6WWWioNDQ1Zd911M2jQoPTu3TtnnHFGjjjiiBm+/vXXX5+ePXsmSSZPnpxf//rXmTJlStq3b5/KysoMHTo066+/ftZcc81suummWXTRRVNXVzfTL9u9+uqrTS44lJeXT/NBaEVFRdq3b5/q6uo0NDRk4YUXnulrtGrV6gdLCFOmTElDQ0MqKipSUlKSsWPH5rHHHstBBx3UaL+GhobU1NSkrKws5eXlad26dfbcc8/06dMnG2ywQTbddNPcdddd2W+//XLkkUcWjttiiy0afdD7fX/961+z0UYbJUk6d+6c9dZbL7fffvt0/12OPfbYRgWTGenRo8cPXjMAsGAaOXJk3nvvvUalivHjx+err77Kf/7zn8K2yZMnp3379llqqaXy/PPPZ+zYsendu3eS756q9vTTTxdKFbW1tdlnn31y8MEHF/LRhAkTMmXKlJSXlxdyzq677prXXnst7777btZaa63Ca9XW1qauri4dOnTIlVdemZtuuint2rVLq1atUlJSkvr6+lRXV+eEE05oNO+phYTTTjstK664Yg466KDst99+GTx4cDp27JjWrVtnoYUWSpK0bt06v/vd73LEEUfklFNOSevWrZMkbdq0ybLLLpunnnpqln+Xffv2zZNPPll4rf9VXV2dM888M7/+9a8bbW/Tpk3atm1b+O8nn3wylZWVOemkk/Lzn/88O+ywwzSv1dDQkHvvvTcXXnhhkuTuu+/Oo48+mtatW6eqqip1dXU54ogjMnHixHTq1Cn9+/ef5esBAGhu8/Je5lTnn39+OnfunB133DHl5eWpqKhIklx88cX5/PPP83//939p37793LlgAIAWYsyYMdlll11y0003ZYUVVkiSPPHEEznzzDPz+eefp2vXrjnrrLOy8sorJ/nuASv9+vXLJ598kl133TXHHXdcoZD6zjvvZIUVVshBBx2U8847r8lzOOyww/L0008Xft5www1zww03FH7++OOPs9tuu+WVV16Z5tjJkyfnoYceyk033dTk822//fYZNmxY4eddd901f/nLX2Z6TENDQ3r06NFoRYyjjjpqmgw6fPjwbLfddnnzzTcL2+68884cd9xxee6557LIIotk/fXXb/JcgeahVAEAALAAOfbYY7Paaqvl0UcfzbrrrttorKysLD179mz0hOEkWWqppXL11VfnueeeS8+ePfOvf/0rrVq1yqhRo7LVVltlyJAhhfLA1C+p1dfXJ0keffTRRk9w23333bPvvvtmgw02KGyrra1NTU1Noy/1jx49OhtuuGE6dOiQ5Lun91522WVJvvtC3p/+9Kfsu+++hf0HDRqUK664IpMmTUpdXV0GDx6cP/3pT7nyyivz6aefZvjw4amtrc0GG2yQ008/vXDcv//97+y1116F8yTJuHHj8vvf/77wZb9Jkyald+/eOfPMMwv7/O1vf8uAAQMKZZBJkyalpKQkv/vd76b5nU+ZMiVnnHFGttlmm8L+b7/9djp16pSllloqrVq1yvXXX5/HHnuscMyoUaMafUFwqmeeeSZVVVW58sorC9uOOuqoHHzwwdNcR21tbSZOnFgofvyv+vr61NfXF54KPb3zAQALvh49euT888/PpEmTCts+/fTTfP3116mqqkryXa7o3Llz9t9//yTfrXJ18sknp1u3bllxxRWz1lpr5b333svEiRPTpk2bvPjii2nVqlWjFRSuuOKKXH/99Y1KFcl3RYOnnnqqkJPq6+szZcqULLHEEnn66adz0EEH5ZBDDmmUVV588cWcccYZefDBB2d6bVtuuWUee+yxvPrqq3nppZcyZcqUDBo0KIsuuug0pd6pr//93NTQ0JBHHnkkv/rVrxptP+KII/LLX/5ympXQFlpoofz+97/PgQceON1stc8++0xT8B0/fnzhqcdTs1u7du1SUlKSMWPGZLnllivMpba2tvClvvvvvz9fffVVjjrqqIwfPz7PPfdc1l9//XzxxRcZNGhQJk+enL333jtJfCALAMy35tW9zOS7HHreeefl8ccfz3XXXVc4R2lpaRoaGrLhhhvmb3/7W3bZZZdcdtllWWWVVeb+LwAAoBmMHj06hx9+eD799NPCtk8++SQnnnhi+vfvn/XXXz8DBgzISSedlDvuuCM1NTU57LDDsvHGG+eCCy7I6aefnnvvvTe77LJLkmT55ZfPu+++m5dffjkTJ05s8jzefvvtPPjgg1lmmWWSpNE9xeHDh+eQQw7J2LFjp3vsI488km222SY//elPm3SuiRMnZvjw4XnxxRcL52nKA+k++uijVFZWNip/fD9jTnXqqac2uv86cuTITJ48OVtssUUOOeSQ9OvXz2e1MB9QqgAAAFjAbLfddvn5z39eWD60oaEhjz76aLbZZpvU1dUV9qupqcnkyZNTUlKS9u3bF1aLWGSRRZL8vy+elZaWFlZhmGrYsGE56KCD0qpVq5SVlaWuri6ffvppWrVqlf322y9LLLFE2rRpUzjPTjvtlKOPPrpw/NSbVE899VQaGhoyatSodO7cOcl3H6b+782oXXfdNbvuumtuueWWjBkzprDqw69+9avst99+6du3b/7973/nm2++aXTc1PO8/PLLjX4/J598cqH4cckll2TUqFGNjtthhx0KTwweN25cdtxxx5xyyinZdNNNf/gfIN+VI7bYYovCz3vttdc0K1X8rwkTJuT000/PcccdVyhCJMlaa62VzTffPH/5y19yzjnnFLa/9tpr2X///VNRUTHdm3D19fVZe+21c+ONNzZpzgDAguvYY4/Nq6++OtN9tttuu8J/9+7dOy+++GKOPvro3HHHHfnJT36S1q1b54033siGG26Yu+++OwceeGCjfNi3b9/07dt3mtfdZJNNcs455zQq3X7f559/nsMPP7zRtrFjx2b8+PGN5jTVTTfdlMUWWyyffvppll9++Sy55JJ56aWXCiXbxx57LCuuuGLhKXoz88EHH+Qvf/lL7rvvvpx99tlZdNFF88QTT+TFF1/MH//4x2n2Ly8vT0lJSU499dQ89NBDhaw5YcKE3H///UnSKMclyX777ZfPPvssEyZMyI477pj+/fvnz3/+c8rKyvLhhx/mP//5T6ZMmZLFF188a665Zs4888x88sknGThwYK6++upGXy6866678tFHH6V79+5JkjfffDPnn39+hg4d+oPXCgDQUs2Le5kNDQ35/e9/n8mTJ+fOO+/MoosuWhh7/vnnM2jQoJSVleXiiy9O586d88YbbyhVAAALrD59+qR379554403CtuqqqpyzDHHFFau3XPPPQsr1D777LOprq5Ov3790qZNm/Tp0yd//vOfC6WKxRdfPL///e8zZMiQHHXUUU2awxdffJEkWXXVVac7fuihh2a33XZr9Nno9z3yyCM566yzmnSu5LvVNLp06ZLFFlusycckyVtvvZW11167kDmnZ/Dgwfn8888bbfvqq69y/PHHZ8SIEWnTps0M740CLYtSBQAAwALiq6++yqGHHprDDz88vXr1yksvvZQLLrggSXLMMcfk4osvzm233ZZHHnkkI0aMyPLLL5+dd945N998cw466KD89re/LRQhfshqq62W5557Lsl3H2j269cvv/rVr/Kvf/0rvXr1yqOPPpq//OUvWX311ad7/PefBPzmm2/mhBNOyG233ZYVV1xxmvGpRo8enU8++SSvv/56Xnnlleyxxx755z//mY8//jidOnXKq6++Os38//cJxTMyvfMl3z21+U9/+lOqq6vz5z//eZrxTz/9NE888URh3lM9/fTT0yz7+r+mrvYx1cknn5zll18+O+64Y2pqajJ8+PDClwFPOumk7LTTTrnooosKNyPXX3/9vPvuu026PgCguL300kt59913Cx90/q8LL7ww3bt3L6yakCTHH398dtlll7z99ttZZ511ctRRR6WysjLDhw/Pyy+/3GiVrx+jtLQ077//fl577bW0a9cu999/f7bffvuUlpZm4sSJhSLH+PHjs+666xbKt/369ctCCy2UU045pZDTevTokWuuuSatW7fO1VdfnVtuuSV/+9vfMmrUqKy99trTnHvllVfOgw8+mBNPPDG77757TjvttJx88sk5/vjjs9pqq013vmVlZRkwYEBOO+20lJSUpKqqKnvttVd+8pOfFK7n+wYNGpRTTjklL7zwQg4//PBsuOGGefTRRzNo0KC8+uqrOfjgg/N///d/ue222wqZdPTo0enevXtOOeWUlJWVZdlll82VV16Z8vLyDB06NF9++WWj3x8AwPxoXt7LLCkpyZ///OcsueSSKSkpyXvvvZf7778/JSUlefXVV3PCCSfkZz/7WZI0Wj0XAGBBNGDAgKy44oo544wzCts233zzRvt8+OGH6dSpU5Jk6NCh6d69eyF7denSpbAC7lQrr7xykx5yMtWQIUNSV1eXTTbZJN9++20233zz9O/fP5WVlUmSq666KiUlJTMsVRx//PGNirI/5O23384XX3yRn//856mtrc22226bk0466QdXqxgyZEjeeuut9OjRIxUVFdl9991z9NFHF+7jjRkzJuecc04uueSS7LnnnoXjunbtmiT58ssvc+KJJzZ5nkDzUqoAAABYQCy++OI58MADc/rpp+ezzz4rfAA4ZsyYPPTQQ6mrq8tee+2V/fbbLxtuuGGeeuqp1NbWZvHFF89FF12UrbfeOh07dmzy+WpqavLUU0/liiuuSK9evXLkkUdm9913T/fu3dOjR48ceeSR6d69e/bZZ59069ZthgWHjTbaKCeccEJqampmeK7zzz8/d955Z5Zccsl07tw5f/rTn7L00kvnxRdfzNdff52PPvooiyyySIYPHz7d47+/MsSoUaPSp0+fwtPqvv3228JTV75v8uTJ+dOf/pSnn346Z555Znbeeedp9lljjTWme7Ntr732yvnnn19Y2eLmm2/O3Xffnerq6iy++OIpKytLQ0NDYf8LLrggL7zwQuEJx88880yOP/74PPXUU+nQoUMWXnjhXHLJJdl3330zatSo/N///V/hxuXWW2+dKVOmTDOHlVdeOddcc80Mf6cAQPFo3bp1hg4dmiuuuGK646NHjy5ktdra2kyePDkVFRW5++6707p160yePDl77LFHkuS4447LDjvskPLy8kycODFJCrlk5MiR2WSTTRrlvrq6uuy///6FDxrr6upyyimnZO+99250bPLdE4TvvvvufP311znggAPy4IMP5oYbbsjdd99d2Gdq9rrmmmsycODAnH766bnyyiunuaYpU6bkgAMOyEEHHZRTTjllhr+bxRZbLFdccUXOPffc7L///llnnXXym9/8Zrr7TpkyJWVlZRk6dGiOO+64nHfeeXn55Zez8cYbp6SkJCUlJY2epjz1mGeeeSaLL754rrjiiqy99tqZMGFCrrnmmtx0001Zeuml07Vr15x88sk58cQT07Zt26y99tq58sorc8kll6SsrKxRWXejjTZKz549Cz/36dNnhtcGANCSzct7mZ9//nleeeWVvP7663n++efzySefJEk6dOiQf//73/n3v/9d2Pf0009vlLcAABY0//uwuP9VU1OT6667Lvvvv3+SpLq6OiussEJhvKSkJKWlpRk7dmyhBDGrPvzww3Tt2jXHH398SktL069fv5x//vmFh6esuOKKGTFixAyP79y58yyd76OPPsr666+fI488MmPHjk2fPn1yww035JBDDpnpcZ988km22mqr7Lvvvvn4449z1FFHpUuXLoXPls8666z86le/arTa7PctueSSszRPoHkpVQAAACwgSkpK0rt372y88cYZPnx4rrvuujz55JMZM2ZMFl544TQ0NEzz9Lby8vLsueee2X777dO+ffsmn+uDDz7IXnvtlbXWWisLL7xwvvnmm/zlL3/JZ599lltvvTVLL710/vCHP2TkyJHp06dPdt555/zhD3/Ifvvtl3feeafwRbvvlx2mmjBhQp588smce+65mTBhQl566aUcdthhOfroo3PbbbdlzJgxhZt948aNyy9/+cscccQR2XbbbfPRRx/lrbfeytNPP52jjjqq8OW9p556qvD62223XU4++eTCMquXXHJJo6f9Jsn777+f448/Pp06dUq3bt1y1VVXNfoy31R1dXXTfTrwrrvumnvuuScvvPBCkmSfffbJdtttl4EDB+bKK6/M22+/nerq6iTflTz+/ve/58orr8xSSy2VJLnpppty0EEHpUOHDoXXXH311XPjjTfmkUceSUVFRWF7dXV1rr322kargtx///255ZZbZvTPBwAUmQMPPDBrrbVWLrnkktxwww2F/FJdXZ3f/OY3jVYMe+2113LAAQekvLx8hqt5Jcndd9+durq6bLvttoVVK6aWVl966aUsssgiSZJNNtkk55xzTiF77bnnno1KqeXl/+9jirFjx6Zv37758ssvU1dXl7/+9a858cQTU1ZWNk1ZoXXr1jnllFNSU1OT+++/PwMGDMgyyyyTjTfeOMcff3wmTZqUhRdeuEm/n5KSkowZMybLLrtshgwZkttvv73Rk+WmmjhxYlq3bp3VVlstRxxxRPbff/9UVFQUPuxt3779NPO84447svrqq2fs2LH5y1/+kkcffTS33XZbevTokauuuiqnnHJKqqurM2HChGy++ea55pprsuqqq+bmm2/Om2++mbKyslx//fXZZJNNkiTjx4/PmDFjmnRdAAAt2by8l1lTU5OHHnooG220UW6//fa89957091vzz33nCbPAQAUmwsvvDBt27bN7rvvnuS7lVv/9yFzrVu3zqRJk2a7VHHIIYc0KjQce+yx+eMf/1i4zzan9e/fv9HPRxxxRG655ZYfLFVcffXVhf9edtlls88+++TRRx9N79698+KLL+Zf//pXHnroobkxZaAZKFUAAAAsYKqqqvLf//43Q4YMyYorrpgtt9wyxxxzTI499tisscYa0z1m8uTJOfvss3PMMcc0aanUzp075x//+EcWWmih/Pe//82wYcNyxhln5NZbb02SHH744enevXsOPfTQHHLIIYVVGW688cYkybBhw3LAAQfkueeeS01NTaqrq7PYYosl+e6m2QYbbJDddtut0TlfeeWVvPHGG4XlUm+99da89957efDBB/PBBx+kXbt2+e1vf5tzzz03PXr0SJJGq0HMzPf3q6+vz1VXXZUtt9wyRxxxRPbaa68ceuihM1ypYkZWWmmlRk9Q6dixY957770MHjw411xzTY444oh06dIlSy21VB588MHCFwpfeeWVfPzxx4WbdGPHjs1bb72VX/ziF1ljjTWmOeeMVgCZ2ZcgAYDi8Morr2TAgAGFDz2//PLL7LbbboX8UFNTkwkTJqRv375paGjIpEmTMmDAgLz99tuF16itrW1UfGhoaJhhzphe2XR6ZpRf+vbtm88//zylpaX54x//mJVWWikDBw7MlClTMnjw4Gn2/+abb3LWWWdlk002yS9+8YtccMEFOeGEE1JRUZExY8bkP//5T4YPH57XX389a6+99gznc/bZZ+eNN97Ivffem+eeey79+vVLbW1t9tlnn0b7ff3114UPirfZZpu8+eabue666wqrpS2yyCIZP358Yf8vvvgil19+ec4666xceeWVWX311fP222/nqquuysMPP1zIoK+//npuvvnmfPnll+natWsmT56chRdeOK1bt05ZWVnat29f+Dd87bXX8uGHHzbp9wwAMD+YF/cyO3XqlGuuuSaTJk3KmWeeme222266+40YMWKGWRUAoBg8//zzueOOO3LXXXcVHvJWWVmZ999/v9F+48ePb/QQuB9rkUUWyZgxY1JTUzNNgWNuWHjhhTNy5MjZPm7y5Mk59dRTc9ppp6Vt27ZzYYZAc1CqAAAAWMAcd9xxOeSQQ3LBBRfkggsuKGz/+OOP06tXr+ke88ADD+SFF17ISSed1OTzLLTQQkmSVVZZJc8880zWWWeddOrUKVOmTMknn3ySCy+8MFdeeWW22GKL9OnTp9Gx77zzTn76058Wzn399dfnlltumemHoEOGDEmbNm2y3Xbb5dNPP80NN9yQK6+8Mq1atcpqq62WJLniiivy8MMP53e/+12S7woSSQpPRk6+W93iiCOOaPTlwO9/kFpaWppzzz230bkHDhyYSy+9dJo5Te/JdQ0NDbnmmmvyz3/+M4cffngeffTRJN99efAXv/hF7r333tx5552NnqY3dS4NDQ05++yzc/TRRxeexPfBBx/kmGOOyeDBgxstrft9hx9+eKMblxMmTMgyyywz3X0BgOKx/vrr55577klZWVlOO+209OjRI9tvv32S5PPPP88333zTaP9VVlmlUab46KOP8rvf/S5nnHFGNtxww7z66qs566yzcsEFFxRWtphTJk+enPPPPz+LLLJISkpK0q1bt9xwww1ZZpllUldX16isMNXDDz+ckpKSlJaW5p///Ge22267jBw5Mj//+c/z0UcfpW/fvllnnXVyyimnTPecH3/8cU477bR8+eWXueGGG7LYYovl17/+dZLkhBNOyE9/+tP8/Oc/T/JdThs6dGhWXXXV1NfX57rrrsvdd9+d8847L6effnq+/fbbdOjQIaNGjSq8/mKLLZZTTz21UYabWhy+4oorsvnmmyf5rgxbXl5eKA+3bt06v/nNb/Lll1+mrKwsu+22W2pqapJ89xS/76+iscYaa6S2tjZJ41U/AADmF/PqXub3zehpwtNbrQwAoFgMHz48xx57bPr3759VVlmlsL1bt24ZNGhQ4ecRI0akpqZmtlepSJI//vGPOeCAAwoPQhkyZEiWXHLJuVao2G233XLppZdm6aWXLpxv+eWXn+kxEydOzB577JFBgwYV5jX1uDfffDOffPJJjj766EbH9OjRI1deeWXhAYDA/MUddgAAgAXI66+/ntGjR0/ztLUvv/wy77zzTtZdd91pjqmrq8vNN9+cww8/PK1bt57lc44cOTLXX399oXRQUVFReLrxySefXChffN/999+fTTbZJEmy66675s0338zLL7+cbbbZZobnadWqVbbffvssuuiieeGFF/K3v/0tZWVlufjii3PYYYelVatWOe2003Lcccdl4YUXTvJdqaJDhw55+eWXC6+z3Xbb5eSTT25UtEiS0aNHF1bL+F/HH398k1aqqK+vL3yx7/LLL0/Hjh0LY1988UX222+/7LPPPvn3v/+dTTfddJrXu+mmm5IkO+20U2Fb586ds+mmm+bUU0/NX//612mOmTBhQm6++easvvrqhW0vvvhiHnnkkcLPTV2xAwBY8FxxxRV55JFHMnz48Lzyyis599xzs/HGG6e8vDzvvvtu4Qv/zz33XB599NEsvvjiSb5bBeLwww/P2muvnZ/97GdJkq5du6ZTp07ZZZddcvbZZ2ezzTZrdK6mZI6JEyc2evrv1JLqG2+8kf79+xeKATU1Ndljjz1SVlaWurq6HHXUUdOc69Zbb815552Xjz76qNFKFaNHj857770301XFGhoact5556Vdu3a5+OKL065du8LYr3/965SXlxeuO0lefvnl1NfXp7y8PDvvvHO+/vrrXHfddVlrrbXyk5/8JCeffHJ22WWXvP7662nVqlU6duyYDTbYINtss02qqqoanbumpib/+te/prmm6Rk3blyOPfbYdOzYMf/4xz9SVlaWu+++uzC+2mqrZccdd8zxxx+fX/ziFz/4egAALcm8vpc5Na/ObKUK99EAgGI0adKkHHrooenVq1e23HLLwgNO2rZtm/XWWy/jxo3L4MGDs+OOO+bqq69Oz549f9QKX6uuumrOPPPMnHjiiRk9enQuuuiiuVpwXWWVVdK/f//8/ve/zwcffJCbbropp556apLvPt+trq7Owgsv3GiF3jZt2qRDhw4ZMGBA9tprr7z66qt55JFHcsMNN2SttdbKE0880egcW265ZQYPHpwll1xyrl0HMHcpVQAAACxAbr755vzyl79MmzZt8uabb+a///1vVl999Vx33XX52c9+lqWWWqrw9Nz6+vqUlpbmwQcfzLfffltYAaK8vDylpaUZPXp0kuTrr79OSUlJ6urqUldXV/ji3fDhw/PII4/k+uuvz7777lt4kkjyXdHi66+/zquvvjrNKhUPPvhg3nvvvVxyySWFbQMGDEhNTU1efvnlfPTRR+nZs2ejY0aPHp0LL7wwt956axoaGnLiiSfmuuuuy6qrrpqXXnopyy67bHbbbbfss88+GTBgQO65556UlpZmrbXWalSoSL5bMWL48OGNShU1NTX5/e9/nw022GCaJ4pMXe3i+4YPH54PPvggdXV1jZ4IPPUpwQceeGBh25gxY/LKK6/ktttuy4033pjzzjsvf/zjH7Prrrtm//33LzwR5Y477sjAgQPTpUuX7Lnnnvnqq6/y9ddfZ5FFFsmKK66YoUOH5rHHHsvWW2/daC77779/llhiiUbbNtxww2y44YZ58MEH8/HHH6e6urqw8gUAUFyOOuqodOvWLffee28uvfTSPPDAA6mqqsr48eOz5557FoqjO+ywQyHXjBw5MoccckhWWWWVnHPOOYXtbdq0yXnnnZfrrrsuv//973PkkUfmsMMOK5xrahb6vvr6+jQ0NOSFF17IIYcckrZt22adddYpjE+aNCnJdyuLPfvss4Xt3bp1y5133llYfWv8+PHp169fYfyJJ55ImzZtsvrqqzcqLey555656aabss022xS+ZPf9eU39klxJSUkuuuiiRh+Ufl/v3r0bXdcFF1yQbbbZJiussEK22Wab7L777oVCbteuXXPXXXdlwoQJufzyy/PBBx+ka9euhbw59Xcw1RVXXJHKysp07ty5MKfpfXnvs88+y4MPPpg+ffrkgAMOSNeuXXPttdfmmmuuSevWrXPAAQfkV7/6VXbffXerVAAA86V5eS8z+X+F3pmtVDG9lWkBABZ0zz33XKqqqlJVVZW77rqrsP3JJ5/MCiuskAEDBqRv3745++yzU1dXl1tuueVHne/QQw/NZ599lt/97ndZfPHF85vf/CaHHnroj72MGerXr1/69euXffbZJ8sss0z+P/buPEyruu4f+BtmQcTEnVRcHlNRCEkUF7TcMItcIX20rHw0FZdcc8HKFNMESzEtd1MjV0DUzD33Bbcy3MBwxQU1DAEZBmbm9wcX98+JHQfumTmv13VxPd7ne5bvfb5z7t7POedzzkknnZS99947yexzcLvsskueeeaZrLjiio2WO/fcc3Pqqafme9/7XtZbb72cf/756dWrV5I0yplzzGsa0HI4yw4AANBKTJkyJWPGjMnJJ5+cZPZN+lVVVdl9993z61//unTDW21tbZJkxowZqaury9ChQ/Od73wn7du3z+67756GhoZUVFSkTZs2+dKXvpTvfOc7aWhoSG1tbSoqKvKPf/wjtbW1Oe2001JdXZ0//OEPjW6MS2bf5HbJJZdkq622yvbbb1+aPm3atAwbNiznnntu6W0Sc1RXV2fgwIH58pe/3GiZJBk6dGj69OmTTTbZJMnsm/5uu+22nHTSSdlvv/0yatSo7Lvvvunbt2+uvPLKPPXUU3MVZsyx5557ZsiQITnvvPNK02bNmpXVV189/fv3n2v+GTNmzDXttddey09/+tP069cvK6+8cmn6zJkz55r3jTfeyNprr52LL744a665ZpLkz3/+cy699NJGb/FYbbXV0qdPn2y22Wb5yle+knXXXTfrrLNO6XWy11xzTa677rq5iiqOPvroeX7PJBk/fnyeffbZnHjiifnqV7863/kAgNbr9ttvzy233JLf/e53efjhh3P33Xdn7733zuOPP56hQ4fm6quvTpK8/fbbqa2tzb/+9a8ceOCB2WKLLfLb3/52njfrH3zwwVlnnXXy05/+NF/72teyzTbbJEk6dOiQSy+9NMsvv3xp3lmzZmXGjBnp3bt3rrrqqmy22WaNij2nT58+1/obGhoyc+bMUm6dOHFi7rjjjqy99tpp27Zt6uvrc/755+fggw9OknzjG9/IlltumSSZPHlyHnzwwdx6662ZOXNmrrjiijzyyCPp06dPktlFHB988EF23nnnhe67urq6HHbYYdlnn33SqVOnDBgwIG3btm1USDJHZWVlVlxxxZxzzjn5+c9/nm233bbUVlNTU/ou7777bv72t79l0KBBpYKOWbNmlYpLPq9Tp04ZOnRoevTokZ/85Cd56623ctZZZ2WFFVZIkgwaNCg///nPc8MNN+Tmm29WRAsAtCjL8lzmHHMKJhb0poo52wMAaO3Gjh1b+u8+ffo0+vzf+vTpk3vvvTdjxoxJz549Sw8bWVJVVVU555xzcs4558x3ns6dOy+wT4tjxRVXzO9///vF3s5aa62V6667bpG20VR9BcqnTYN3FwIAALQaM2fOTENDQ+lG/IX5z3/+k6uvvrp0M//iqKurW6LXujY0NMz3icDz8/7776dt27altzpMnjw5yy23XNq1a5dZs2alTZs2pb589tlnjW7kWxoW5zvMmDGj9JTkL6K2tjazZs1a6t8NAGhd3n///ay66qqprq5OTU1NqqqqFprh7r///uy8885p27btAuf76KOPlsrr7BsaGvLiiy9m4403LuWomTNnpqqqqjTPmDFjstFGGzUqUm1oaMh5552XjTfeuPSkueuuuy6rrbZavv3tby92Bq2rq0tDQ8MXfgtEbW1tpkyZklVXXXWJlq+vr88999yTXXfdda6+1NXV5cUXX0yPHj2+UB8BAMphWZ7LnGPatGnp0KHDEi0LAABA66WoAgAAAAAAAAAAAAAAKKQFP2YKAAAAAAAAAAAAAACglVJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAFAyevTo/POf//zC66mtrc3IkSPz0UcffaH1/POf/8yQIUMyffr0JV7H66+/noMOOigffvjhF+rLvHzyySeLvUxDQ0MmT57c5H0BACiSzz77LBMnTix3NwAAaELlyHgNDQ3LdHsAAEXjPB7QUiiqAFqUTz/9NO+888482z777LMMGzZsvu3z88ADD+QnP/lJU3QPAKDFu/3223PttdeWPnfr1i1dunSZ778HH3xwnut54YUXMnDgwLz++uuLtN0ZM2Zk5syZc02fPHlyrrrqqowePXqutlmzZqWmpmah615zzTXzwgsvZPjw4aVpDQ0NmTFjxhcq1nj88cfzrW99a7GLNe66667st99+ef/995d42wAALdGMGTNy+umnN7qI+qc//SnHHHNMJk2atFjruvPOO9O/f/+m7uJ8zZgxIzNmzCh9bmhoyLRp01JfX7/M+gAA0ByVI+NNmzYtF110UaN8Ni/PP/983njjjfm2P/jgg9lzzz3z5ptvLlY/P2/8+PGl/77//vszcODAL3TOEQCgOViWGe+5557Lq6++usR9/W933313fvWrX+Wzzz5bouUfeOCBuR4c+Omnn37hhwkCzV9luTsAsDjuueee/PKXv8zNN9+cr371q43apk+fnrPOOivrrLNO1llnnUVeZ8eOHXPvvffm2WefzZZbbpkkqa+vz4wZM1JRUZHq6uom/Q4AAM1ZZWVl2rVrV/pcXV2dK6+8Mj179syjjz6aNm3aZPvtt0+SfOMb30hVVVWSZMqUKZk2bVppuVtuuSVdu3bNeuutlw8++GCe2+rQoUO+9KUvJUl++ctf5tZbb51vvw4//PB5Tt9oo43yl7/8pfR5t912m+9F0AsvvDAXXnhho2l9+/bNBRdcMN/tzs8zzzyTE044IYMHD84aa6yxWMv27ds3Y8eOzYEHHpjhw4dn5ZVXXuztAwA0Zx9//HF22mmnRtOGDh2aXXbZJW+++WaGDBmS3/72t0mSp59+Oh999FGjTPThhx9mhRVWSEVFRZJk5syZqa2tzdNPP5333nsvBx98cKqqqkpZtL6+Puecc04OOeSQrLnmmkmSd955J7NmzUplZWXatGkz3742NDRk1qxZadOmTdZff/35znfSSSeloqKilB3fe++97Lzzzhk1alQ23XTTxd9JAAAtTHPIeHNMnz49d911Vz777LOccsop8+3zOeeck+222y7HH3/8XG0NDQ256KKLst566y0wB37ejBkz8v777+edd97JK6+8ksceeyyjR4/OkCFDstdee+XJJ5/Myy+/nPbt2y/S+gAAyq05ZLwRI0bkb3/7W66//vpssMEGSZKLL744F110UaN+tWvXLv/85z8X+H1qampy3nnn5Zvf/GaWX375Rd4PJ510UrbbbrvsvffeOe644/L73/8+7777bgYNGpRbbrkljzzySE499dQ89thjWWmllea7nmOPPTavvPLKAvPgtGnT0rt37wwaNGiR+wcsG4oqgBbljjvuyHe/+91SQcX06dPzn//8J1VVVaXq0tra2kyaNCn19fWZOXNmKYB9+OGH+frXvz7fdX//+9+fa9oZZ5yRAw44YCl8EwCA5mX69OlZbrnlSjedPfbYY9lkk01SUVGRqqqqtGvXLo899lj+/e9/Z5dddiktN+cE2OWXX57LL798rvXusMMO893mYYcdlhNPPDFJ8rOf/SynnHJKqqqqUltbu9D+VldXl26A+7yqqqqcfPLJOfDAA5MkV1xxRdZYY43stddeSWa/3eKoo47KEUccka5duy7wBrv5+eSTT/LTn/40v/rVr7Ljjjsu9vJJcvzxx2fy5MkZOHBgLr300iVaBwBAczUn0z3wwAPp3Llzdt5553To0CFJcswxx2TAgAH58MMPs+KKK+bxxx/PxRdf3CiXzesc3korrZTTTz89Q4cOzbe//e20adOmtMzdd9+dG2+8Mf369SudCzzjjDPyxBNPpKKiojRfQ0NDZs6cmaqqqkbT6urq0r1799x8882l7Y0bNy5t27YtzTdjxowst9xypScRT548OUkyceLE0kNZZs6cmQ4dOizWA18AAFqKcme8W2+9NWPHjk1l5ezbXDbbbLPU1dXlN7/5Tek84YYbblh6EMwqq6yS5ZZbbr4P0Lv22mvz0ksv5aWXXkqXLl3mOc+xxx6bI488svR57Nix2X///fOVr3wlEydOzNe//vVcffXV6dq1a5LZb8bYe++9F3/nAgCUSbkzXjL7PN5bb72Vww8/PMOHD0/Hjh0za9as9O7dOxdffHGS2fcMnn/++Qv9PoMHD86ECRMycuTIjBw5cq72FVdcMSNHjiw9+G+OAw88MAcddFC23HLLUhHINddck2222SYVFRV56aWX0rNnzwUWVCSzizr23nvvRhnyv5199tmZMmXKQr8LsOwpqgBajJdeeikvv/xyhg4dmvHjx+eJJ55I+/bt87Of/Sxt2rQpnUCb86SR+vr6VFZWlipU57TfcsstpRNjp512Wg444IB07949SfLyyy/nwgsvzPnnn5+KiopGT2kGAGjNTjnllKy99tpp06ZNxo4dm1GjRmXgwIFJkrq6utTV1aWqqirLLbdc6urq0tDQ0Gj5du3aZauttsqf/vSn0rRHH300FRUV6d2791zb+8EPftDoguacE1dTpkzJtttum5VWWqmU3z6vrq4un3zySUaPHj3Pk1Zt2rRJVVVV6uvrU11dnRdffDHrrbdeKde1a9cuTz31VA499NC0b98+dXV1i72vLr/88my//fbZddddF3vZzzvttNOyxx575NFHH11g8S8AQEszrxxXWVmZd955J5WVlTn//PPz3nvv5S9/+UuWW265LL/88nnxxRdLD1L55z//maqqquy3337ZZZddcvjhh2fWrFmprq7OTTfdlBtvvLH01LopU6bknHPOyVFHHVW6mS2ZndnmPCFvjldeeSV77713rrrqqmy99daN2v47Fx511FH5+OOPS+uoqalJkjz++ONJUsrDJ5xwQtq2bZuGhobU1tbm29/+doYMGbLE+w4AoLkqd8ZbZZVVss4666Rt27ZJkrXXXjtJMmbMmNx///35yU9+klVXXTW/+MUvsvHGG+enP/1poxv4Pu/vf/97LrjgglxwwQVzPRSmoaEhRxxxRD799NMceuihjdo222yzPPfcc2nfvn3222+/bLPNNtluu+2SJFOnTs3YsWNz7rnn5txzz2203KabbppRo0Yt7i4HAFjqyp3xktkP0zv//PNz+OGHZ9KkSenYsWM++uijdOzYsVTgUV1dvdCH5d144425/vrrs+222+ayyy5rdN/fm2++mX333TeHHXbYXAUVH3/8cd58880MGDAgL774YhoaGvLcc89lxRVXzBprrJG33norTz31VHbffffSMvX19amtrc1yyy3XaF1t2rTJddddl9tvv32+/Zw0aVL69OmzwO8ClIeiCqBFaGhoyLnnnpsBAwZklVVWyYUXXpgHHnggt956a1566aVUVlZm2rRp6dmzZ6OLovX19aV1zDnBVllZmYaGhlRXV+fBBx9M3759SyFq1qxZefLJJ0vh6b9vFgQAaK2mT5+e1VdfPe+9915eeOGFnHvuudlzzz1z3nnn5c9//nN++MMfpk2bNmloaMjtt9+eAQMGNFp+Ttaao7a2NoMGDcq3v/3teRZVJJnrJrckpVx22WWX5Wtf+9pc7W+99Va++c1vLrD4tW3btundu3dmzJiRhoaGtGnTJtdff32pvaGhIYcddljq6+vTu3fvXHXVVfNd13+rra3NiBEj8uc//3mRl5mf6urqHHDAAbn++usVVQAAhXDFFVfknnvuyZe//OXStNVXXz3HHXdcGhoa8vDDDyeZnQk/+uijvPTSSzn33HPTtm3bUkHuueeem9VXXz1//etfk8wuzr3wwgvnyo7zypoL8t/z33fffY0+H3fccVlxxRUzaNCgJLMvfm677ba58cYbs/HGGy/WtgAAWpNllfF22GGHPProo7nggguy5557Zq+99sr06dNzxRVX5Oyzzy49AGXUqFELPHf4/PPP57DDDssPf/jD1NTU5L777mv0donrrrsuL7zwQkaMGFF6S+/ntW/ffp7rfeihh/KVr3wlV1xxRaPp3//+99OrV68F7EEAgOZnWZ7HS5JOnTpl5MiRpWvOY8aMyW677bbI/b3++utzzjnn5Be/+EVuvfXW/PjHP85FF12UlVZaKR988EEOOeSQ9OnTJ/vuu+9cy3788ce58cYbU11dnd///veZMWNGHnrooay44op58803s8IKK+SVV17Jyy+/3OhhKuuuu+5c5xBnzpyZXr16ZaeddppvX//yl79k5syZi/zdgGVHUQXQIjzxxBN5+umnS+Hs/vvvzwUXXJDVV18906ZNS319faMCiPr6+syaNSsNDQ1znTR79dVXs88++6SysjKzZs3KscceW6pknbOOzTffPLNmzcoJJ5yQww47bNl9UQCAMpk2bVpWW221vPnmm/ne976XPffcs9R2wAEH5Lzzzstxxx2XddZZJyeccEKS2U/7mJ9LLrkkb7/9di677LJcdtllpemdOnXKQw89NN/lZs2alST53ve+t8D+zpgxY54XMBsaGlJRUZHRo0enuro6AwYMyP/8z//klFNOKc3TtWvXXH311dl6660X+4TVG2+8kRVWWCEbbbTRXG2nnnpqPvvss9TW1ubJJ5/MSSedlHHjxuW2227Lt771rQwePHiuZXbccce5LrQCALQW3/zmN5P8/7dAVFdXp0+fPjn77LMbzTdy5Mj84Q9/aDTt1ltvzbrrrpuZM2fmlVdeSadOnTJz5szSxdSGhobMnDmz9Aba1VdfPX/729+atP81NTWlN+SuscYaWXnllUttVVVV2Wqrreb5ND8AgNasnBlv2223TX19fW666aYMHTo0yy23XA488MBFfqPss88+m4MOOii77LJLjj/++Jx11lm54YYb8vHHH+fHP/5xHnrooQwZMiQ/+9nP5nn+b+rUqamtrU1lZWXp6cT/+c9/Ul1dnb/85S/ZZZddGt14OG3atLz33ntzvSUNAKC5KUfGa2hoyJgxY7L88sunTZs2WXnllbPKKqvkrrvuymuvvZbf/OY3jbYzbdq0jB49Ossvv3waGhqy2WabJZl9n+Dbb7+dX//619ljjz2y11575Ygjjki/fv1y7LHHZujQoenZs2d+9atfzfO7b7LJJrnhhhty1VVX5c0338zkyZPzrW99K5WVlTnooINyzTXXZPXVV89dd92VNm3a5I9//GOefvrpXHTRRaV1TJ8+Pe3atcuhhx6af//73wvc1/3798+aa66Z+vr6zJw5c4EFwcCy5Ww/0CJsueWWOfjgg7PJJptkxIgR2XHHHbPrrrtmxowZ6dmzZ6N5f/jDH5b+u2/fvrnggguS/P+3VnTv3r30douePXvmt7/9bak69Nlnn833v//90qu85gRFAIDWbsqUKVlllVUyffr0rL322o3aqqqq0q5du4wbNy6vv/56TjjhhLleZfp5I0aMyHXXXZebbrqpdPGxoaEh++yzT/baa6+53mrxecsvv3zGjh27xN+jpqYmVVVVpSegzDkZNW3atEbzzcmG83ra3IK8//77WWONNebbfv/99+eMM87Il770pZx11ln5/ve/n+OPPz6//vWvc8opp2SVVVZpNH+nTp3y8ccfp7a2ttRnAIDW4t57703nzp2z8847L3TeOQ89SWbfrPbHP/4x06ZNy0EHHZRp06bl5JNPzu67757a2to8/PDDjW5WGzlyZH7/+983ef+PPfbYuQqChw4d2ujzt7/97STJPvvsk3PPPbfJ+wAA0NyUM+NVVlamU6dO6dixY1ZeeeX06tUrV1xxRd58880ceeSR2WCDDRbYny233DJDhgxJnz590rZt2/zyl79M586dM2TIkPzzn//Mgw8+mO9///s54IAD5rn8FVdckUsvvbT0ecyYMRk0aFD69euXhx56KEceeWSS5JBDDsnOO++cTTfdtLRdAIDmrBwZr7a2Nt/73vdSXV2dmpqaHHrooenbt29OPfXUHHTQQY3eDrvhhhumurq6dF9gr169MmzYsCRJ27Ztc+qpp5bm/dKXvpTjjz8+hxxySE4++eSsv/76Oemkk+b7ZtvJkydn8ODBefTRR3PNNdfkf//3f0tv1VhuueUyatSo1NTUZIUVVkiS/Oc//8kaa6yRjh07lr5Hr169UlVVlQ4dOqRDhw6N9tG81NTU5NNPP02PHj3yxz/+caH7HFg2FFUALUK7du1yyimn5OWXX87YsWNz++23l6Y/8cQTadeuXWpra7PtttvmqquuSs+ePUtPOZ5jxowZSZLllluu9AS5+vr6zJgxo3ST3Zx56uvr07ZtW0+aAwAKo1+/ftlggw3y4YcfzlW0miT/+te/8sEHH2SrrbbK+eefn9NOO22e63nzzTdzwQUX5MILL8w999yTq6++Ouecc05uu+221NTU5KCDDprncm+99VZ23333xe73T37yk0ZvFqupqSmdwEpmPxXkT3/6U/70pz81Wq62tnaxt5XMLsL47wKNz9tmm22y3377paKiIvfff38GDhyYDz74IL/+9a/z2WefzVVUMXXqVLkTACiM+vr61NTU5KOPPmo0fcqUKY0ebnLuuedm0qRJ+d///d8MGjQohx9+eKqrqxdYnLugtiU1ePDg1NfXp7KystFF15qamgwdOjS33HJLunTpkgMPPDC77LJLk28fAKAlWFYZ77zzzstdd92V2tra7L///rnjjjuywgor5JhjjskFF1yQPfbYI7/97W8X2t++ffs2+vyDH/wgDz30UO65554cccQROe644+a77FFHHZWf/OQnOeecc/LnP/85p512Wvr06ZO6urpss802pacvT58+PXV1denZs2cef/zxrLTSSgvtFwBAc7IsMl67du3y4osvJpmdyaqqqtKlS5f8/Oc/zy677NLomuxXvvKVPProo6XlPn9tta6uLu+//37Gjh2bF154IY8++mhee+217LbbbunVq1duuumm7LTTTtl4443To0ePdO7cOauvvnratWuXvn37ZvTo0Xn33XczfPjw1NTUpFevXunWrVsuvvjiPPHEE3njjTdSX1+fd999N2uvvXY+/PDDRsW81dXVpe9xxx13ZOrUqQvdv6utttoiv20NWHbctQG0GBMnTswxxxyTY445Jp06dcqsWbNSX1+fFVZYIZWVlaUKz6qqqiy//PJzLV9TU5MkWXHFFRtNO/bYY+eat7a2doFPXwYAaG3+7//+L0nyzjvv5NVXX52r/frrr8+2226bgQMHZq+99spee+01z/Wsv/76ue+++9K+fft06dIlxx57bPbZZ59MnDgxf/jDH0pP8PhvlZWVqa2tzb333pv11ltvkfrcr1+/uYoRpk2bltVXXz1Tp07NzJkzc8kll8z3SSCzZs1a7GKG9ddfP2+//XZmzJgxz1exznmLxZxX1FZVVS3wSSSvvfZa1l133aVyEyAAQHPTtm3bPPzww7nrrrtK5/NmzpyZ5ZdfPquttlqS2W89GzlyZLbYYotGy1ZUVJQy0w477DDXutddd90m7++8bn578skn84tf/CJTpkzJWWedle9+97sLffIcAEBrtqwy3ne+853suOOO6dChQ0aOHFl6aMpDDz2UTTbZJAcccEC++tWv5q9//esi9buhoSH33XdfLrzwwrz//vsZMmRIvvWtb5UewjdHdXV1Ke/NedPsY489lsrKynz88cd5/fXX8/Wvfz1VVVX59NNP07Fjx0bfa37nQwEAmrNynMebs8xVV12Vn//85/Pt21133VUqanj77bezxx57pKamJmussUa23HLL/OhHP8oOO+yQlVdeOUmy//77Z9y4cXn88cfz8ssv5+67787bb7+dHXbYIX379s0OO+yQ3r17p7q6OgcffHDWWmutbLLJJkmS8ePH50c/+lGefvrpPPPMM1l77bXz5ptv5pvf/OY8+/b73/8+3bt3z7bbbpsk+eSTTzJkyJCceeaZpSx5//33Z8qUKYoqoBlSVAG0GEcddVTeeeedjBgxIpdcckk222yzfPWrX82FF17YaL45r/mao2/fvrngggsyZcqUVFdXp2PHjpk0aVLatm2bZ599dp4XPevq6tLQ0OCCKABQKJMmTcq7776bO++8M1/96lez7777Jpn9Fonhw4dn6NCh+cpXvpI99tgjV1999XzX0759+3z44Yd5+OGHM3PmzNITTKZPnz7fZf67qODss8+e5wXQdu3a5W9/+9s8l5s8eXI+++yzrL766rnoooty8803p6amJsstt1zpJFUyu/Ciffv2ufvuu7PqqqsuZK80tvbaa2edddbJHXfcke9+97uLtey8DB8+fJ4nEwEAWrKZM2cmyVxvb/j5z3+en//859l7773Tv3//dOjQIcOGDcvIkSNL82yzzTYZNGhQXn755bneRDvH3XffXSpmTWY/Ae6qq65aCt/k//v0008zePDgjBgxIrvvvntOO+20ud5CBgDQmpU743Xt2jXJ7CLXP//5zzn55JOTJK+88kqmTJmSQw89dJG+x0cffZTbb789w4cPz+uvv16afvLJJ5fW+Xm33XZb6aa6JHn22WczZcqUdOnSJc8++2xuvfXW3H333bnqqqvyt7/9Lffff39p3osuuigvvvhiLrvsskXqGwDAslbujDe/ZU499dTU1dXlvPPOK00fMGBApk2b1ugtEeuuu24uv/zydO7cOZdcckmGDx+ee+65J8nsItr6+vpGb6Ctq6sr5bs5b9y44YYb8utf/7pRH2677bYkyVZbbZU//elPufjii/PAAw+kT58++de//pWePXvOs+9VVVV59NFH849//KO0vSS58sorS/chTp48uZRtgeZFUQXQYvzf//1fPvroo2ywwQZZY401stpqq6V9+/bZf//9U1VVlZqammy//fa5/PLLs+WWWyZJDjnkkNIT5SZOnJjVV189SfLjH/84b7zxRj777LN07NixUfHE5MmTs/nmm+f6669f5t8RAKCcHnrooay33no588wzc9hhh2WdddZJknz22WfZb7/9svPOOydJTjnllCy//PL5+te/Ps/1XHnllTnvvPPyP//zPznwwAPTv3//XHrppfn1r3+d3r17p0OHDnMt89/FrBUVFfnud7+b448/vjRt9OjROeqoo+bb/7feeisVFRVZffXVM3DgwAwcODC/+93v8tRTT+W6665LZWVlxo8fn3333TdnnnnmYhdUzPF///d/+f3vf59dd901HTt2XKJ1JMlzzz2Xv/3tb7n99tuXeB0AAM3Rxx9/nGR2vlxxxRWz++67N2qfOHFi1lprrUyePHmuZddee+1897vfzaBBg+a7/n/84x+N3iLx+ZvhloannnoqJ598cmbOnJnLLrtMUSwAUEjNJePV1NRkpZVWKj1EpaKiotGNcjNmzCi9xeLzJk2alMMPPzxjxozJ+uuvnxVXXDHbbrttrrnmmnluZ9y4cdljjz1SVVXVaPqVV16ZvfbaK88//3z22Wef3H333Xn99ddz//33Z6+99mr0EJgddtghF198cR566KHsuOOO8/3uAADl0lwy3n874IAD8qMf/Sgff/xxVltttYwfPz4PPfRQLr/88rnm3XrrrZPMfqtY//79c/bZZydJHnzwwZx11lmlB/bNmDEjm222WaMcmcx+k0X//v3zhz/8Ia+//np+97vfpaGhIXvttVe+853vJEl23333XHbZZbnyyiuzzjrrZK211ppnv2tra/P1r399rjdV/PjHP57rTRVA86OoAmgx5oSUOSZMmJDp06eXbvabc4JqueWWS4cOHVJfX58PP/ww2223XZLkzTffTKdOnZIkI0eOTENDQ374wx+mR48e+elPf5okuf3223PGGWfk17/+tbdUAACFc/PNN6dv377Zdttts+++++bTTz9NQ0NDNt100/zgBz8ozff5E1/z8oMf/CDbbrttunXrVpp2/PHH59BDD51nQUUy+0khC/o8x4Iy2lNPPZVNNtmk0VspjjjiiDz66KM59dRTc+yxx+bII4/MAQcckL59+y7wOyxIv379cscdd+Skk07KxRdf3Gh7i+q9997LCSeckCOOOGK+r7gFAGipxo0blxVXXDFrrrlmksYZ7tVXX82kSZPStWvXPPnkkwtcz80335zhw4envr6+0dPy7rrrriy33HKlz++++24Tf4P/7/rrr8+vfvWrfO1rX8sFF1xQOr/43955552ssMIKWXnllZdaXwAAyqm5ZLw333wz66+//nzXf+ihh2aFFVaYa/oqq6ySww8/PGussUY222yzXHTRRXnuuecW2Nckqaz8/7fVPPHEE3niiSfyy1/+Ms8//3zatGmTq6++Ok8++WTef//99O/fv9Gym222WXbaaadccMEF2WGHHVx/BgCaneaS8eb485//nN122y09evTIVlttldNPPz1Dhw7Naaedlu222y7f+MY35rts27Ztc+utt5YeaNfQ0JCZM2eme/fujeb7fEFuMvtewylTpuTGG2/MN77xjTz11FP54IMPMn369Oyzzz5JkvXXXz/bb799LrnkkgwcOHC+fTj22GMzbdq00hsqPv9/5/z3Tjvt5A240EwpqgBahAkTJuTaa6/Nhx9+mPfffz+vv/56qqur8/Of/7xUVPF5jz32WE444YRMnTq1VFQxevTo9OjRozRPmzZtcs455+S73/1u1lxzzWywwQY544wz8pvf/GaBJ+IAAFqje++9N+PGjcvFF1+cJDn99NOTzH4rxQ9/+MN5LvP5kz9J8vTTT6dLly6LvM05T+iYs67PmzVrVm688cbceOONjaa3b9++0efPX9S85557Sk8imaOqqioXX3xx9txzz9x99935+te/XiqoXVJt2rTJ0KFDc9BBB+Xggw/OpZdeOs8LtfMzbty4HHzwwdlxxx1z2GGHfaG+AAA0R08//fR8X2F//fXXp1u3bqULtXM8++yzefTRR/OTn/wklZWVqa+vz3777ZdBgwbl8MMPz8yZM0vzDho0KF/+8pdLn0eOHJlLLrmk9Hn69Olp165do6cEL0x9fX1mzpyZysrK0oXVp556KmeeeWb69++fQYMGNcqe/+3xxx/P2WefnT/+8Y+lt+gCALQm5c54STJz5szceuut2XXXXefbzwVlsT59+izwOy7MLbfckkMOOWSu73nttddmq622mufDUw4//PDsv//+uffee7Pbbrt9oe0DADS15pDx5njggQfy8ssvZ+WVV07fvn1z+umnp1+/funbt2+mTJmSW2+9dYHfpU2bNtlnn30W+qaKeVl11VVz7bXX5qmnnspvfvObjBs3Luuss07uuuuu7LHHHmnTpk2j4pB5eeihh3Leeeelurq6VJwya9asJMl1111XmlZfX58ZM2akW7dujfYNUH6KKoAWYfXVV8/bb7+dLbbYIvvvv3+6dOkyV8XmnKcZ19fXZ+utt87ZZ5+dr33ta1l99dUzadKkPP300znwwAMbLbPOOutkyJAhOfzww1NZWZkTTzwxO++88zL7XgAAzcXzzz+fY445Jquttlqj6TNmzMh11103z4uRW2+9dWbMmJFkdlHE1772tVx44YWLtL1jjz22USHF50+uJckvfvGL/OIXv5jnsh988EF+9atfpa6urlSY8fTTT+fFF1/M2Wefnffffz8ffvhhxo0bl2eeeSYPP/xw1llnnWywwQa57777sssuu6RHjx5Zc801s8oqq2SLLbbI5ptvvkj9nmOllVbKsGHDMmzYsFKhx7nnnltq79evX/r165ck6dy5c8aOHdto2R//+Mf50Y9+5Ol0AECrU1NTk3vvvTeHHHJIPvzwwzzxxBP597//nbZt2+bBBx/MLbfckquvvjrJ7KfHTZw4Ma+++moeeOCB3HbbbTn++OOTzL7gOKcoYtddd8166603321+PlfOmjUrX/va1xbYx/kVDSfJTTfdVFp+zhP4dtlll7z77rtp167dPJepra3Nvffem8rKymy66aYL3DYAQEtU7ow3Z9nTTjst//73vxtd8501a9Zc87755puZMGFCJkyYkKqqqvlu48knn1ysh8Sceuqp6dixY6Np06dPz3/+85/5ZszNN988AwcOTK9evRZ5OwAAy0JzyHhzTJw4MW+99VZOPPHE9O3bN8nsh+ets846efHFF7P55puXChTmp76+PnV1dZk2bVqS2de5GxoaSp9ra2uT/P97DD+vbdu26datW8aPH58PP/wwxx13XDp27Ji77rorW2yxRU4//fRMnDgxp556agYPHpza2toceuihja71br311hkxYkQ6duxYemjLhAkTsssuu2TkyJHp0KFDqZ8zZsyY77lGoHwUVQAtQrt27XLZZZctcJ6ampokswNQVVVVoyeUXH/99VlhhRWyzTbb5O23387777+fV155JU899VRGjx6dHXbYIUny29/+NqNGjUrXrl2zxhprZJVVVkmfPn2y9tprL70vBwDQDJx66qnznP7yyy/Pd5nRo0eX/ru2tjbV1dWL/DSN6urq0omrJPmf//mfRoUHC/LlL385Q4YMyfLLL1+atvHGG+eMM87IJptskksvvTQ33nhjvvrVr6ZHjx45+uijS0+Jq62tzdNPP53nnnsuL7/8cu67775sv/32i7Td/7bCCitkwIABi73cGmuskYMOOmiJtgkA0Ny98sorWW655dKvX79Mnz49p556anr27JkPPvggJ598co488shSYewWW2yRioqK7LXXXqmurs7AgQNL61lxxRVLFxa/+93vJkkmTZo01/bOOuusPPDAA6Wb2yorK3Pfffct9psqZs6cmZkzZzbKs3vuuWeefPLJnHjiiZk+ffoCl1911VVzyimnlC6OAgC0JuXOeMnsN+0+/PDDufLKK7PyyiuXptfW1pYe/DLH2LFjc8wxx2SttdYqXQf+b/X19dlqq61y6aWXzrN9/Pjx2XfffRvdvNepU6fSf8+aNSv19fVp37596W27Y8eOzb/+9a+8/vrrjXKhc4EAQHPUHDJeknz00UeZNGlSDj744Bx22GF57bXXMnz48Nx8883Zddddc/rpp+fGG29M375906tXr2y77bZZd9118/Wvf71R5qqvr8+tt9461xstevbs2ejzfxd2TJgwIX/6059y11135ctf/nL+8Ic/ZIsttkh9fX0+/vjj7Lnnntl6661zww03pGPHjqmurs7ZZ5+d5557Lpdccknatm2b0047LQ8//HBWWGGFRoUW9fX1+dKXvpR+/fo1mt7Q0JBPP/00++yzT04++eSFDxawTLRpmFfZFUAr8/rrr+e1117LrrvumgEDBuTdd9/NV7/61Wy55ZbZdddds9JKKyVJ/vOf/+SJJ57IP/7xj7zyyiuZPHlyhg8fnurq6vJ+AQCAZm7y5Mmpra3N6quvXu6uAABQZp9/0trUqVOzwgorZNasWbnjjjuyzz77LPF6P/jgg+ywww55+OGHS8UPv/rVr/K3v/0tgwYNWuJiWQAAFq45ZLzJkyfPdRPevMyaNSv//ve/GxVB/LfzzjsvL730Uq655pp5to8bNy577LFHRo0aNc+3ke2888456KCDGr2h4uGHH84RRxyRzTbbLBdddJFzpQBAs9ccMl6SvPTSS9lkk01y5pln5i9/+Ut23333fP/732/0VrE333wzt912Wx566KG0adMmw4cPb/RQlZ/97GdJkrPPPnu+33WzzTbLbbfdlk022aQ0vb6+Pr/73e+y3XbbzfV2sXvvvTfV1dXZcccdG01//vnns9xyy6Vr166Lv3OAZktRBQAAAAAA0CJNnz497du3L3c3AABoQssi49XU1KS+vr7R23C/qLq6utTW1sqnAADzsCgZb/r06amvr1/o22BnzZqVysrKpuwegKIKAAAAAAAAAAAAAACgmNoufBYAAAAAAAAAAAAAAIDWR1EFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQqosdwe+iPr6+syaNStt27ZNmzZtyt0dAKAFa2hoSH19fSorK9O2rbrT5kwGBACakhzYMsiAAEBTkgFbDjkQAGgqMmDLIQMCAE1pUXNgiy6qmDVrVsaMGVPubgAArUj37t1TXV1d7m6wADIgALA0yIHNmwwIACwNMmDzJwcCAE1NBmz+ZEAAYGlYWA5s0UUVc6pFunfvnoqKijL3Bmiu6urqMmbMGL8VwALN+a3wVJLmTwZcOP/bV37GoPyMQfNgHMrPGCycHNgyyIDAovK/fcCikAFbDjkQWBQyILAoZMCWQwZcOP/bV37GoPyMQfNgHMrPGCzcoubAFl1UMef1XhUVFf4QgIXyWwEsCq8Pbf5kwEVnH5WfMSg/Y9A8GIfyMwYLJwc2bzIgsLj8XgCLQgZs/uRAYHH4rQAWhQzY/MmAi84+Kj9jUH7GoHkwDuVnDBZuYTlQ6S0AAAAAAAAAAAAAAFBIiioAAAAAAAAAAAAAAIBCUlQBAAAAAAAAAAAAAAAUkqIKAAAAAAAAAAAAAACgkBRVAAAAAAAAAAAAAAAAhaSoAgAAAAAAAAAAAAAAKCRFFQAAAAAAAAAAAAAAQCEpqgAAAAAAAAAAAAAAAApJUQUAAAAAAAAAAAAAAFBIiioAAAAAAAAAAAAAAIBCUlQBFEJVVVW5uwAAwDImAwIAFJMcCABQPDIgAEDxyIBAU1JUARTCpl27paKiotzd+ELq6hvK3QUAgBZFBgQAKKaWngNlQACAxdfSM2AiBwIALC4ZEGhKleXuAMCyUFVZkWNv/Hv+9eHUcndliWy4xgq5cP/Ny90NAIAWRQYEACimlpwDZUAAgCXTkjNgIgcCACwJGRBoSooqgML414dT89J7n5a7GwAALEMyIABAMcmBAADFIwMCABSPDAg0lbbl7gAAAAAAAAAAAAAAAEA5KKoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSItdVPHJJ59k5513zoQJE0rTxo0bl/79+6dXr14ZPHhwGhoavnAbAADNixwIAFA8MiAAQPHIgAAAxSQHAgBFtlhFFZMmTcqAAQPy7rvvlqbV1tZmwIAB6datW0aMGJHx48dn5MiRX6gNAIDmRQ4EACgeGRAAoHhkQACAYpIDAYCiW6yiihNOOCF9+/ZtNO2RRx7J1KlTM3DgwKy77ro54YQTMnz48C/UBgBA8yIHAgAUjwwIAFA8MiAAQDHJgQBA0S1WUcVZZ52VH/3oR42mvfrqq+nRo0fat2+fJOnSpUvGjx//hdoAAGhe5EAAgOKRAQEAikcGBAAoJjkQACi6ysWZeZ111plr2tSpU9O5c+fS5zZt2qRt27aZPHnyErd17Nhxsb5EXV3dYs0PFEt9fX0qKirK3Y0m4fcOlh7H14I1xxxozOZvzr6xj8rHGJSfDNg8OBbKzxgsnH0zfzIg0BK1lhzo9w6WLsfY/DXHDJgYM2DBWksGTPzewdLk+Fqw5pgDjdn8Ofdffsag/GTA5sGxUH7GYOEWdd8sVlHFvFRUVKS6urrRtHbt2qWmpmaJ2xb3JNqYMWOWrPNAIbRv3z5du3YtdzeaxNixYzN9+vRydwMgSflzoAy4cPZR+RmD8pEBmxfHQvkZA5qKDAg0d60lB7aGDAi0HuXOgIkcCCxYa8mAiRwINC/lzoEy4MLZR+VnDMpHBmxeHAvlZwy+uC9cVNGxY8e89tprjaZNmzYtVVVVS9y2uLp3795qKs6ApldfX1/uLjSZLl26lLsL0GrV1dUJl4up3DlQBpy/OX/P9lH5GIPykwGbB8dC+RmDhZMDF48MCDR3rSUHtuQMCC2BDLh4yp0BEzkQWLDWkgETORCWJhlw8ZU7B8qA8+fcf/kZg/KTAZsHx0L5GYOFW9Qc+IWLKrp3757hw4eXPk+YMCG1tbXp2LHjErctroqKCn8IQCH4rQOak3LnQBlw4eyj8jMGNIXW8DfkWCg/Y0BTkQEBlg2/dUBzUu4MmMiBQHH4rQOak3LnQBlw4eyj8jMGNIXW8DfkWCg/Y/DFtf2iK+jVq1emTJmSUaNGJUkuv/zy9O7dOxUVFUvcBgBA8ycHAgAUjwwIAFA8MiAAQDHJgQBAkXzhN1VUVlbmrLPOyoknnpghQ4akrq4uw4YN+0JtAAA0f3IgAEDxyIAAAMUjAwIAFJMcCAAUyRIVVYwdO7bR5z59+uTee+/NmDFj0rNnz6yyyipfuA0AgOZHDgQAKB4ZEACgeGRAAIBikgMBgKL6wm+qmKNTp07p1KlTk7YBAND8yYEAAMUjAwIAFI8MCABQTHIgAFAEbcvdAQAAAAAAAAAAAAAAgHJQVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAITVZUcWoUaOy4447ZvPNN89BBx2UCRMmJEnGjRuX/v37p1evXhk8eHAaGhpKyyyoDQCAlkEOBAAoHhkQAKCY5EAAgOKRAQGAImiSooq33347Q4cOze9///vceeedWWuttTJw4MDU1tZmwIAB6datW0aMGJHx48dn5MiRSbLANgAAWgY5EACgeGRAAIBikgMBAIpHBgQAiqJJiipefvnl9OjRI926dctaa62Vfv365Y033sgjjzySqVOnZuDAgVl33XVzwgknZPjw4UmywDYAAFoGORAAoHhkQACAYpIDAQCKRwYEAIqiSYoqNtxwwzz11FN5+eWXM2XKlFx//fXZbrvt8uqrr6ZHjx5p3759kqRLly4ZP358kiywDQCAlkEOBAAoHhkQAKCY5EAAgOKRAQGAoqhsipVsuOGG2W233bLPPvskSTp37pxbbrkll19+eTp37lyar02bNmnbtm0mT56cqVOnzretY8eOi7X9urq6pvgaQCtVX1+fioqKcnejSfi9g6XH8bVkypkDjdn8zdk39lH5GIPykwGbB8dC+RmDhbNvFp8MCDRnrSUH+r2DpcsxtmTkQKC5ai0ZMPF7B0uT42vJyIDNk3P/5WcMyk8GbB4cC+VnDBZuUfdNkxRV/OMf/8iDDz6YW265JV/5yldy+eWX59BDD80222yT6urqRvO2a9cuNTU1qaiomG/b4hZVjBkz5gt/B6D1at++fbp27VrubjSJsWPHZvr06eXuBkBJOXOgDLhw9lH5GYPykQGbF8dC+RkDmpIMCDRnrSUHtoYMCLQ+ciDQXLWWDJjIgUDzIwM2b/ZR+RmD8pEBmxfHQvkZgy+uSYoq/vrXv+Y73/lONttssyTJcccdlxtvvDEdO3bMa6+91mjeadOmpaqqaoFti6t79+6tpuIMaHr19fXl7kKT6dKlS7m7AK1WXV2dcLkEypkDZcD5m/P3bB+VjzEoPxmweXAslJ8xWDg5cPHJgEBz1lpyYEvOgNASyIBLRg4EmqvWkgETORCWJhlwyciAzZNz/+VnDMpPBmweHAvlZwwWblFzYJMUVdTV1WXSpEmlz9OmTctnn32WysrKvPDCC6XpEyZMSG1tbTp27Jju3btn+PDh82xbXBUVFf4QgELwWwc0N+XMgTLgwtlH5WcMaAqt4W/IsVB+xoCmJAMCLH1+64DmSA4EWPr81gHNjQzYvNlH5WcMaAqt4W/IsVB+xuCLa9sUK+nZs2fuu+++XHPNNbnjjjty5JFHZrXVVssPfvCDTJkyJaNGjUqSXH755endu3cqKirSq1ev+bYBANAyyIEAAMUjAwIAFJMcCABQPDIgAFAUTfKmir59++aNN97Itddem48++igbbbRRLrroolRVVeWss87KiSeemCFDhqSuri7Dhg2bveHKyvm2AQDQMsiBAADFIwMCABSTHAgAUDwyIABQFE1SVNGmTZscffTROfroo+dq69OnT+69996MGTMmPXv2zCqrrLJIbQAANH9yIABA8ciAAADFJAcCABSPDAgAFEWTFFUsTKdOndKpU6fFbgMAoGWTAwEAikcGBAAoJjkQAKB4ZEAAoLVoW+4OAAAAAAAAAAAAAAAAlIOiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKaakUVfzmN7/JgAEDSp/HjRuX/v37p1evXhk8eHAaGhoWqQ0AgJZDBgQAKB4ZEACgmORAAIDikQEBgNasyYsqxo0bl+uvvz6nnXZakqS2tjYDBgxIt27dMmLEiIwfPz4jR45caBsAAC2HDAgAUDwyIABAMcmBAADFIwMCAK1dkxZVNDQ05PTTT8+PfvSjrLvuukmSRx55JFOnTs3AgQOz7rrr5oQTTsjw4cMX2gYAQMsgAwIAFI8MCABQTHIgAEDxyIAAQBE0aVHFzTffnFdffTWdO3fOgw8+mJkzZ+bVV19Njx490r59+yRJly5dMn78+CRZYBsAAC2DDAgAUDwyIABAMcmBAADFIwMCAEVQ2VQrmjZtWoYOHZr11lsvH3zwQW677bZceuml2XzzzdO5c+fSfG3atEnbtm0zefLkTJ06db5tHTt2XORt19XVNdXXAFqh+vr6VFRUlLsbTcLvHSw9jq8lIwM2T3P2jX1UPsag/GTA5sGxUH7GYOHsm8UnAwLNWWvJgX7vYOlyjC0ZORBorlpLBkz83sHS5PhaMjJg8+Tcf/kZg/KTAZsHx0L5GYOFW9R902RFFffdd1+mT5+ea6+9NiuttFIOP/zw7LHHHhkxYkT69evXaN527dqlpqYmFRUVqa6unmfb4gSoMWPGNMl3AFqn9u3bp2vXruXuRpMYO3Zspk+fXu5uAJTIgM2bfVR+xqB8ZMDmxbFQfsaApiQDAs1Za8mBrSEDAq2PHAg0V60lAyZyIND8yIDNm31UfsagfGTA5sWxUH7G4ItrsqKKDz74IJtttllWWmml2SuurEyXLl3y7rvvZtKkSY3mnTZtWqqqqtKxY8e89tpr82xbHN27d281FWdA06uvry93F5pMly5dyt0FaLXq6uqEyyUgAzZPc/6e7aPyMQblJwM2D46F8jMGCycHLj4ZEGjOWksObMkZEFoCGXDJyIFAc9VaMmAiB8LSJAMuGRmweXLuv/yMQfnJgM2DY6H8jMHCLWoObLKiii9/+cuZMWNGo2nvvfdeTjnllFx77bWlaRMmTEhtbW06duyY7t27Z/jw4fNsWxwVFRX+EIBC8FsHNDcyYPNmH5WfMaAptIa/IcdC+RkDmpIMCLD0+a0DmiM5EGDp81sHNDcyYPNmH5WfMaAptIa/IcdC+RmDL65tU61oxx13zPjx43PDDTfkgw8+yHXXXZdXXnkl22+/faZMmZJRo0YlSS6//PL07t07FRUV6dWr13zbAABo/mRAAIDikQEBAIpJDgQAKB4ZEAAoiiZ7U8VKK62UK6+8Mueee27OPffcrLbaarnggguy3nrr5ayzzsqJJ56YIUOGpK6uLsOGDZu98crK+bYBAND8yYAAAMUjAwIAFJMcCABQPDIgAFAUTVZUkSRf+9rXcuONN841vU+fPrn33nszZsyY9OzZM6usssoitQEA0PzJgAAAxSMDAgAUkxwIAFA8MiAAUARNWlSxIJ06dUqnTp0Wuw0AgJZLBgQAKB4ZEACgmORAAIDikQEBgNaibbk7AAAAAAAAAAAAAAAAUA6KKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAopKVSVHHIIYdk5MiRSZJx48alf//+6dWrVwYPHpyGhobSfAtqAwCg5ZEDAQCKRwYEACgeGRAAoJjkQACgtWryoorbb789jz32WJKktrY2AwYMSLdu3TJixIiMHz++FKoW1AYAQMsjBwIAFI8MCABQPDIgAEAxyYEAQGvWpEUV//nPfzJ48OD8z//8T5LkkUceydSpUzNw4MCsu+66OeGEEzJ8+PCFtgEA0LLIgQAAxSMDAgAUjwwIAFBMciAA0NpVNuXKBg8enD59+mTGjBlJkldffTU9evRI+/btkyRdunTJ+PHjF9oGAEDLIgcCABSPDAgAUDwyIABAMcmBAEBr12RFFU899VSefPLJ/OUvf8mvfvWrJMnUqVPTuXPn0jxt2rRJ27ZtM3ny5AW2dezYcbG2XVdX1zRfAmiV6uvrU1FRUe5uNAm/d7D0OL6WXLlyoDGbvzn7xj4qH2NQfjJg8+BYKD9jsHD2zZKRAYHmqrXkQL93sHQ5xpaM68FAc9VaMmDi9w6WJsfXknMusPlx7r/8jEH5yYDNg2Oh/IzBwi3qvmmSoooZM2bkl7/8Zc4444yssMIKpekVFRWprq5uNG+7du1SU1OzwLbFPYk2ZsyYJe880Oq1b98+Xbt2LXc3msTYsWMzffr0cncDoKScOVAGXDj7qPyMQfnIgM2LY6H8jAFNSQYEmrPWkgNbQwYEWhfXg4HmrLVkwEQOBJof5wKbN/uo/IxB+ciAzYtjofyMwRfXJEUVf/jDH/LVr341O+64Y6PpHTt2zGuvvdZo2rRp01JVVbXAtsXVvXv3VlNxBjS9+vr6cnehyXTp0qXcXYBWq66uTrhcAuXMgTLg/M35e7aPyscYlJ8M2Dw4FsrPGCycHLj4ZECgOWstObAlZ0BoCWTAxed6MNCctZYMmMiBsDTJgEvGucDmybn/8jMG5ScDNg+OhfIzBgu3qDmwSYoq7rjjjnzyySfZcsstkyQ1NTW56667svbaa2fWrFml+SZMmJDa2tp07Ngx3bt3z/Dhw+fZtrgqKir8IQCF4LcOaG7KmQNlwIWzj8rPGNAUWsPfkGOh/IwBTUkGBFj6/NYBzY3rwQDLht86oLlxLrB5s4/KzxjQFFrD35BjofyMwRfXJEUV119/faOQNGTIkPTo0SP77LNPvvOd72TUqFHZe++9c/nll6d3796pqKhIr169MmXKlHm2AQDQMsiBAADFIwMCABSPDAgAUExyIABQFE1SVPHlL3+50efll18+K6+8clZZZZWcddZZOfHEEzNkyJDU1dVl2LBhszdcWTnfNgAAWgY5EACgeGRAAIDikQEBAIpJDgQAiqJJiir+27nnnlv67z59+uTee+/NmDFj0rNnz6yyyiqL1AYAQMsjBwIAFI8MCABQPDIgAEAxyYEAQGu1VIoq/lunTp3SqVOnxW4DAKBlkwMBAIpHBgQAKB4ZEACgmORAAKC1aFvuDgAAAAAAAAAAAAAAAJSDogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACqnJiiruv//+7LLLLunatWv23XffjB8/Pkkybty49O/fP7169crgwYPT0NBQWmZBbQAAtAxyIABA8ciAAADFJAcCABSPDAgAFEGTFFW8/fbbOe2003LiiSfmkUceyVprrZWf/exnqa2tzYABA9KtW7eMGDEi48ePz8iRI5NkgW0AALQMciAAQPHIgAAAxSQHAgAUjwwIABRFkxRVjB8/Pscff3z69u2b1VZbLQcccEBefPHFPPLII5k6dWoGDhyYddddNyeccEKGDx+eJAtsAwCgZZADAQCKRwYEACgmORAAoHhkQACgKCqbYiU77bRTo89vvPFG1ltvvbz66qvp0aNH2rdvnyTp0qVL6fVfC2oDAKBlkAMBAIpHBgQAKCY5EACgeGRAAKAomqSo4vNqa2tz9dVX56CDDso777yTzp07l9ratGmTtm3bZvLkyZk6dep82zp27LhY26yrq2uy/gOtT319fSoqKsrdjSbh9w6WHsfXF7esc6Axm785+8Y+Kh9jUH4yYPPgWCg/Y7Bw9s0XIwMCzU1ryYF+72Dpcox9cXIg0Jy0lgyY+L2Dpcnx9cXJgM2Hc//lZwzKTwZsHhwL5WcMFm5R902TF1UMHTo0yy+/fPbbb78MHTo01dXVjdrbtWuXmpqaVFRUzLdtcYsqxowZ84X7DbRe7du3T9euXcvdjSYxduzYTJ8+vdzdAJinZZ0DZcCFs4/KzxiUjwzYvDgWys8YsLTIgEBz01pyYGvIgEDrJgcCzUlryYCJHAg0bzJg82MflZ8xKB8ZsHlxLJSfMfjimrSo4vHHH8+NN96Ym2++OVVVVenYsWNee+21RvNMmzZtoW2Lq3v37q2m4gxoevX19eXuQpPp0qVLubsArVZdXZ1w+QWUIwfKgPM35+/ZPiofY1B+MmDz4FgoP2OwcHLgkpMBgeaoteTAlpwBoSWQAb8YORBoblpLBkzkQFiaZMAvRgZsXpz7Lz9jUH4yYPPgWCg/Y7Bwi5oDm6yo4p133slPf/rTnHHGGdlwww2TzA42w4cPL80zYcKE1NbWpmPHjgtsW1wVFRX+EIBC8FsHNEflyoEy4MLZR+VnDGgKreFvyLFQfsaApiYDAixdfuuA5koOBFi6/NYBzZEM2HzZR+VnDGgKreFvyLFQfsbgi2vbFCupqanJ4Ycfnj59+mSXXXbJtGnTMm3atGy55ZaZMmVKRo0alSS5/PLL07t371RUVKRXr17zbQMAoGWQAwEAikcGBAAoJjkQAKB4ZEAAoCia5E0Vjz32WMaPH5/x48fn5ptvLk1/4IEHctZZZ+XEE0/MkCFDUldXl2HDhs3ecGXlfNsAAGgZ5EAAgOKRAQEAikkOBAAoHhkQACiKJimq6NOnT8aOHTvPts6dO+fee+/NmDFj0rNnz6yyyiqNlptfGwAAzZ8cCABQPDIgAEAxyYEAAMUjAwIARdEkRRUL06lTp3Tq1Gmx2wAAaNnkQACA4pEBAQCKSQ4EACgeGRAAaC3alrsDAAAAAAAAAAAAAAAA5aCoAgAAAAAAAAAAAAAAKCRFFQAAAAAAAAAAAAAAQCEpqgAAAAAAAAAAAAAAAApJUQUAAAAAAAAAAAAAAFBIiioAAAAAAAAAAAAAAIBCUlQBAAAAAAAAAAAAAAAUkqIKAAAAAAAAAAAAAACgkBRVAAAAAAAAAAAAAAAAhaSoAgAAAAAAAAAAAAAAKCRFFQAAAAAAAAAAAAAAQCEpqgAAAAAAAAAAAAAAAApJUQUAAAAAAAAAAAAAAFBIiioAAAAAAAAAAAAAAIBCUlQBAAAAAAAAAAAAAAAUkqIKAAAAAAAAAAAAAACgkBRVAAAAAAAAAAAAAAAAhaSoAgAAAAAAAAAAAAAAKCRFFQAAAAAAAAAAAAAAQCEpqgAAAAAAAAAAAAAAAApJUQUAAAAAAAAAAAAAAFBIiioAAAAAAAAAAAAAAIBCUlQBAAAAAAAAAAAAAAAUkqIKAAAAAAAAAAAAAACgkBRVAAAAAAAAAAAAAAAAhaSoAgAAAAAAAAAAAAAAKCRFFQAAAAAAAAAAAAAAQCEpqgAAAAAAAAAAAAAAAApJUQUAAAAAAAAAAAAAAFBIiioAAAAAAAAAAAAAAIBCUlQBAAAAAAAAAAAAAAAUkqIKAAAAAAAAAAAAAACgkBRVAAAAAAAAAAAAAAAAhaSoAgAAAAAAAAAAAAAAKCRFFQAAAAAAAAAAAAAAQCEpqgAAAAAAAAAAAAAAAApJUQUAAAAAAAAAAAAAAFBIiioAAAAAAAAAAAAAAIBCKntRxbhx49K/f//06tUrgwcPTkNDQ7m7BADAMiAHAgAUjwwIAFBMciAAQPHIgABAS1LWoora2toMGDAg3bp1y4gRIzJ+/PiMHDmynF0CAGAZkAMBAIpHBgQAKCY5EACgeGRAAKClKWtRxSOPPJKpU6dm4MCBWXfddXPCCSdk+PDh5ewSAADLgBwIAFA8MiAAQDHJgQAAxSMDAgAtTVmLKl599dX06NEj7du3T5J06dIl48ePL2eXAABYBuRAAIDikQEBAIpJDgQAKB4ZEABoaSrLufGpU6emc+fOpc9t2rRJ27ZtM3ny5HTs2HGhyzc0NCSZ/bqwioqKpdZPoGWrr69Pkmz65Q5p10J/KjZYvUPq6upSV1dX7q5AqzXn+JqTL1i6vkgOlAEXrr6+Pu3atcvMmTP9b0eZGIPykwGbB8dC+RmDhZMDlx0ZEFgWWnoObA0ZEFoCGXDZkgOBpa2lZ8BEDoRlQQZctmTApcu5//IzBuUnAzYPjoXyMwYLt6g5sKxFFRUVFamurm40rV27dqmpqVmkooo5P4ovv/zyUukf0Loc8JUkX1m+3N1YQg35xz/+Ue5OQCHMyRcsXV8kB8qAi+6ll14qdxcKzxiUnwzYPDgWys8YLJwcuPTJgMCy1HJzYOvJgNASyIDLhhwILCstNwMmciAsOzLgsiEDLhvO/ZefMSg/GbB5cCyUnzFYuIXlwLIWVXTs2DGvvfZao2nTpk1LVVXVIi1fWVmZ7t27p23btmnTps3S6CIAUBANDQ2pr69PZWVZ41FhfJEcKAMCAE1JDlx2ZEAAoLmQAZctORAAaA5kwGVLBgQAmotFzYFlTYndu3fP8OHDS58nTJiQ2traRXpLRZK0bdt2ropWAACavy+SA2VAAICWSQYEACgmORAAoHhkQACgpWlbzo336tUrU6ZMyahRo5Ikl19+eXr37p2KiopydgsAgKVMDgQAKB4ZEACgmORAAIDikQEBgJamTUNDQ0M5O3D//ffnxBNPTIcOHVJXV5dhw4Zlo402KmeXAABYBuRAAIDikQEBAIpJDgQAKB4ZEABoScpeVJEkEydOzJgxY9KzZ8+sssoq5e4OAADLiBwIAFA8MiAAQDHJgQAAxSMDAgAtRbMoqgAAAAAAAAAAAAAAAFjW2pa7AwAAAAAAAAAAAAAAAOWgqAKgGfDSIAAAAAAAAAAAAKA5+eSTT/L8889n0qRJ5e5KYRmDZUNRBdAqfPzxx5k6dWq5u7FE6uvr893vfjevvvpqpkyZUu7uANAMjRw5Ml26dJnr38iRIzNixIjsvvvu2XLLLXPCCScs9v8Ddfzxx+ess85aSj1vPZbGGFx55ZXp3bt3evbsmZ/85Cf55JNPlvK3AACA8nnhhRfSr1+/bL755jnooIMyceLEJMmpp56anXbaKXV1dUmS0aNHp0uXLqXlxo4dm/79+2fzzTfPgAED8u9//7u03JxcvsUWW+TQQw/N22+/vUh9GTFiRHbaaadsvfXW+cUvfpHa2tpS2+jRo9O3b99sueWWOeWUU/LZZ58lSX7wgx+Utrf11lvnuOOOcwELAGAZaKnXgAHgi7j//vuzyy67pGvXrtl3330zfvz4RV7W9d+msSRj4Prv0uFm8vK68847881vfjODBg3KTjvtlDvvvHOhy9x0003Zfvvt061btxx88MH58MMPl0FPW68lGYM5Zs6cmT322COjR49eij1sPRRVAAu0uKGkrq4uZ5xxRk4//fTcdNNNi7WtiRMn5vnnn1+iE2OXXXZZfvGLXyz2cs3Bo48+mmnTpmWDDTbIXnvtlaeeeqrcXQKgmdl9993zzDPPlP49/PDDWXnllTNz5sz86le/ysCBA3Pbbbdl6tSpOfrooxd5vY8++mieeuqpHHvssUux961DU4/BM888k1GjRmXYsGG59dZbM2PGjAwePHgZfJOWbdSoUdlxxx1LN+JNmDAhSTJu3Lj0798/vXr1yuDBgxf5LWBPP/10vv3tb2frrbfOH//4x6XZ9VajqcfACbXF19RjMIcTagAsTdOnT8+RRx6Z73//+/nrX/+aDh06ZNCgQaX29957Lw888MBcy3322Wc59NBDs9122+X222/PSiut1Ogc4P77759nnnkmN998cyorKzNw4MCF9mXMmDEZMmRIzj///AwbNiyjR4/ODTfckGT2+ckjjjgiBxxwQG699dZ8/PHHueCCC0rLnnDCCXn66adzzTXX5IMPPsi55577RXYLAACL4PDDD8/NN988z7b6+vrU1NRk5syZ811+zz33zMiRI5dW9wCgyb399ts57bTTcuKJJ+aRRx7JWmutlZ/97GeLtKzrv01jScbA9d+lY0luJncNuOl8+umnOeuss/LnP/85o0aNyplnnpnf/OY3C1zm2WefzYUXXpghQ4bkgQcecCx8QUsyBp935ZVXZty4cUuxh62LogpgvuYXShZ0s85LL72Uzp07Z9CgQaWbexbF1Vdfnd133z2//OUvs8MOO+Tpp59OkjQ0NOSKK67IN7/5zWy99dY588wzS0+Hm2PGjBn5y1/+kiOPPHKxvt/f//737LbbbvNt//TTT7Pddtst0vf4/JPqPv/v82pqarLLLrvknnvuaTT9pptuysknn5zHHnssK664YrbaaqvF+h4AtH7V1dVZccUVS/9GjRqVb37zm3nuueey7777Zrvttsvaa6+dk08+Oc8999wiPfGipqYmZ555Zk488cSsuOKKy+BbtGxNPQb//Oc/841vfCMbbLBB1ltvvXznO9/Jm2++uWy+TAv19ttvZ+jQofn973+fO++8M2uttVYGDhyY2traDBgwIN26dcuIESMyfvz4RbpIOmnSpBxxxBH5zne+k5tuuil33HGH4taFaOoxcEJt8TX1GHyeE2oALE3jx4/P5MmT079//6y55po5+uij06ZNm1J7RUVFhg0bNtdyd911Vzp06JATTjgh66yzTo466qg88MADpfODc3L6V77ylRxyyCF5+eWXF9qXZ555Jt26dcvmm2+ejTbaKEcccUTp7bE33XRTevbsmR/84AdZZ511cuihh+aOO+4oLduuXbt07Ngxm266aQ444IBF2h4AAEvur3/9a956663ceuutOeCAA+b6973vfS/f+9738sgjj8x3HR06dEjbtm6NAaDlGD9+fI4//vj07ds3q622Wg444IC8+OKLC13O9d+msyRj4Ppv01uSm8ldA25a06ZNy2mnnZaNN944SbLJJptk8uTJC1zmjTfeyBlnnJHevXvny1/+cvr167dIv2HM25KMwRxvvvlmrr766qy99tpLs4utiv/PEZin+YWShd2ss/baa+fll1/O6NGjM3369EXa1htvvJGrrroqd955Z+64444cfPDB+d3vfpckGT58eP70pz/lN7/5TW644Yb885//zC9/+ctGy99111351re+lY022miRv99LL72Uo48+eoFPLRkyZEg+/vjjRVrfpZde2ujp1WeeeWa22WabRvNcfPHFWW+99RoVckycODEzZszIzjvvnBtvvDEDBw50Ug+ABZoxY0auu+66HHbYYfnkk0+y1lprldrm/G9IZWXlQtfzhz/8ITU1NamsrMyTTz652E80L7KmGIONNtoo9913X95+++38+9//zvDhw9O7d++l2u+W7uWXX06PHj3SrVu3rLXWWunXr1/eeOONPPLII5k6dWoGDhyYddddNyeccEKGDx++0PXdfvvtWX311XPUUUdl/fXXz5FHHrlIyxVZU4+BE2qLr6nHYA4n1ABY2tZcc820adMmF110UWbOnJlNN900F198cal9xx13zLPPPpt//etfjZZ7/vnn07Nnz0br+d///d+5zjvOnDkz9913Xzp37rzQvqy33np59tlnS2/G2GeffUpvm/vv7W244YbZbbfdUldX12gd06dPz4MPPrhI2wMAYMn84x//yODBg3PSSSdlzz33TL9+/eb6t+eee+aAAw7ILrvskoaGhrlyWzL7XO3nbzp66623cu6552bWrFnL8usAwCLbaaedcsABB5Q+v/HGG1lvvfUWupzrv01nScbA9d+mtyQ3k7sG3LTWXHPN7Lnnnklmn4O9+uqr881vfnOBy+y7776N5lnU3zDmbUnGYI7TTz89hx56qGvAi8Gdu8A8zS+ULOxmnVVXXTVHHXVU3n///UV+lVxdXV3OOuusrLHGGo22lSSjRo3KIYccks022ywbbLBBjjnmmNIFzznuuuuuHHPMMYv83T777LMcffTRjcLvf3vmmWfyt7/9LSuttNIirbNDhw6lJ1evsMIKue6663LccceV2seNG5dhw4bN9Sq4jz/+OKecckomTJiQ9u3bZ+utt17k7wFAMd1xxx3p0aNHOnfunE033TQPPPBA6YTYyJEjs9lmm+VLX/rSAtfx3nvv5Y9//GPWW2+9vPfeeznvvPNy9NFHO7G2iJpiDL7xjW9kvfXWy6677prevXtn+vTpOeyww5ZF91usDTfcME899VRefvnlTJkyJddff3222267vPrqq+nRo0fat2+fJOnSpUvGjx+/0PWNHTs222yzTekJyZtttpknDS9EU4+BE2qLr6nHYA4n1ABY2lZdddWcd955ufbaa7Pbbrtl1KhRjdrXXnvt7LTTTnO9rWLixIlZbbXVSp8rKyszaNCgrLrqqkmSG264IVtuuWU233zzPPTQQzn77LMX2pdddtklP/rRj/KTn/wk+++/f/7+97/Pd3urrbZazjzzzFRUVCRJzj///Gy55ZbZYost8s477+S0005b7H0BAMDCffLJJzn11FNz3nnnZcMNN8yKK66YlVdeudG/lVZaKSuvvHJWWWWVJMlrr72Wrl27ZtNNN03Xrl3TtWvX3HPPPUmSxx9/PEnywQcf5LDDDsuMGTOcDwegRaitrc3VV1+d733vewucz/XfpWdRx8D136a3JDeTuwa8dLz66qvZbrvt8vjjjy/WOdFPPvkkN91000KPHxZuccdgxIgRmTp1ag4++OBl0LvWQ1EFME/zCyWLcrPOV77yley9994LvZlwjg033DA777xzktnFHMOGDSsFoHk9/XnORcw5TjnllKy88sqL/N0qKytz4403plevXvNsr62tzemnn56f//zn6dChwyKvd4577rkna6yxRjbffPMkSUNDQ04//fRsvvnmeeGFFzJu3LjSvN26dcvGG2+cdu3auQgLwCK58cYbs//++ydJDj744MycOTP9+vXL/vvvnyuuuCLf//73F7qOkSNHZrXVVssf//jHHHnkkbnuuuvyzDPPlC4ssWBNMQZ//etf89577+Wuu+7K6NGjs9FGG+Wkk05a2l1v0eY8JXifffbJlltumRdeeCGnnHJKpk6d2ugJwW3atEnbtm0X+pSS/15uhRVWyMSJE5da/1uDph6Dz3NCbdEsjTFwQg2AZeVb3/pWHnzwweyzzz45/fTT8+tf/7pR+w9+8IPcdtttmTp1amnarFmzFvhW1z322COjRo3K+uuvn/79+2ezzTZbpL6ceOKJufvuu9O5c+cceOCBuffeexdpe4ccckhGjhyZL33pSznkkEOy7rrrLtL2AABYPCuvvHLuvPPO3H333fnZz36Wq666Kueee27+8Ic/lP5dcsklueCCC3LnnXcmSTbYYIOMHj06L774Yp555plUVlbma1/7WpLkiSeeyLXXXpvvfe97Ofjgg/PLX/4yVVVVZfyGALBohg4dmuWXXz777bffAudz/XfpWdQxcP136Vmcm8ldA146unTpkmuuuSYbbrhhBg4cuMjLnXnmmdl8882z4447Lr3OFcTijMGkSZNy/vnn5+yzz05lZeUy6mHroKgCWKD/DiVNccPU/Dz88MPZfvvt8/HHH2fAgAFJkk033TT3339/aZ6RI0dmu+22a7TcBhtssFjbqa6uTqdOnebbfumll2b99ddP3759F2u9cwwbNqzRzZR33XVX/v73v2eNNdbIW2+9lUMOOSTXXHNNo2VWX331BfYJAJLZryV/++23S68JXWmllXLjjTdm6NCh2XjjjbPBBhtkjz32WOh6Jk6cmG222SbV1dVJZp9IWG+99TJhwoSl2v/WoKnG4M4778wBBxyQDTbYICuttFJ+9rOf5d577/1/7N15nFV14T/+12wsoozigikuX7VQEU0S97KAj5q7oKWfrPxkJpo7ftwjFTdwT1NDMzVzRcTlI2buS1qppWSChpJgiQsugAwDM/P7wwf358g24MAdOM/n4+Ej7znnnvu+58y9vjrnvs7Jxx9/vKTfwjLrb3/7Wx599NHccccdeeGFF7LHHnvk0EMPTVVVVelveY727dunrq5ugev7/PNa8pyia+198FkOqLVMa+8DB9QAWFomT56cN998MyuttFKOOuqoXHPNNbn++uvz1ltvlZbZdttt061bt9x1112laZ07d26WkWfNmtXsIi8rrrhiunXrlgMOOCB33HFHi66++Prrr+f999/PuuuumwsvvDADBw7M0KFDkyQrrbRSs9d744030r1799J/U2tra7Puuuumf//+ufXWW7/YRgEAYIGqqqoyePDgjBo1KiNHjsyKK66YM844IyNHjiz9c9JJJ5WOiVRXV2fllVdOVVVVnnjiiWy44Yal86977rlnzj333Jx++un57ne/W863BQAt9vTTT+fWW2/NRRddtNAyoPO/S8ai7APnf5ecRfkxuXPAS0ZFRUU23XTTnH/++Xn44Ydb9FvRESNG5Lnnnsu55567FEa4/FuUfXDOOedkv/32yyabbLIUR7h8UKoAFujzoaQ1fjA1PzvssEOuueaaVFVV5YILLkiSHHfccXnppZfy3//939lrr71y//3356CDDvrCrzU/48ePz6233pozzjhjsZ7/2muv5c033yzdeSP59GrWu+22W4YOHZrjjjsul156aS688MJmV90DgJYYPXp0vvnNb851wGaNNdbIH/7whwwaNGiuOzrNy5prrpmZM2eWHjc2Nubtt99udnco5q219kFDQ0Pee++90uN33nmnNJ15u//++7P77rtn8803T6dOnXLsscdm0qRJqa2tzZQpU5otO3369IUe2Pz881rynKJr7X0whwNqLdfa+8ABNQCWltGjR+e0004rPe7du3dqamoyderUZsv94Ac/yCOPPFJ6vMkmm2TMmDGlx2+++WYqKirmujjJPvvsk/feey/PPPPMQsdywQUX5JZbbik93m677Urj2HTTTZu93sSJE7PKKqukQ4cOzdZxwAEH5C9/+UsmTJiw0NcDAGDxbbnlljnwwANz4IEHpmPHjjnvvPNy4IEHZtddd83QoUPT1NQ017nrJPnNb36T/fffv/R4p512ytZbby2/AbDMmDhxYk444YScccYZ2WijjRa6vPO/rW9R94Hzv0vOovyY3Dng1vXMM8+ULkiTpPRbiAXd7TdJXnrppZx77rm5+OKLs9pqqy3RMS7vFmcf3Hffffntb3+brbbaKltttVWef/75DBw4MMOHD1/i413WKVUAC/T5UPJFfzC1INXV1dlqq61y+umnZ+TIkUmSbt265f7778+QIUOy1lprZYcddshWW231hV9rXpqamvKzn/0sxx577GLfNeK+++7Lzjvv3OzHlJMnT85OO+1UetyjR4/MmjWrFJ4BoKWefPLJbLPNNnNN/+1vf5sNNtgg/fr1azZ92rRpmTVr1lzLf/vb386jjz6a3//+93n77bdz0UUXpb6+Pr169VpiY19etNY+6NWrV26//fbccsstueuuu3L88cdnyy23zCqrrLLExr6s+/yByOnTp+eTTz5JdXV1XnzxxdL0SZMmpb6+PrW1tQtcX8+ePZs975VXXnHnsIVo7X2QOKC2qFp7HzigBsDSst122+Wvf/1r7rvvvkyePDmXX355Vl999bnuQLvnnntmpZVWKj3ed99989prr+Xaa6/NxIkTc/HFF2eHHXbIiiuu2Ox5K664YvbYY4/cdtttCx3LjjvumNtvvz1/+9vfMnHixAwfPjw77rhjkk/LEg899FBGjRqVCRMm5Morr8zOO+881zrWW2+9bLfddrn99tsXZ3MAANAC9fX1OeCAA3LLLbekZ8+e+dGPfpRbbrklt9xyS84+++yst956qaysnKtUMWrUqLzzzjsZMGBAs+lnnXVWrrzyyjz22GNL8V0AwKKrq6vLYYcdln79+qVv376ZPn16pk+fnqamJud/l5LF2QfO/7a+xfkxuXPArWuDDTbIbbfdlttuuy3/+c9/ctFFF2WHHXbISiutNN/PwnvvvZeBAwfm0EMPTY8ePUqfHxbP4uyDhx9+OPfcc09GjRqVUaNGZbPNNsvZZ5+dAw44oAzvYNmiVAHM0/xCyQYbbLDYP5ian3vvvTfXXXdds9f6bCmhoqIiK664Yv74xz9m0KBBi/06C/Pvf/87zz//fIYNG1b6UdG///3v7LXXXrn33ntbtI4HHnhgrh9Trrnmms3u5PHWW2+loqIiX/rSl1p1/AAs3+rq6vLiiy/mq1/9arPpH3/8cX7961/npJNOmus5e+21Vx5//PG5pm+wwQa55JJLctVVV2XnnXfO448/niuvvHKuHybRXGvugx/+8IfZfffdc+WVV+ZnP/tZVlpppQwbNmxJDX250KtXr/zhD3/I9ddfn3vvvTdHHHFEVltttXz/+9/P1KlTM2rUqCTJ8OHDs/3225fy5PwOJPTp0yfPP/98nn322cyePTvXXXdd6cd0zFtr7wMH1BZda+8DB9QAWFq6d++e8847L5dffnl23XXX/OlPf8qVV1451w/gOnTokO985zulx2uuuWauueaa3H333dlrr73S2NjY7JjlZx144IF5+OGH8/777y9wLAcccED22muvHHnkkenfv39WXHHFnH766UmSzTbbLBdffHF++ctfZsCAAVl//fXnmfPnvN5dd92V+vr6RdkUAAC00KhRo/Liiy9m7733zj333JMbb7wx3//+97P11ltnyJAhue+++9KhQ4dmxzxeeumlnHnmmTnzzDPTvn37Zuv7f//v/+WSSy7Jsccem2uvvXaex0oAoC146qmnMn78+Nx+++3p1atX6Z+33nrL+d+lZHH2gfO/rW9xfkzuHHDr6tq1ay677LLccMMN2X333TNjxoxccMEFSeb/W4j77rsv77//fi699NJmnx8Wz+Lsg27dujX7p3379llttdXSuXPnpT38ZU5FU1NTU7kHAbQ9kydPzre//e2cdNJJ+cY3vpFLL7007733Xn71q1/l61//ek466aTss88+GTx4cN55551cffXVi/1aL7/8cg466KAMGzYsm2yySQYPHpxu3brlrLPOKi3z85//PDNmzGjVsPmnP/0pp5xySh555JEkyezZs/P22283W+a///u/c/HFF2eTTTZJx44dM23atKy00kqpqKiYa30TJ07Mt7/97Tz//PPNDtLdcccdGT58eC666KJ07tw5Z511VioqKvLrX/+61d4LAMDyrqmpKb/85S9z55135t13382Xv/zlDBkyJJtttlkeeuihDBo0KJ06dUpDQ0NuuummfPnLX07y6YGzU089da7ia5L87ne/y3nnnZcVV1wxK6ywQm6//XZ3S1iA1t4H119/fc4777y5XmfcuHFL5f0si5bE5+Czvv/97+fII4+c5x15AAAAAMph0KBBWW211XLkkUdm4sSJGTx4cG655ZbU1NRk/PjxueCCC3LFFVfkb3/7Ww499NAccsghOfLII0vP//73v5/vfe972XXXXZMkTz/9dE488cSsueaaufHGG9OpU6dyvTUAABbiySefzHnnnZe33347O+64Y84444x06dLFOWBgiVCqAOZrfqFkQT/WWVx33313LrvsskydOjW77LJLTjvttHTs2DFJ8q9//Sv9+/fPfffd16p3d/h8qWJe+vTpkxtvvDHdunXLpEmT0rdv3/zlL3+ZZ2vvjjvuyB133JHbb799rnnXXnttbr755rz//vv52te+lvPPPz9rrLFGq70XAICimzx5csaMGZNevXqlS5cuLX7ev/71r4wfPz5bb721q/V8QYu7D2g99gEAAACwvHnttdfyxz/+Mddcc02mT5+egw8+OIccckhWXHHFzJo1K7vuumu+//3vZ4011ki7du1KP6xraGhIZWVl9t577xx55JHZeeedS+t8//338/777+crX/lKud4WAABLkHPAwOJQqgAWix/rAAAAAAAAALAkvP7667n77rszadKk/POf/8x//dd/pV+/fnnwwQdz7733pk+fPjnllFNy9tln584778xFF12UPn36lJ7/1ltvZZdddslqq62Wm2++OWuttVYZ3w0AAABtnVIFAAAAAAAAAABtxsyZMzN69Oh85StfSffu3VNVVVWaV19fn8mTJ2edddbJjBkz8vvf/z577bVXKisrm61j/PjxWX/99Zs9FwAAAOZFqQIAAAAAAAAAAAAAACikyoUvAgAAAAAAAAAAAAAAsPxRqgAAAAAAAAAAAAAAAApJqQIAAAAAAAAAAAAAACgkpQoAAAAAAAAAAAAAAKCQlCoAAAAAAAAAAAAAAIBCUqoAAAAAAAAAAAAAAAAKSakCAAAAAAAAAAAAAAAoJKUKAAAAAAAAAAAAAACgkJQqAAAAAAAAAAAAAACAQlKqAAAAAAAAAAAAAAAACkmpAgAAAAAAAAAAAAAAKCSlCgAAAPiMpqamcg8BAGC5N3PmzHIPAQCARSTDAQDQUg0NDeUeAsAiUaoAymrmzJkZPHhwJk+eXJr229/+NkcffXSmTJnS4vXcc889ufjii5fEEOdr5syZzQ4cNjU1Zfr06WlsbFyq4wAAaGvKkfGmT5+eyy+/fKEndl944YW88cYb853/6KOPZq+99sqECRNaPM7PGz9+fOnfH3rooZxyyimZMWPGYq8PAGB5M2bMmHzrW9/KmDFjFul5v/vd7/LnP/95CY1qwRwLBACKbmlkuOeffz5jx45dnOHN0wMPPJCzzz47n3zyyWI9/+GHH867777bbNrHH3881zQAgGXdrFmzmj2+8847s8MOOyz2Oc4LL7wwffr0adGybSkD1tfXN3v8wgsv5Pnnny89njJlSrNzwYvr448/zoUXXpj333//C68LaD3V5R4AUAzvvfdevvWtbzWbdumll6Zv376ZMGFChg0blosuuihJ8uc//znvvvtuVllllSTJJ598kmeffTbt27dPRUVF6crBW221VSoqKtKuXbusvPLKGT58ePbZZ59ssMEGaWxsTH19faqqqlJTU5MkmThxYmbPnp3q6upUVFTMd6xNTU2ZPXt2Kioqsv766893uf/93/9NVVVVLrnkkiTJv//97/Tp0yejRo3KJptsstjbCgBgWdEWMt4cM2bMyOjRo/PJJ5/kpJNOmu+Yzz333Oywww457rjj5prX1NSUyy+/POutt94Cc+BnzZw5M//5z38yceLEvPLKK3nqqafypz/9KcOGDcvee++dZ555Jv/4xz/SsWPHFq0PAGB58LOf/Sy33357s2lXXXVV6UTqbbfdlvfffz9jx45Nz549W7zeq6++Ov3798/WW2+90GUdCwQAWDRtIcPdeeedeeSRR3LzzTdngw02SJJcccUVufzyy5st1759+7z00ksLXFddXV0uuOCC7LzzzllhhRVaPN7//d//zQ477JB99tknxx57bH75y1/mrbfeyllnnZU77rgjTzzxRE4++eQ89dRTWXnllee7nmOOOSavvPLKAo8LTp8+Pdtvv33OOuusFo8PAKC1NTU1pV+/fhkwYECOPvro0rT33nsv7du3X+jz6+vrU1FR0ez87UYbbZS3334748ePz4Ybbths2cbGxnTo0KE0rS1kwDkOO+ywbLLJJjnxxBOTJHfccUfq6+vzta99LUly1lln5bnnnssDDzyQFVdcsfS8GTNmZPjw4Wnfvn0qK5tf637WrFnZaKON0q9fv0yfPj2dO3dOXV1drrnmmuy///5ZddVVF3mcwJKhVAEsFTU1Namvr8/DDz+cbt26pU+fPunUqVOS5Oijj87AgQPzzjvvpHPnznn66adzxRVXlE52fvzxx7n22mvT2NiYv/71r9lqq62y6qqr5t57781dd93V7HW+/e1vN3s858dsSXLGGWfkj3/8Y6qqqkrrbmpqyqxZs1JTU9NsWkNDQ3r27NnswOGrr76aysrK0nIzZ85Mhw4dSu3Tjz76KEkyefLktGvXLsmnoahTp05ZZ511Wm9jAgC0EeXOeHfddVfGjRuX6upP/6/t5ptvnoaGhlx44YWlH8dttNFG+cY3vpGampp06dIlHTp0KGW1z7vhhhvy8ssv5+WXX0737t3nucwxxxyTI444ovR43LhxOeCAA7Lhhhtm8uTJ+frXv57rrrsum266aZJPr16yzz77LPrGBQBYhtXU1GTPPffMmWeemaeffjonn3xydtxxxySflh3uvvvunH322bnkkkvSt2/fdOnSZZ7r+ctf/pLu3bunc+fOpfVWVVWV5j/zzDPZdNNNU1tbO9dzHQsEAFg0bSXD/etf/8phhx2WESNGpLa2NrNnz87222+fK664Ikly7733tujutkOHDs2kSZMycuTIjBw5cq75nTt3zsiRI7PSSis1m37QQQfl4IMPzlZbbZWamprU1NTk+uuvz7bbbpuqqqq8/PLL6dWr1wILFcmnP+jbZ599mh1L/LxzzjknU6dOXeh7AQBYkl5//fW8/fbb2WijjUrT5hQDPl8QmJfBgwfPdX53jt12222uaVtvvXV++9vflh63hQw4x8CBAzNw4MDMnj07p556aiorK0tlkWuvvTaPP/54brjhhmaFiiRpaGjIK6+8kpkzZ+aZZ54pnd8ePXp0evfunU6dOuUf//hH9ttvv7z00kul44nzO28NlIdSBbBUzPmh2+enTZw4MdXV1bn44ovz73//O/fdd186dOiQFVZYIX//+9+z2WabZc0118zNN9+cJ554IieddFJuuummVFRUZOrUqTnppJMyZcqUHHHEERkyZEh69OiR5P+/wtxnW63Dhw9vdsAuSV555ZXss88++fWvf51tttmm2byGhoZmj3/605/mvffeK62jrq4uSfL000+XXjNJjj/++FRWVqapqSn19fX59re/nWHDhn2RzQcA0CaVO+N16dIl66yzTulg3tprr50kGTNmTB566KEcddRRWXXVVfOzn/0sX/nKV3LCCSekoqJinlcq/utf/5pLLrkkl1xySXbaaadm85qamnL44Yfn448/zqGHHtps3uabb57nn38+HTt2zHe+851su+222WGHHZIk06ZNy7hx43L++efn/PPPb/a8TTbZJKNGjVqMrQ4A0PbV1NSkuro6nTp1yvPPP5+ddtqpdIJw6NCh2XnnnbP//vvnmWeeybHHHptf//rXc92JrK6uLieccEI233zz0lXpPluQmD59ek444YSss846uf7665sdB0wcCwQAWFRtIcO1a9cuF198cQ477LBMmTIltbW1effdd1NbW1u6mEu7du0WeCeyJLn11ltz8803Z7vttsuvfvWrZldYnjBhQvbff//85Cc/mevHdO+9914mTJiQgQMH5u9//3uampry/PPPp3PnzlljjTXyr3/9K88++2z22GOP0nPm3F338++loqIiN954Y+655575jnPKlCnp16/fAt8LAMCS9sgjj2SNNdbILrvsssDlGhoaUl9fn3bt2jU77nbCCSfk6KOPTlVVVUaNGpXddtttrmx09dVXZ//9989KK6001zG7cmfA5NMScVVVVTbYYIOcdNJJeeaZZ/Luu++mrq4uDQ0Neeedd/L444/npJNOype+9KX85z//SWNjY+n89Iorrpirr746L730Uum8c5L8/ve/z5FHHpltttkm48aNK72XmTNnJslC3xOwdClVAGV1zTXX5Pe//33WXHPN0rTVV189xx57bJqamvL444+Xpr/wwgvZdtttS2FiTsA54YQT0r179/Tq1Sv//Oc/c9VVV+WCCy6YqxH6+UC2MJ9f/g9/+EOzx8cee2w6d+5cuh3rlClTst122+XWW2/NV77ylUV6LQCA5cnSyng77bRTnnzyyVxyySXZa6+9svfee2fGjBm55pprcs455+S//uu/kiSjRo1a4K1pX3jhhfzkJz/JD37wg9TV1eUPf/hDs7tL3HjjjXnxxRdz5513znWiOEk6duw4z/U+9thj2XDDDXPNNdc0m/69730vvXv3nu94AACWdZ+9gt2TTz6ZI488MkkyYsSIPPXUU7nvvvuSJKeffnoGDBiQH/3oR7nsssuaXe34qquuytSpU3PiiSeWpjU2Npb+vVOnTrnqqqvywx/+MCeccEJ+8YtfNHtdxwIBABZNW8hwSdK1a9eMHDmyNH3MmDEL/YHfZ918880599xz87Of/Sx33XVXfvzjH+fyyy/PyiuvnLfffjuHHHJI+vXrl/3333+u57733nu59dZb065du/zyl7/MzJkz89hjj6Vz586ZMGFCVlxxxbzyyiv5xz/+0axIu+66686VH2fNmpXevXvnW9/61nzHet9992XWrFktfm8AAEvCPffck3feeSebbrrpXPO6d+8+17QRI0akZ8+epcerrbZakmTs2LG59NJLU1dXl2OOOaY0f+zYsbnpppvSqVOnHH/88fMcQzkzYJLst99++fDDD9OhQ4fSGHbaaac0NDSkurq6dH7773//e4YOHZpZs2ZljTXWyCOPPNJsPbNmzZrv3SfmnA9XpIC2S6kCWKp23nnnJP//ld/atWuXfv365Zxzzmm23MiRI3PllVc2mzZ69OjSwbs5rrzyylRUVOSiiy5KdXV11ltvvUybNi0nnnhiLr744hbdgmxR1NXVpaKiItXV1VljjTWyyiqrlObV1NRk6623nucVmwEAlmflzHjbbbddGhsbc9ttt+XSSy9Nhw4dctBBB5UKFQvz3HPP5eCDD07fvn1z3HHHZciQIbnlllvy3nvv5cc//nEee+yxDBs2LKeddlq+/OUvz/X8adOmpb6+PtXV1aWr0n344Ydp165d7rvvvvTt27dZuWT69On597//PdeVkQEAlkcvv/xy3nzzzXzjG9/IM888kyFDhuR73/teqqur8/bbbydJTjvttBx99NHZbbfdcvTRR+eAAw7ISy+9lGuvvTZnnXVW1llnndL6Ghsbm91RYvPNN89FF12UI444IhdccEFOOumkVh2/Y4EAQBGVI8M1NTVlzJgxWWGFFVJRUZFVVlklXbp0yejRo/Paa6/lwgsvbDbG6dOn509/+lNWWGGFNDU1ZfPNNy+91ptvvpnzzjsve+65Z/bee+8cfvjh6d+/f4455phceuml6dWrV84+++x5vveNN944t9xyS379619nwoQJ+eijj7Lrrrumuro6Bx98cK6//vqsvvrqGT16dCoqKvKb3/wmf/7zn0t35UiSGTNmpH379jn00EPz/vvvL3BbDxgwIF/60pfS2NiYWbNmLfDCMAAAS8KTTz6Z1157LXfddVdWX3310vT7778/5557bp566qnStDl3qujates817Xxxhtnr732yvXXX5+DDjooq666apJPzwevvPLK+clPftJs+baSAZPk4YcfzgorrFA6D/3444/n2GOPzVprrZWePXvm+9//fs4777ycfvrp2XjjjUvjn+P000/PzJkz8+GHH2bGjBk57bTTSmO75pprcvvtt+eggw5a8M4Ays7RfmCpevDBB9OtW7f06dNnoct+tpX58MMPZ8KECTnhhBNywgknZIcddsjBBx+cyy67LN26dUvfvn1LP2jr3LlzZs6cuUROpB5zzDF57LHHmk279NJLmz3+9re/nSTZd999c/7557fq6wMAtEXlzHjV1dXp2rVramtrs8oqq6R379655pprMmHChBxxxBHZYIMNFjierbbaKsOGDUu/fv1SWVmZn//85+nWrVuGDRuWl156KY8++mi+973v5cADD5zn86+55ppcffXVpcdjxozJWWedlf79++exxx7LEUcckSQ55JBD0qdPn2yyySal1wUAWN6NHj06W265Zerr63PUUUdlm222yYgRI/LrX/+62XKHH354Hn744Tz33HPp27dvjjnmmPTp0ycDBgxotlxdXV3q6+ubTevTp0/+53/+J08++WQOP/zwdO7cudXG71ggAFBE5chw7du3z3//93+nXbt2qaury6GHHprddtstJ598cg4++OBmdwbbaKON0q5du/zgBz9IkvTu3Ts33XRTkk/vtnHyySeXll1ppZVy3HHH5ZBDDsmJJ56Y9ddfP//7v/8737uaffTRRxk6dGiefPLJXH/99fnud7+blVZaKZdddlk6dOiQUaNGpa6urnQ33Q8//DBrrLFGamtrkyT19fXp3bt3ampq0qlTp3Tq1GmhVyKuq6vLxx9/nC222CK/+c1vFrgsAEBramhoyGWXXZatttpqrrtUrLTSSknSrGgxP1OnTi3dfat///5ZaaWVUldXlylTpiT59MJ7++yzT+rr6zNlypTMmjUrXbp0SWNjY5vIgElK+W727Nm5+uqrc+211+bMM8/Mn/70p8yePTtf+tKXsuqqq5bu2HbUUUc1uyPF6quvntmzZ+edd97JKqus0uyie126dMmqq65aKhrPnj17odsUKA+lCqCsGhsbU1dXl3fffbfZ9KlTp5aCxNSpU3PBBRckSZ544omMHj06zz77bLbaaqucddZZWW+99bLGGmukS5cuqa2tTUVFRf7617/m6quvTn19/XxvqbU4hg4dmsbGxlRXVzcLWnV1dbn00ktzxx13pHv37jnooIPSt2/fVntdAIBlydLKeBdccEFGjx6d+vr6HHDAAbn33nuz4oor5uijj84ll1ySPffcMxdddNFCx7vbbrs1e/z9738/jz32WH7/+9/n8MMPz7HHHjvf5/70pz/NUUcdlXPPPTe/+93vcuqpp6Zfv35paGjItttuW7r17YwZM9LQ0JBevXrl6aefzsorr7wIWxQAYNm099575+abb867776bG264IRtuuGGamprSoUOH9O3bN8OGDUvPnj1TVVWVI488MnV1damsrMzBBx+c/fbbb6713XDDDampqZlr+qBBg3LkkUemU6dOrTp+xwIBgCIqV4b7+9//nuTTY3M1NTXp3r17Tj/99PTt2zfTp08vPW/DDTfMk08+mSRp3759szuHNTQ05D//+U/GjRuXF198sXTl5V122SW9e/fObbfdlm9961v5yle+ki222CLdunXL6quvnvbt22e33XbLn/70p7z11lsZMWJE6urq0rt37/To0SNXXHFF/vjHP+aNN95IY2Nj3nrrray99tp55513ml3UpV27dqX3ce+992batGkL3d6rrbZai++6CwDQml577bXMmjUr//M///OF1vPTn/40f/rTn5pN++1vf9vs8fXXX5/rr7++9PjBBx/Meuut1yYyYPJpWfbBBx/M8OHDU1NTk+uuuy69evXKU089VSqBXHbZZXnggQdy+umn55FHHskFF1xQKqMcc8wxmT17dvbbb7/ssssuOeqoo5IkV155Zfr3759tt902f/vb35IkM2fOTGNjY5IstIALLF1KFUBZVVZW5vHHH8/o0aNTXV2dioqKzJo1KyussEJWW221JMmNN95Yul1WTU1NqqurU1lZmRVWWCGvvPJKkk+v9Dtr1qzMnj073/ve9zJs2LD86le/avXxzuvHb88880x+9rOfZerUqRkyZEj2228/gQcAKLSllfF23333fPOb30ynTp0ycuTI0hXvHnvssWy88cY58MADs9lmm+X+++9v0bibmpryhz/8IZdddln+85//ZNiwYdl1110zc+bMZsu1a9eulPfmFHifeuqpVFdX57333svrr7+er3/966mpqcnHH3+c2traVFVVlW4XO+dKJwAAy7svf/nL+e53v5sLLrggF198cd5+++20a9culZWVaWhoyAcffJAPPvggDQ0NaWhoyLrrrpsk8z2Re8YZZ6Rr16655JJLmk2vrq5udiK1tTgWCAAUUVvIcHOOo/3617/O6aefPt+xjh49ulRqePPNN7Pnnnumrq4ua6yxRrbaaqv88Ic/zE477ZRVVlklSXLAAQfk1VdfzdNPP51//OMfeeCBB/Lmm29mp512ym677Zaddtop22+/fdq1a5cf/ehHWWuttbLxxhsnScaPH58f/vCH+fOf/5y//OUvWXvttTNhwoTsvPPO8xzbL3/5y/Ts2TPbbbddkuSDDz7IsGHDcuaZZ5aOKT700EOZOnWqUgUAUBYbb7xx7r777jQ2NubNN9/MjBkzSvlszsXzxo8fX1q+vr4+6623XlZYYYVm66murs5+++2XQYMGteh1Z82alVVXXXWu6eXKgEnym9/8JiNGjMiPf/zjfO973yvltbXXXjsTJ05MU1NTKioqsuuuu6Z79+4ZPHhwswu8TJw4MWeffXb+9a9/5eqrr07yadmjsbGxdK75q1/9asaNG5cnnngiTzzxRCoqKlr9IjHAF6NUASwVc27x9fkrtp1++uk5/fTTs88++2TAgAHp1KlTbrrppowcObK0zHe/+9107949P/3pT+da7/jx49OtW7fcc889+c1vfpN77703L730UqnNuSR9/PHHGTp0aO68887sscceOfXUU9OlS5cl/roAAG1FuTPenCt/PPPMM/nd736XE088MUnyyiuvZOrUqTn00ENb9D7efffd3HPPPRkxYkRef/310vQTTzyxtM7Puvvuu0snU5Pkueeey9SpU9O9e/c899xzueuuu/LAAw/k17/+dR555JE89NBDpWUvv/zy/P3vf18iBWAAgLaof//+2WuvvTJy5MhceOGFqampSVVVVaZNm5YTTzwxVVVVmTVrVjp37ly62lxjY2Pp7mRzTqYmn56g/fxdaWfNmpX6+vqssMIKS7Tc4FggAFAkbSXDPfDAAzn55JPT0NBQuuttkgwcODDTp09vdpeIddddN8OHD0+3bt1y1VVXZcSIEfn973+f5NOLqTQ2Nja7+1hDQ0PpON+cu+vecsstOe+885qN4e67706SbL311vntb3+bK664Ig8//HD69euXf/7zn+nVq9c8x15TU5Mnn3yydEXiOa9x7bXXlt7zRx99VDrGCQBQLpWVlbnooovy2GOPle4wNuc88He/+90kn+ap+vr63HTTTdliiy2aPf/jjz/O5ptv3mrHypZ2Bpw1a1Z222237LXXXunUqVOmTJlSWv6DDz7Iq6++msmTJ5emdezYMeeee25mzZqVmTNnpn379hk1alReeOGFXH311VlzzTVLy5566ql5+OGHs/HGG6dr165JkqlTp2b06NE58sgjXYwP2hilCmCpeO+995J8etXgzp07Z4899mg2f/LkyVlrrbXy0UcfzfXc1VZbLV//+tfnud4ZM2Zk/fXXz+zZs9OhQ4cknwa9z4ahJeHZZ5/NiSeemFmzZuVXv/pVdtpppyX6egAAbVFbyXh1dXVZeeWVSydnq6qqmi07c+bM0l0sPmvKlCk57LDDMmbMmKy//vrp3Llztttuu2a3nv2sV199NXvuuWfpYOIc1157bfbee++88MIL2XffffPAAw/k9ddfz0MPPZS999672UnknXbaKVdccUUee+yxfPOb35zn6wAALE/eeuutNDY2Zvfdd8/BBx9cmt6nT58MGzYsW2211VzPmThx4nyv+Jsko0aNmmvaU089ldVXX701hjwXxwIBgKJpSxnuwAMPzA9/+MO89957WW211TJ+/Pg89thjGT58+FzLbrPNNkk+vbvsgAEDcs455yRJHn300QwZMiSPPPJIkk+PF26++ebNjicmn17FeMCAAbnyyivz+uuv5xe/+EWampqy9957Z/fdd0+S7LHHHvnVr36Va6+9Nuuss07WWmuteY67vr4+X//61+e6U8WPf/zjue5UAQBQbpdddlmzxyNHjswpp5yS5557bqHPnTJlyjzvPPFFLM0M+M4776R///5p167dXOej52S13XffvVkZeNasWZk1a1Zuv/32bLbZZjnyyCPzne98J1VVVfnoo49Kd/zo06dPzj333Oy7776lAsU3vvGNbLfddu5SAW2QUgWwVLz66qvp3LlzvvSlLyVJs5AxduzYTJkyJZtuummeeeaZFq2vsbGxdOuxjTbaKGPHjl2iV6L7rJtvvjlnn312vvrVr+aSSy4ptUg/b+LEiVlxxRVLtxIDAFjetJWMN2HChKy//vrznX/ooYfO8yofXbp0yWGHHZY11lgjm2++eS6//PI8//zzC329OQfBkuSPf/xj/vjHP+bnP/95XnjhhVRUVOS6667LM888k//85z8ZMGBAs+duvvnm+da3vpVLLrkkO+2001LLsAAA5XDCCSfk3nvvzde//vWsvvrqeeyxx/Lggw/mzDPPLC1z2223ZcaMGc1+rLfWWmvloYcemusqx8cee2xWX331nHbaaaVpc05gLqm7RjgWCAAUTVvJcL/73e+yyy67ZIsttsjWW2+dwYMH59JLL82pp56aHXbYId/4xjfm+9zKysrcddddueeee5J8epXiWbNmpWfPns2W+/yP5jp06JCpU6fm1ltvzTe+8Y08++yzefvttzNjxozsu+++SZL1118/O+64Y6666qqccsop8x3DMccck+nTp5eugPzZ/53z79/61rfc/QwAWKZ9+OGH+fe//53NNtusVdZXjgy49tpr5+WXX55rfY8//niOOuqorLHGGvnWt77VLM9+XkVFRV5//fVm+fizDjjggLmmXXbZZdl1113nu05g6VOqAJaKP//5z/O9denNN9+cHj16lH6MN8dzzz2XJ598MkcddVQaGxuTfHpl38rKymy//fb54x//mNVWWy3rr79+xo4dO9d6Z8+encbGxrRr1y4zZsxI+/btmx3AW5jGxsbMmjUr1dXVpTD17LPP5swzz8yAAQNy1llnNftB3ec9/fTTOeecc/Kb3/xmnldrAQBY1pU74yWfnoC966678l//9V/zHeeCsli/fv0W+j4X5I477sghhxwy1/u84YYbsvXWW2fddded6zmHHXZYDjjggDz44IPZZZddvtDrAwC0RXNy3n//939nxx13zB577JGpU6fm5z//efr27dvszl+1tbU566yzsu6666ZPnz5JkpqamqyzzjpzrbempiYdOnRY6NWMHQsEAFh05c5wn/Xwww/nH//4R1ZZZZXstttuGTx4cPr375/ddtstU6dOzV133bXA51dUVGTfffdd6FWK52XVVVfNDTfckGeffTYXXnhhXn311ayzzjoZPXp09txzz1RUVJTurjs/jz32WC644IK0a9eudFGV2bNnJ0luvPHG0rTGxsbMnDkzPXr0yJprrtni7QMA0Fbcd999WWGFFdKjR48vvK5yZsDPGzduXAYPHpyf/OQn2XvvvXPggQcmSQYNGjTfLLjlllvm6aefTnV1dSk7f/jhh+nTp0/uuOOObLjhhkk+LdnOmjVrnhcFBMpLqQJY4urq6vLggw/mkEMOyTvvvJM//vGPef/991NZWZlHH300d9xxR6677roknzZGJ0+enLFjx+bhhx/O3XffneOOOy7Tpk1L8mkDtEuXLpk5c2YOOOCA/PSnP03y/1/VeM46kuSKK67I5MmTM2TIkHz1q19d4Bh/8IMfzHfebbfdVnr+nKss9+3bN2+99Vbat28/z+fU19fnwQcfTHV1dTbZZJOWbSgAgGVIuTPeeeedl9mzZ+fUU0/N+++/n4MOOqg0ttmzZ5eu9jbHhAkTMmnSpEyaNKnZCeDPe+aZZ9K9e/cWb4eTTz45tbW1zabNmDEjH3744Xwz5pZbbplTTjklvXv3bvHrAAAsS5qampIkvXr1Sq9evTJjxowcdthh6datW+lqvnOW2XXXXfP666/n2GOPzdVXX5211lordXV188xsdXV1mTp1asaPHz/XvDlXOu7SpYtjgQAAi6GcGW6NNdYoTZs8eXL+9a9/ZdCgQdltt92S/P+Fjb///e/ZcsstSwWF+WlsbExDQ0OmT5+e5NMf0DU1NZUe19fXN3s/n1VZWZkePXpk/Pjxeeedd3LsscemtrY2o0ePzte+9rUMHjw4kydPzsknn5yhQ4emvr4+hx56aLM70m6zzTa58847U1tbWyrsTpo0KX379s3IkSPTqVOn0jhnzpw535wJALCkvf7666mvr58rx7377rtJMs8MV19fn7XWWitJctVVV2X//fcvXRBvcZU7A352HCNGjMjw4cOz//775/DDD09VVVVuu+22HHXUUdlzzz1z8MEHZ++9925Wihg3blySzHVRlqlTpyZJ3nvvvVIGnOP9999PfX19evTo0SxLAuWjVAEsca+88ko6dOiQ/v37Z8aMGTn55JPTq1evvP322znxxBNzxBFHZLvttkuSfO1rX0tVVVX23nvvtGvXrnSArnPnznn44Yez8sorp6mpKSeccEJ69uyZ3XffPcmnP1ybOXNmkmS33XbL/fffn7Fjx+bwww9PdXV1/vCHPyzy1enm3Hb2s1cF2WuvvfLMM89k0KBBmTFjxgKfv+qqq+akk06aKxABACwPyp3xkuTBBx/M448/nmuvvTarrLJKaWz19fWl580xbty4HH300VlrrbWy0047zfM9NTY2Zuutt87VV189z/njx4/P/vvv3+yAXdeuXUv/PucuGh07dsytt95aet1//vOfef3115vlwvnd+hUAYHkwpxg7x3vvvZeOHTtm2LBhGTduXB577LG88847pROPhx9+eCZMmJCKioqcf/75eeaZZ1JdXT3Pk4n//Oc/893vfrfZtNmzZ2fmzJk57rjj8pOf/MSxQACAxVDuDJd8+uO9KVOm5Ec/+lF+8pOf5LXXXsuIESNy++2357/+678yePDg3Hrrrdltt93Su3fvbLfddll33XXz9a9/vVkOa2xszF133TXX1Yx79erV7PHnL8wyadKk/Pa3v83o0aOz5ppr5sorr8zXvva1NDY25r333stee+2VbbbZJrfccktqa2vTrl27nHPOOXn++edz1VVXpbKyMqeeemoef/zxrLjiis22RWNjY1ZaaaX079+/2fSmpqZ8/PHH2XfffXPiiScudD8BALSmM844I3/7299SU1MzV45baaWV5spwDQ0Nqa+vz2WXXZYnnngiTU1NOeSQQ77QGMqdAadNm5Zf/OIXeemll/LSSy9lww03zAUXXJCdd965tMzaa6+dW2+9Nddff30uvvjinH/++dl6661z2WWXZcUVV8zRRx+dt99+e54l45VWWmmeOW/27Nmpr6/PX//6VyVbaCMqmhZUuwJoJZ+9wsa0adOy4oorZvbs2bn33nuz7777LvL6Pvroo7muCAwAwNLVFjJeS58ze/bsvP/++81KEJ93wQUX5OWXX871118/z/mvvvpq9txzz4waNWqeVyDu06dPDj744GZXPn788cdz+OGHZ/PNN8/ll1+e1VdffeFvCgBgGTd48ODU19fn/PPPn2ve2LFjs99++6VPnz656KKLFngXsUXR2NiY2bNnf+Gr4gEAFFVbyXAvv/xyNt5445x55pm57777sscee+R73/tes7vLTpgwIXfffXcee+yxVFRUZMSIEc0KtaeddlqS5Jxzzpnn686cOTObb7557r777my88cbNxvOLX/wiO+yww1x3mX3wwQfTrl27fPOb32w2/YUXXkiHDh2y6aabLvZ2AABYFn3wwQd544035iotLI5yZsAkGTJkSKqqqrLLLrvka1/72gLH+vHHH+fee+/N7Nmz88Mf/nBx3zLQBilVAAAAQJK6uro0NjZmhRVWaLV1zrlaS8eOHVttnQAAy7KmpqbMnDkzHTp0KPdQAABooXJkuBkzZqSxsXGhdwKbPXt2qqurl9KoAABYkmRAoJyUKgAAAAAAAAAAAAAAgEKqXPgiAAAAAAAAAAAAAAAAyx+lCgAAAAAAAAAAAAAAoJCUKgAAAAAAAAAAAAAAgEKqLvcAvojGxsbMnj07lZWVqaioKPdwAIBlWFNTUxobG1NdXZ3KSr3TtkwGBABakxy4bJABAYDWJAMuO+RAAKC1yIDLDhkQAGhNLc2By3SpYvbs2RkzZky5hwEALEd69uyZdu3alXsYLIAMCAAsCXJg2yYDAgBLggzY9smBAEBrkwHbPhkQAFgSFpYDl+lSxZy2SM+ePVNVVVXm0QBtVUNDQ8aMGeO7AligOd8VrkrS9smAQEvIgEBLyYHLBhkQaCk5EGgJGXDZIQcunP/2lZ99UH72QfnZB+VnHyycDLjskAGBlvDfPqClWpoDl+lSxZzbe1VVVflSBBbKdwXQEm4f2vbJgMCi8F0BtJQc2LbJgMCi8n0BtIQM2PbJgS1nG5WffVB+9kH52QflZx8snAzY9smAwKLwXQG01MJyoOotAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShVAIdTU1JR7CAAALGUyIABAMcmBAADFIwMCABSPDAi0JqUKoBA22bRHqqqqyj2ML6ShsancQwAAWKbIgAAAxbSs50AZEABg0S3rGTCRAwEAFpUMCLSm6nIPAGBpqKmuyjG3/jX/fGdauYeyWDZaY8VcdsCW5R4GAMAyRQYEACimZTkHyoAAAItnWc6AiRwIALA4ZECgNSlVAIXxz3em5eV/f1zuYQAAsBTJgAAAxSQHAgAUjwwIAFA8MiDQWirLPQAAAAAAAAAAAAAAAIByUKoAAAAAAAAAAAAAAAAKSakCAAAAAAAAAAAAAAAoJKUKAAAAAAAAAAAAAACgkJQqAAAAAAAAAAAAAACAQlKqAAAAAAAAAAAAAAAACkmpAgAAAAAAAAAAAAAAKCSlCgAAAAAAAAAAAAAAoJCUKgAAAAAAAAAAAAAAgEJSqgAAAAAAAAAAAAAAAApJqQIAAAAAAAAAAAAAACgkpQoAAAAAAAAAAAAAAKCQlCoAAAAAAAAAAAAAAIBCUqoAAAAAAAAAAAAAAAAKSakCAAAAAAAAAAAAAAAoJKUKAAAAAAAAAAAAAACgkJQqAAAAAAAAAAAAAACAQlKqAAAAAAAAAAAAAAAACkmpAgAAAAAAAAAAAAAAKCSlCgAAAAAAAAAAAAAAoJAWuVTxwQcfpE+fPpk0aVJp2quvvpoBAwakd+/eGTp0aJqamr7wPAAA2hY5EACgeGRAAIDikQEBAIpJDgQAimyRShVTpkzJwIED89Zbb5Wm1dfXZ+DAgenRo0fuvPPOjB8/PiNHjvxC8wAAaFvkQACA4pEBAQCKRwYEACgmORAAKLpFKlUcf/zx2W233ZpNe+KJJzJt2rSccsopWXfddXP88cdnxIgRX2geAABtixwIAFA8MiAAQPHIgAAAxSQHAgBFV70oCw8ZMiTrrLNOzj333NK0sWPHZosttkjHjh2TJN27d8/48eO/0LxF1dDQsFjPA4qhsbExVVVV5R5Gq/B9B0uOz9eCtcUcaJ8BCyIDAi3lMzZ/MiCwLFpecqDvO1iyfMbmry1mwMQ+W5A528Y2Kh/7oPyWlwyYLLt/Rz4H5WcfLJxts2BtMQfaZ8CCyIBAS7X0M7ZIpYp11llnrmnTpk1Lt27dSo8rKipSWVmZjz76aLHn1dbWLsqwMmbMmEVaHiiWjh07ZtNNNy33pd9jQgABAABJREFUMFrFuHHjMmPGjHIPAyigtpgDZUBgQWRAgC9OBgSWRctLDpQBgXJpixkwkQNbwjYqP/ugfJaXDJgs+znQ56D87AMWV1vMgf6egQWRAYHWtkilinmpqqpKu3btmk1r37596urqFnveoh5E69mz53LTOANaX2NjY7mH0Gq6d+9e7iHAcquhocFBmUVU7hwoAwILIgMCLSUHLhoZEGjrlpccKAPCkiUDLppyZ8BEDlyQOX/PtlH52Aflt7xkwGTZzYE+B+VnHyycDLjoyp0D/T0DCyIDAi3V0hz4hUsVtbW1ee2115pNmz59empqahZ73qKqqqoSoIBC8F0HtCXlzoEyIFAUvuuAtkQGBFg6fNcBbUm5M2AiB7aEbVR+9gGtYVn/G/I5KD/7gNZU7hzo7xkoCt910DZUftEV9OzZMy+++GLp8aRJk1JfX5/a2trFngcAQNsnBwIAFI8MCABQPDIgAEAxyYEAQJF84VJF7969M3Xq1IwaNSpJMnz48Gy//fapqqpa7HkAALR9ciAAQPHIgAAAxSMDAgAUkxwIABRJ9RdeQXV1hgwZkkGDBmXYsGFpaGjITTfd9IXmAQDQ9smBAADFIwMCABSPDAgAUExyIABQJItVqhg3blyzx/369cuDDz6YMWPGpFevXunSpcsXngcAQNsjBwIAFI8MCABQPDIgAEAxyYEAQFF94TtVzNG1a9d07dq1VecBAND2yYEAAMUjAwIAFI8MCABQTHIgAFAEleUeAAAAAAAAAAAAAAAAQDkoVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIXUaqWKUaNG5Zvf/Ga23HLLHHzwwZk0aVKS5NVXX82AAQPSu3fvDB06NE1NTaXnLGgeAADLBjkQAKB4ZEAAgGKSAwEAikcGBACKoFVKFW+++WYuvfTS/PKXv8z//d//Za211sopp5yS+vr6DBw4MD169Midd96Z8ePHZ+TIkUmywHkAACwb5EAAgOKRAQEAikkOBAAoHhkQACiKVilV/OMf/8gWW2yRHj16ZK211kr//v3zxhtv5Iknnsi0adNyyimnZN11183xxx+fESNGJMkC5wEAsGyQAwEAikcGBAAoJjkQAKB4ZEAAoCiqW2MlG220UZ599tn84x//yDrrrJObb745O+ywQ8aOHZstttgiHTt2TJJ0794948ePT5IFzltUDQ0NrfE2gOVUY2Njqqqqyj2MVuH7DpYcn6/FU84caJ8BCyIDAi3lM7boZECgLVtecqDvO1iyfMYWjxzYNs3ZNrZR+dgH5be8ZMBk2f078jkoP/tg4WybxSMDAm2VDAi0VEs/Y61Wqthll12y7777Jkm6deuWO+64I8OHD0+3bt1Ky1VUVKSysjIfffRRpk2bNt95tbW1i/T6Y8aMaY23ASynOnbsmE033bTcw2gV48aNy4wZM8o9DICScuZAGRBYEBkQYMmRAYG2bHnJgTIg0BbJgW2bbVR+9kH5LC8ZMFn2c6DPQfnZB7Q2GRBoq2RAoLW1Sqnib3/7Wx599NHccccd2XDDDTN8+PAceuih2XbbbdOuXbtmy7Zv3z51dXWpqqqa77xFLVX07NlzuWmcAa2vsbGx3ENoNd27dy/3EGC51dDQ4KDMYihnDpQBgQWRAYGWkgMXnQwItGXLSw6UAWHJkgEXjxzYNs35e7aNysc+KL/lJQMmy24O9DkoP/tg4WTAxSMDAm2VDAi0VEtzYKuUKu6///7svvvu2XzzzZMkxx57bG699dbU1tbmtddea7bs9OnTU1NTs8B5i6qqqkqAAgrBdx3Q1pQzB8qAQFH4rgPaGhkQYMnzXQe0RXJg22YblZ99QGtY1v+GfA7Kzz6gtcmAAEue7zpoGypbYyUNDQ157733So+nT5+eTz75JNXV1XnxxRdL0ydNmpT6+vrU1tamZ8+e850HAMCyQQ4EACgeGRAAoJjkQACA4pEBAYCiaJVSRa9evfKHP/wh119/fe69994cccQRWW211fL9738/U6dOzahRo5Ikw4cPz/bbb5+qqqr07t17vvMAAFg2yIEAAMUjAwIAFJMcCABQPDIgAFAU1a2xkt122y1vvPFGbrjhhrz77rv58pe/nMsvvzw1NTUZMmRIBg0alGHDhqWhoSE33XTTpy9cXT3feQAALBvkQACA4pEBAQCKSQ4EACgeGRAAKIpWKVVUVFTkyCOPzJFHHjnXvH79+uXBBx/MmDFj0qtXr3Tp0qVF8wAAaPvkQACA4pEBAQCKSQ4EACgeGRAAKIpWKVUsTNeuXdO1a9dFngcAwLJNDgQAKB4ZEACgmORAAIDikQEBgOVFZbkHAAAAAAAAAAAAAAAAUA5KFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEtkVLFhRdemIEDB5Yev/rqqxkwYEB69+6doUOHpqmpqUXzAABYdsiAAADFIwMCABSTHAgAUDwyIACwPGv1UsWrr76am2++OaeeemqSpL6+PgMHDkyPHj1y5513Zvz48Rk5cuRC5wEAsOyQAQEAikcGBAAoJjkQAKB4ZEAAYHnXqqWKpqamDB48OD/84Q+z7rrrJkmeeOKJTJs2LaecckrWXXfdHH/88RkxYsRC5wEAsGyQAQEAikcGBAAoJjkQAKB4ZEAAoAiqW3Nlt99+e8aOHZv9998/jz76aHbccceMHTs2W2yxRTp27Jgk6d69e8aPH58kC5y3KBoaGlrvTQDLncbGxlRVVZV7GK3C9x0sOT5fi08GBNoiGRBoKZ+xxSMDAm3V8pIDfd/BkuUztvjkwLZnzraxjcrHPii/5SUDJsvu35HPQfnZBwtn2yw+GRBoi2RAoKVa+hlrtVLF9OnTc+mll2a99dbL22+/nbvvvjtXX311ttxyy3Tr1q20XEVFRSorK/PRRx9l2rRp851XW1vb4tceM2ZMa70NYDnUsWPHbLrppuUeRqsYN25cZsyYUe5hAJTIgEBbJQMCLDkyINCWLS85UAYE2iI5sG2zjcrPPiif5SUDJst+DvQ5KD/7gNYmAwJtlQwItLZWK1X84Q9/yIwZM3LDDTdk5ZVXzmGHHZY999wzd955Z/r3799s2fbt26euri5VVVVp167dPOctSoDq2bPnctM4A1pfY2NjuYfQarp3717uIcByq6GhwUGZxSADAm2VDAi0lBy46GRAoC1bXnKgDAhLlgy4eOTAtmnO37NtVD72QfktLxkwWXZzoM9B+dkHCycDLh4ZEGirZECgpVqaA1utVPH2229n8803z8orr/zpiqur071797z11luZMmVKs2WnT5+empqa1NbW5rXXXpvnvEVRVVUlQAGF4LsOaGtkQIAlz3cd0NbIgABLnu86oC2SA9s226j87ANaw7L+N+RzUH72Aa1NBgRY8nzXQdtQ2VorWnPNNTNz5sxm0/7973/npJNOyosvvliaNmnSpNTX16e2tjY9e/ac7zwAANo+GRAAoHhkQACAYpIDAQCKRwYEAIqi1UoV3/zmNzN+/Pjccsstefvtt3PjjTfmlVdeyY477pipU6dm1KhRSZLhw4dn++23T1VVVXr37j3feQAAtH0yIABA8ciAAADFJAcCABSPDAgAFEV1a61o5ZVXzrXXXpvzzz8/559/flZbbbVccsklWW+99TJkyJAMGjQow4YNS0NDQ2666aZPX7y6er7zAABo+2RAAIDikQEBAIpJDgQAKB4ZEAAoilYrVSTJV7/61dx6661zTe/Xr18efPDBjBkzJr169UqXLl1aNA8AgLZPBgQAKB4ZEACgmORAAIDikQEBgCJo1VLFgnTt2jVdu3Zd5HkAACy7ZEAAgOKRAQEAikkOBAAoHhkQAFheVJZ7AAAAAAAAAAAAAAAAAOWgVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABTSEilVHHLIIRk5cmSS5NVXX82AAQPSu3fvDB06NE1NTaXlFjQPAIBljxwIAFA8MiAAQPHIgAAAxSQHAgDLq1YvVdxzzz156qmnkiT19fUZOHBgevTokTvvvDPjx48vhaoFzQMAYNkjBwIAFI8MCABQPDIgAEAxyYEAwPKsVUsVH374YYYOHZr/9//+X5LkiSeeyLRp03LKKadk3XXXzfHHH58RI0YsdB4AAMsWORAAoHhkQACA4pEBAQCKSQ4EAJZ31a25sqFDh6Zfv36ZOXNmkmTs2LHZYost0rFjxyRJ9+7dM378+IXOW1QNDQ2tMHpgedXY2JiqqqpyD6NV+L6DJcfn64spRw60z4AFkQGBlvIZW3wyINAWLS850PcdLFk+Y4vP+eC2Z862sY3Kxz4ov+UlAybL7t+Rz0H52QcLZ9t8MY4FAm2NDAi0VEs/Y61Wqnj22WfzzDPP5L777svZZ5+dJJk2bVq6detWWqaioiKVlZX56KOPFjivtrZ2kV57zJgxrfMmgOVSx44ds+mmm5Z7GK1i3LhxmTFjRrmHAdBMuXKgDAgsiAwIsGTJgEBbtbzkQBkQaIucD27bbKPysw/KZ3nJgMmynwN9DsrPPmBJcCwQaItkQKC1tUqpYubMmfn5z3+eM844IyuuuGJpelVVVdq1a9ds2fbt26eurm6B8xb1IFrPnj2Xm8YZ0PoaGxvLPYRW071793IPAZZbDQ0NDsoshnLmQBkQWBAZEGgpOXDRyYBAW7a85EAZEJYsGXDROR/cds35e7aNysc+KL/lJQMmy24O9DkoP/tg4WTAxeNYINBWyYBAS7U0B7ZKqeLKK6/MZpttlm9+85vNptfW1ua1115rNm369OmpqalZ4LxFVVVVJUABheC7DmhrypkDZUCgKHzXAW2NDAiw5PmuA9oa54PbPtuo/OwDWsOy/jfkc1B+9gGtzbFAgCXPdx20Da1Sqrj33nvzwQcfZKuttkqS1NXVZfTo0Vl77bUze/bs0nKTJk1KfX19amtr07Nnz4wYMWKe8wAAWDbIgQAAxSMDAgAUjwwIAFBMciAAUBStUqq4+eabm4WkYcOGZYsttsi+++6b3XffPaNGjco+++yT4cOHZ/vtt09VVVV69+6dqVOnznMeAADLBjkQAKB4ZEAAgOKRAQEAikkOBACKolVKFWuuuWazxyussEJWWWWVdOnSJUOGDMmgQYMybNiwNDQ05Kabbvr0haur5zsPAIBlgxwIAFA8MiAAQPHIgAAAxSQHAgBF0Sqlis87//zzS//er1+/PPjggxkzZkx69eqVLl26tGgeAADLHjkQAKB4ZEAAgOKRAQEAikkOBACWV0ukVPF5Xbt2TdeuXRd5HgAAyzY5EACgeGRAAIDikQEBAIpJDgQAlheV5R4AAAAAAAAAAAAAAABAOShVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhdRqpYqHHnooffv2zaabbpr9998/48ePT5K8+uqrGTBgQHr37p2hQ4emqamp9JwFzQMAYNkgBwIAFI8MCABQTHIgAEDxyIAAQBG0SqnizTffzKmnnppBgwbliSeeyFprrZXTTjst9fX1GThwYHr06JE777wz48ePz8iRI5NkgfMAAFg2yIEAAMUjAwIAFJMcCABQPDIgAFAUrVKqGD9+fI477rjstttuWW211XLggQfm73//e5544olMmzYtp5xyStZdd90cf/zxGTFiRJIscB4AAMsGORAAoHhkQACAYpIDAQCKRwYEAIqiujVW8q1vfavZ4zfeeCPrrbdexo4dmy222CIdO3ZMknTv3r10+68FzVtUDQ0NX2D0wPKusbExVVVV5R5Gq/B9B0uOz9fiKWcOtM+ABZEBgZbyGVt0MiDQli0vOdD3HSxZPmOLRw5sm+ZsG9uofOyD8lteMmCy7P4d+RyUn32wcLbN4pEBgbZKBgRaqqWfsVYpVXxWfX19rrvuuhx88MGZOHFiunXrVppXUVGRysrKfPTRR5k2bdp859XW1i7Sa44ZM6bVxg8sfzp27JhNN9203MNoFePGjcuMGTPKPQyAeVraOVAGBBZEBgRYOmRAoK1ZXnKgDAi0dXJg22MblZ99UD7LSwZMlv0c6HNQfvYBS5IMCLQlMiDQ2lq9VHHppZdmhRVWyHe+851ceumladeuXbP57du3T11dXaqqquY7b1FLFT179lxuGmdA62tsbCz3EFpN9+7dyz0EWG41NDQ4KPMFLe0cKAMCCyIDAi0lB34xMiDQ1iwvOVAGhCVLBvzi5MC2Y87fs21UPvZB+S0vGTBZdnOgz0H52QcLJwN+cTIg0JbIgEBLtTQHtmqp4umnn86tt96a22+/PTU1Namtrc1rr73WbJnp06cvdN6iqqqqEqCAQvBdB7RV5ciBMiBQFL7rgLZKBgRYcnzXAW2ZHNg22UblZx/QGpb1vyGfg/KzD1hSZECAJcd3HbQNla21ookTJ+aEE07IGWeckY022ijJp23RF198sbTMpEmTUl9fn9ra2gXOAwBg2SEHAgAUjwwIAFBMciAAQPHIgABAEbRKqaKuri6HHXZY+vXrl759+2b69OmZPn16ttpqq0ydOjWjRo1KkgwfPjzbb799qqqq0rt37/nOAwBg2SAHAgAUjwwIAFBMciAAQPHIgABAUVS3xkqeeuqpjB8/PuPHj8/tt99emv7www9nyJAhGTRoUIYNG5aGhobcdNNNn75wdfV85wEAsGyQAwEAikcGBAAoJjkQAKB4ZEAAoChapVTRr1+/jBs3bp7zunXrlgcffDBjxoxJr1690qVLl2bPm988AADaPjkQAKB4ZEAAgGKSAwEAikcGBACKolVKFQvTtWvXdO3adZHnAQCwbJMDAQCKRwYEACgmORAAoHhkQABgeVFZ7gEAAAAAAAAAAAAAAACUg1IFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSEoVAAAAAAAAAAAAAABAISlVAAAAAAAAAAAAAAAAhaRUAQAAAAAAAAAAAAAAFJJSBQAAAAAAAAAAAAAAUEhKFQAAAAAAAAAAAAAAQCEpVQAAAAAAAAAAAAAAAIWkVAEAAAAAAAAAAAAAABSSUgUAAAAAAAAAAAAAAFBIShUAAAAAAAAAAAAAAEAhKVUAAAAAAAAAAAAAAACFpFQBAAAAAAAAAAAAAAAUklIFAAAAAAAAAAAAAABQSGUvVbz66qsZMGBAevfunaFDh6apqancQwIAYCmQAwEAikcGBAAoJjkQAKB4ZEAAYFlS1lJFfX19Bg4cmB49euTOO+/M+PHjM3LkyHIOCQCApUAOBAAoHhkQAKCY5EAAgOKRAQGAZU1ZSxVPPPFEpk2bllNOOSXrrrtujj/++IwYMaKcQwIAYCmQAwEAikcGBAAoJjkQAKB4ZEAAYFlTXc4XHzt2bLbYYot07NgxSdK9e/eMHz++xc+fc0uw+vr6VFVVLZExAsu+xsbGJMkma3ZK+2X0q2KD1TuloaEhDQ0N5R4KLLfmfL7ccnTp+CI5UAYEWkIGBFpKDlx6ZEBgaVjWc6AMCEuHDLh0yYFLVmNjY9q3b59Zs2b570eZ2Aflt6xnwGTZz4E+B+VnHyycDLh0yYDAkiYDAi3V0hxY1lLFtGnT0q1bt9LjioqKVFZW5qOPPkptbe1Cnz/nS/Ef//jHEhsjsPw4cMMkG65Q7mEspqb87W9/K/cgoBDm5AuWrC+SA2VAYFHIgEBLyYFLngwILE3Lbg6UAWFpkgGXDjlw6Xj55ZfLPYTCsw/Kb9nNgMnykgN9DsrPPlg4GXDpkAGBpUUGBFpqYTmwrKWKqqqqtGvXrtm09u3bp66urkWliurq6vTs2TOVlZWpqKhYUsMEAAqgqakpjY2Nqa4uazwqjC+SA2VAAKA1yYFLjwwIALQVMuDSJQcCAG2BDLh0yYAAQFvR0hxY1pRYW1ub1157rdm06dOnp6ampkXPr6ysnCt8AQDQ9n2RHCgDAgAsm2RAAIBikgMBAIpHBgQAljWV5Xzxnj175sUXXyw9njRpUurr61t0lwoAAJZdciAAQPHIgAAAxSQHAgAUjwwIACxrylqq6N27d6ZOnZpRo0YlSYYPH57tt98+VVVV5RwWAABLmBwIAFA8MiAAQDHJgQAAxSMDAgDLmoqmpqamcg7goYceyqBBg9KpU6c0NDTkpptuype//OVyDgkAgKVADgQAKB4ZEACgmORAAIDikQEBgGVJ2UsVSTJ58uSMGTMmvXr1SpcuXco9HAAAlhI5EACgeGRAAIBikgMBAIpHBgQAlhVtolQBAAAAAAAAAAAAAACwtFWWewAAAAAAAECxNDY2Zvz48S1a9umnn87YsWOTJP/85z9z//33J0kef/zxPPjggy1+zWnTpuWAAw7IW2+9tegDBgAAAAAAlltKFcB8zZo1K/X19VnYDW0aGxtTV1f3hV6rvr4+s2fPXuhyDQ0Nqa+vb9E6Z86cmYaGhoUuN3v27Bavc36ampry4YcffqF1AAAAAEBRvPjii9lrr70yceLEBS43bdq0nHbaaXn55ZeTJB9//HEuvvjiJJ8ev7ziiitSV1eXWbNmlaZ17949ffr0yde//vVsttlmmTp1apJk1KhRefnll/O3v/2tRWMcN25cunfvnpkzZy7muwQAgOXHBx98kBdeeCFTpkwp91AKzX4AYGmZMGHCAv978+GHHy70d4UtMWvWrIwdO7Z0fK811vf5cd1888157LHHUl9fn2nTpuWDDz7IxIkT88ILL+Tuu+/OOeeck/PPP7+0/Gd/M9nU1FT6HWVjY+M8X++zY5/XNpkwYcIiXRwGKI/qcg8AaLtGjRqVoUOHpqqqKsmn5YNPPvkknTt3nmvZ1VZbLf/3f//XbNr48eNz4okn5tZbb01NTc0CX2vw4MF5+OGHU1n5aderrq4ujY2NWWGFFZot19jYmG9/+9s566yzFjr+H//4xxk7dmxpndOnT09VVVU6dOgw1zp/9KMf5fDDD0+SzJgxIx06dEhFRUVp/t57753LLrssG2ywQWnazJkz07FjxyTJc889l5NOOikXX3xxvvrVr+aEE07Iww8/nHbt2jV7rfr6+vTt2zcXXnhhadoDDzyQb37zm3ON60c/+lH69u2b733vewt9rwAAy4s5B7lqampKeWxeGhsbU19fP1eGWhT19fWprKxMdfWC/69xQ0NDGhoa5sp2AAC0TFNTU+rr61NdXV061nj77bdnjz32yDrrrNNs2cbGxsyePTvt2rVLU1NTTj311DQ1NWXAgAFJks022ywffPBBrr/++kyaNCkdO3bM7rvvnnPOOSfbbrttampqUllZmUceeSQPPPBA7rrrrqy00kqZMWNGrr322lxzzTX52c9+lq233jqrr776XGP96KOPUldXl65du5by35z/fe2117LBBhuU3gMALA0PPfRQzjvvvPznP/9Jjx49cv7552fDDTds0XOPO+64dOnSJT/72c+W8CiXb4uzD6699tpcd911qauryw477JCzzjorq6yyylIa8fLpgw8+yBtvvJH1118/Xbp0KfdwCuf//u//csYZZ2TttdfOG2+8kXPPPTe77777Ap9z22235fLLL88HH3yQbbbZJueff37WWGONpTTi5dPi7Ic5Zs2alf79++f000/PNttss4RHCsDy4Oijj06/fv1y9NFHz3P+5ZdfngkTJuSCCy7Iv/71rxxwwAHzXO6YY47JEUccMd/XmTp1avr375/rrrsu22677XyXu+222zJ48OAFHptrampKY2NjHn/88ay55ppJkk8++SRXXHFFLrroolxzzTW58cYbs8oqq6Rjx4754IMPUl9fnx133DFf/vKXM3PmzLRv3z5HH310xo0bl8mTJ2e11VbLlltumYkTJ+bNN99MVVVVs9821tfX58c//nF++tOf5s0338zAgQPzs5/9LNttt12zcQ0ePDibb755aVxA21PR1BpVMaAQfve73+WBBx7Ib3/72/ku88knn6SpqSnV1dV59NFHc/PNN+eaa66Za7mGhoY0NTWlU6dO81zP0Ucfna985Ss58sgjW238AwYMyEEHHZR99913vsvU19fnO9/5TrNSxbzMORE8cuTI0rS//OUvGTRoUH71q1/lpptuyte+9rX079+/2fNGjhyZv/zlLznvvPOSfHo3jZNOOiljxozJkCFDsv3225eWHThwYPr06ZPvfOc7i/uWAQCWOXfcccdSK/aefPLJrV7sBQBgbm+99VZ23XXX1NTUpKamJvX19amrq5tnxpvj//7v/3LhhRfm5ZdfzvTp03PqqafmiiuuyJQpU9KpU6fMmDEjp512WrbYYou5fpjVs2fPjBkzJqeffnq++tWvZr/99ssZZ5yRysrKDB48ONdee21Gjx6dq6++eq5ixbBhw/LCCy/k1ltvzb/+9a/svPPOGTduXBobG7PPPvtks802y7nnnrtEthMAfN6bb75Z+u/Y1ltvnSFDhmTy5Mm59dZbF/rcJ598MieeeGJ+//vfL/C/uSzY4uyDv/zlLznzzDPzi1/8IlVVVTnnnHPSpUuXZle+ZdEszg/J//znP+fnP/95pkyZkoEDB+Z//ud/ltJolz8ff/xxdt5559x44435yle+klGjRuWyyy7Lo48+Ot/nPPfcczn66KNz4YUXZoMNNsigQYOy5ppr5qKLLlqKI1++LM5++Kyrrroql156aW688UalCgCa+eSTT/KNb3wjtbW1pfOmc6Z//vd9DQ0NmTp1av7yl7+kqakp11xzTd55553ss88+OfPMM3PTTTc1W/eVV16Z9u3bl0oVjz/+eE466aSstNJKzZb7+OOP0759+7Rv3740bdasWfnyl79c+u3hfffdl9/97ne55ZZbmi0zbdq0ZgXmhoaGVFZWln77d9lll+X111/PZZddluHDh6dTp06lixxffvnl+eijj3L66afPc9v06dMnN99881xFiEGDBmWDDTbIT3/607mec/PNN+f888/P//7v/+biiy9ObW1tmpqaSoWNdu3apaGhIR9//HHuvvvurL322vN8bWDpc6cKoMUeeOCB7LDDDgtc5owzzsj9999fOjlaWVk5zwbp7Nmzs+WWW+bGG2+ca9706dPz5JNP5uCDD26toWfSpEl5+eWXm5UW5qVdu3YZNWpU6uvr84Mf/GCeBxP+/Oc/57rrrpvrx3a9e/fOyJEjs9pqq6WysjJDhgzJ0KFDmy1TX1///7F33+FRVH0bx+9kk02hhBZCVzpIR3qVjqg0C02KCErvUh5ABZSmNGnSS+gdARFEkCbYURApRroCoYYEkk129/0jV+Zl3TRCdBP2+7kuroedmZ09O2eH53ZmfueoWbNmxmsfHx9Nnz5dGzduNKpcf/31V3l6eurmzZv6+eef9emnn8pms6ly5cr66KOPHuMoAAAApH2vvvqqXn31VeP1oxb2nj17VhkyZDBmFnvYPwt7/3kj+98o7AUAAICUN29eHT9+3Hj91ltvqWTJkho4cKBatWqljz/+2Gm055iYGBUvXlzdu3dX9+7dVaFCBU2bNk0FCxbUvXv39Pzzz8vT01M5c+bUoUOHVLp0aWXJksV4v8Vi0b59+zRo0CBt2bJF+/fv17Zt2yTFznB7/PhxtWrVSkOGDFGLFi3k4eGhs2fPatWqVUb2tNlsxv48PT01e/ZstWvXTrNnz473hikAAKktJCREAwcONO4ttWvXTt26dUvyfZGRkRozZowGDx5MQcVjSkkf/Prrr6pTp44KFSokSXrhhRccHvzCowkLC9O4ceO0cuVK40Hyjz/+ONGiilu3bqlnz55644039OKLL2rQoEEqWbJkoiMfI2FxRc7FihWTJJUoUUJ3795N9D3nzp3T+++/b9yfb926tebPn/+vt/VJlpJ+iHP+/HktXryYhzYBAPHy9/fXDz/8ICn2+cB/3mONExQU5JCnIiIi9NZbb8lut+v333/XyZMnVadOHYf3REZG6u233zZe161bV0ePHtW9e/e0d+/eBNtUqlQpFSlSxGGZr6+v03bHjx9X7969deTIEWPZwzNZnD59Whs2bNCGDRtkt9vl4eFhzJTr5eWlmJgY4xnAmJgYWSwWp2cC4/PDDz/olVdeiXdd+/btVbt2beXJk0ft2rVTWFiYXnjhBS1dulQlSpQwPhtA2sOZCSBZfvvtN33//fdJjs47efJkTZ48WZL04osvauzYsapYsaLCw8N179495c6dO8nPWrdunQICAlS+fPnUaLokaenSpSpfvryCgoKS/Z7Q0FCHwBXn1q1bTstmzJihjh07KkeOHJIkDw8PjR49Ot6ZKn788Ufj9a+//qqiRYvq5ZdfliSVLl1a3t7e8vT0VK9evVSvXj29+uqrslqtslqtyW47AADAkyI9F/YCAADA2fLly/XgwQOjkDU0NNThRmccLy8vvfHGG/rzzz/14MEDZc+eXWazWW3bttWsWbP00UcfqU+fPhowYICWLFmi7t27q127dsb7v/32W+XKlUs3b97U+PHjValSJTVo0EDh4eHy9/dX1qxZ1apVK61bt05NmzaVzWbToEGD1K1bN5UpU0bS/xdVxN3ozJ8/v6ZPn67OnTurSJEiatKkyX9wxAAA7qxevXoOr8+dO6ennnoqyffNmTNHkZGR8vLy0pEjR1StWrVEZ2hHwlLSB0WLFtWaNWvUtm1bZciQQRs2bEhy4DckLCUPkn/22WcKDAxU79695eHhoV69emnDhg0UVaRQ7ty51bx5c0mxo0EvXrxYjRs3TvQ9Dw+cIyX/3y8kLCX9EOfdd99V9+7ddfDgwX+ziQCAJ8D48eP1xhtvOM0Me+LECe3evdvIUz/99JPee+89LV++XFmzZpWHh4dKlSqldevWObxv5syZ8X7OrVu3NG7cOI0ZM8Zp3ZYtW3Tnzh2noor4eHt7y8/PL8H169at0+jRo3X58mX17NlTjRo10sGDB7V+/XqZTCZduXJF/v7+OnTokGw2m0qUKKGJEyfKYrEY/w1ltVoVGRlpFHWcPHlS169fV9myZZ0+79ChQypTpozy589vLJsyZYqee+45lShRQr/88os++OADLVu2LFnFGwD+WxRVAEiWKVOmqHLlyipYsGCytj979qwiIiJUoUIFSbE3Md9///0k/yP93r17mjdvnl5//XWH6cQex6VLl7R27dokC0Ik6cqVKxo3bpzMZrNKlSoV7za5cuXS8OHDFR0drb59+6pYsWL64YcftH37di1evFj58+dPtADi4RHuxo4dK6vVqnnz5ilnzpwOU5g9zGQyxXtzGQAA4EmW3gt7AQAA4Gjbtm2aMGGC/Pz8VKtWLUmxIw+/9tprxk3KLFmyaNeuXbLb7ZKkDBkyqE2bNpKkTJkyqVy5crpw4YKqV6+uRYsWacGCBSpQoIDxcFGcatWqydvbWzdu3NC+ffuM2cratWunDz74wJgZI26Euq+//lqBgYHq2bOnsY8cOXJowoQJDg+hVqpUSVOmTOGBPADAf85isWjx4sVJDgjx119/acmSJSpbtqz++usvLV++XLlz59asWbMorHhMye2DOnXq6KmnnlKjRo0kSWXKlNFbb731H7TwyZSSB8lPnz7tUExUtmxZTZ069V9v65Pu1KlT6tSpk7y9vbVz585kv+/27dtau3atPvroo3+xde7jUfth48aNCg8PV9euXSmqAAAkyWazac2aNfL29nZYHhERoeLFixuvy5Urp6JFi2rAgAFatGjRIw8WbLVa9eDBA82dO9dpXWhoaKJFyXGDE5vNZqd1drtdVqvVmAlixIgR8vDw0GuvvabXXntNd+/eVaNGjYwC0LfffltNmzZVq1atHPYzceJE7d69W7dv31aHDh1UvHhxzZs3T1LsfWUvLy9duXJFJ06ccBh0ed68ebp8+bI++ugjVapUSbt27dKvv/6qtWvXymq16umnn5bZbNbAgQM1d+7cVHs+EkDq8LDH3ZkAgASsWLFC48aNU8aMGZ2mnrLb7bp7965OnTrlcCH23XffVZYsWWSz2VS3bl3dvn1by5Yt08qVK/X7779r4cKFmjhxolMA69evn3bt2qUsWbI4tcNisah06dIKDg7WtWvXEpzSdc+ePcb7Y2Ji9Prrr+vYsWMKCAhw2jYyMlLPP/+8Jk6cKCl2Ct8RI0Zo/vz56tu3b4LHZPr06RozZozatGmjmjVrymq1aurUqYqMjNTo0aP13nvv6Ysvvoj3vU2bNjWqbENDQ9W9e3dFRUVp48aN8vLyMgLfwzNV2O12RUVFycvLi+m/AACA2+jatauio6MVHBycrO3Pnj2rt956S3v37pWHh4e++uqrZBf2NmrUSK+//roxYjIAAABSj81m0/z587V06VLVqlVLWbNm1ciRIyXFPnQYHBysp556ShcuXFCHDh106NAhnT17Vq1bt1amTJnk6+trjAjn5+fndLPRYrEoS5Ys2r59u6TYBxePHz+ub7/9VrNnz1aOHDl09OhR+fr6KjQ0VFmyZJGXl5fu37+vxYsXJzi4Snh4uJo3b64VK1YoT548/+5BAgAgCZMnT9bhw4e1YcMGp/trD5s1a5Y2btyoXbt2yWw2Kzw8XPXr19fUqVONokakTHL74PPPP9esWbM0a9YsZcuWTZMmTVJ4eHiCo/Qief75IHnmzJkT3LZv374qV66cunXrJkm6f/++ateurR9//PG/au4TyW636/fff9ekSZOUMWNGzZ49O1nvGzBggO7fv6/58+f/yy10D4/SD7du3dJLL72khQsXqmTJkurYsaP69OmjqlWr/octBgA8qaKjozV+/HgNHjxY586dM7LXP/Xo0UNvvPHGY3/enj17tGjRIrVt21ZDhw5NcLsePXpo4MCBxuuZM2fqyy+/1GeffaZZs2apQIECOnfunNavX2/MyGG1WhUREaE9e/Y47Kt+/fpatWqVcuXKJSl2wOamTZtKktavX68OHTpo0aJFxsB9VqtVn376qY4fP65JkyapTp068vb2VrZs2ZQhQwYFBAQoa9asOnXqlJo0aaIBAwY89nEBkHp4MhdAok6cOKFJkybJw8ND06ZNU506dRzWX758WU2aNHEoqPj777+1c+dObd68WS1btlSbNm108eJFY3S59evXy9PT0+li44oVK7R7925J0oEDB5xmbdi0aZO2bdsmKXaUuC1btsTb5ocvoE2ZMkXHjh1T9uzZdfjwYadtZ86cqWvXrhmvCxQooE8//VR2u11//PGH+vXr5/SeWbNmyW6365NPPjGWmUwmvfPOO4qJiZHNZlPfvn01ZswYffDBB2rbtq1u3LihQ4cOaciQIbp165YsFovMZrMCAwO1YsUKnTx5UosXL9b69etlNpsVFRWlsLAwnT17VvPnz5fdbldkZKQmTZqkmjVrxvu9AQAAniQrVqzQ4cOHlTFjRqcbPAkV9gYHB+ull17SlClTVLduXVmtVhUoUECSEi3sHTlypG7fvq3g4GCnAo6HC3sBAACQMj/99JPWr1+vZcuWaf/+/QoNDU1w27iCiaJFi+r48eOSYjPZ22+/LZPJpHHjxunjjz/WRx99JE9PT61YsUItW7ZUxowZHfbz4MEDXb9+XRcvXtTy5csVExMjLy8vY6aKQoUKOY3WHRkZKZvNZswYa7VadeXKFUVHRysqKkpS7M1iDw8PY+YLAAD+C4cPH9aaNWu0bt26RB/ml6Rr166pWrVqxiBeGTNm1FNPPaXLly//F019Yj1KH+zYsUPt2rVToUKFJMVee3r22WcVFhaWaCEAEle8eHEtXbpUkyZN0ogRIxJ9kNxkMjmMXOzj46PIyMj/oplPNA8PDz3zzDOaOHGi6tWrp7t378Y7sOHDNmzYoB9++CHBe/t4dI/SDx9++KFeeeUVlSxZ8j9uJQAgvRk8eLD27NmTZNaNiYlR5cqVtWDBAnl7e2vgwIHKmDGjypQpo2+//TZZn1W7dm1FREQkOUtDZGSk+vfvr+7du0uSMTtFgwYNtH//fplMJp06dUqjRo3Shg0bJMUO7vLwM4dbtmzR6tWrjVlr7969qyxZsshsNqtNmzbGoMuhoaHq1KlTkm0fP368atSooW+++UYlSpTQ0KFDNWjQIH322WfKmDGjTCaTevfurevXrysgIEDbtm3T4cOH1ahRI33++efq1KmTgoOD9fbbbzNLBZAGUVQBIEFHjx5Vv3791LJlS504cSLB7eJuMsb5+OOP9fLLL+uHH35QyZIllT9/fq1Zs0YhISEKDQ3V5s2btX79eof3LFmyRFOmTNHo0aM1duzYJD/LZDIpX758CW5ns9k0efJkrV69WsOGDdPChQuT1f64ytCIiAh17NhRt2/fdtq+Q4cOTgUfknTo0CEdPnxYZcqU0YoVK7Rq1SodOnRIzZo10507d4ybwFOmTFHu3LmNUZAzZsyoggULKm/evMaymTNn6vDhw1q5cqXT8QUAAHjSpdXCXgAAAKRMpUqVtHv3bplMJu3fv/+R3nv27FmNGDFCJ06c0Jo1a5Q7d26FhYVpypQpypAhgz7//HPVqVPHqajiq6++0ujRozVixAjdu3dPr7zyiubMmSMp9gbsa6+9phEjRqhixYrGe+bMmaMlS5Y4zRTbokULI3tGR0erQYMGmjFjRkoOBQAAj+zSpUsaMmSI3n//fRUpUiTJ7XPlyqWQkBDjtc1m09WrV5l16TE8ah9YrVbduHHDeH39+nVjOVLuUR4kDwgI0K1bt4zXERERST4giIQdOXJEBw4c0LBhwyT9//31pB4E/PXXXzV+/Hh9+umnypEjx7/eziddSvph+/btypAhg1auXCkpdtaWHj16qGfPnnrrrbf+/UYDANINs9msd955R6+//nqi223dulVffvml8bply5ZavXq13nrrLV2+fFlWq1UeHh7y9PRUVFSUMmTIoLt37+rQoUNGHjCbzVq0aJGKFSuW6GeNHDnS4d7tnTt3lDFjRuOPJF29elUmk0l+fn566623NHPmTGXJksV4z7Vr1zR06FBt3LhRknTu3Dm1atVKnp6e2rhxo7755htJscUiCT2jt2fPHt28eVO5c+fWTz/9pDVr1ujFF1+UJLVp00bbt2/X9OnTNWrUKEmxxSCtWrXSwoUL5eXlpU8++URVqlTRggUL1KlTJy1ZskT16tVL9NlHAK5BUQWAeP3444/q1q2bOnbsqKFDh+rll19OcNuH/yP9888/19GjR43/OK9QoYKsVqu+/PJLWSwWHTt2TKtXr3a44LhgwQLNmjVLkydPVp06dRItqkhuhebYsWO1c+dOzZ8/X1myZEm0qCK+fY4ZM0Y//PCDQ8iKExERYRQ8PGzv3r0qUKCAGjVqpAkTJujEiRMym83y9PSUl5eXvLy8dPHiRX311Vfavn278T6r1apBgwapadOm6tChg27cuKHt27dr6dKlkqR3331XvXv3VlBQULK+OwAAQHqWlgt7AQAAkHJxmSo6Ojre9T/88IP2799vzABx69YtjRw5UseOHdPgwYONmcP++usvDR8+XP3799eVK1e0ceNGY3ayOHa7XU2bNlXDhg1lNps1cOBAValSxRiRzmQyqVevXurXr5+WL19ujCI9aNAgDRo0yNhPVFSUypYtqy+++EK5cuVK3QMCAEAyREZG6u2331bDhg3VoEEDRURESJL8/f0VEREhHx8fpwfFn3/+eb388svatWuXypUrp+DgYFksFodCQiRfSvqgYsWKWrJkiXLlyiVfX18tW7ZMFSpUUNasWV3xFdK9lDxIXqZMGe3YscN4/fvvv3Ov9TEUKlRIvXv31tNPP606depo+vTpqlmzpjJlyqTw8PB4z4MbN26oR48e6t69u0qVKmWcO8z4lnIp6YevvvrK4fWgQYPUuXNn1a5d+79sOgAgHXg4W/Xo0UPnzp0z/n/7/v37CggI0Nq1ax22/eWXX+Tv76+goCB5eXlpzpw5+vHHH5UrVy7lzZtXc+fO1dKlS1WzZk2HQUwe/qwKFSqoYMGCxuvQ0FC1bNlSgwcPdtr2/Pnzyps3b7ztz5gxozw9PfXBBx9o2rRpxvK3335bx44dM16fOXNGOXLkkIeHhypUqKAXXnhBkhQWFqbFixcb282aNUvffvutLBaLzpw5I7PZrODgYH366adOuX7SpEkOGWfjxo3KmzevSpYsqRMnThg5NG7QFpPJ5DSoC4C0gfljAMTr2WefVXBwsIYNGyYPDw/ZbLYEt437P/yffvpJI0eO1Pjx45U1a1aZzWY99dRTWrhwoTJnzqxJkyZpzJgxypQpk8P727dvr3Xr1qlZs2bGSMJJfVZSevXqpY0bN6pq1aop2qePj4+KFCmiGjVqOP0pXbq008UIi8WiXbt26aWXXpK3t7deeOEF7dixw2nfI0eOVNeuXR1G4pg2bZp8fHzUoUMHxcTEaPTo0frwww+VO3dumUwmVahQQT179jQuNAEAADyp4gp7X375ZY0dOzbR7BdfYe/bb7+tZs2a6YMPPkhWYe/06dM1efJktWjRItF2MfUqAABA6vHz81PmzJmN1zExMYqJidGpU6d06NAhYybXbNmyqXHjxvryyy/1yiuv6MGDB5oyZYpeeeUV3b17V6tXr1a9evXUvHlzderUSWvWrDH2abPZ5OXlJV9fXx06dEjXrl3TsGHDdOzYMV27dk3e3t6qV6+eWrRoYQycEh4ergcPHigqKsr4Y7FYJMVe+3t4eUREhMLDw//DowYAcFeHDh1SSEiI1q1bp4oVKxp/rly5oubNm8c7A1ShQoU0bdo0zZ07V40bN9b+/fs1Z84cp1mdkDwp6YPOnTvrhRde0Jw5czR69GhlypRJkydPdkHrnwyFChXS2rVrtXbtWv3999+aMmWKw4Pk8RXt1q9fXz/++KOOHj2qmJgYLV68WLVq1XJB658MQUFBmjFjhpYtW6YXXnhBDx480EcffSRJCZ4H27dv182bNzV9+nSHcwcpl5J+yJcvn8MfHx8f5ciRw+G/yQAAkOTwfF2GDBk0duxYbdq0SZs2bdIHH3wQbxHAxo0b1bRpU0lJ3099eP3Dn5UxY0bjczZt2qR27dolWHDw888/65lnnknwMwYNGqTs2bMn+KxgSEiILBaLcubMKbvdrowZMyooKEhBQUEKDAx02DZ37tx66623tH//fo0dO1avv/66Zs2apUqVKjntN0+ePMYMapGRkVq0aJF69+4tSTpx4kSCM3JERUUl+F0AuAblTgASVKFCBePvNptNAwcOdAotdrvdmKq2fPnyWrhwoZ599llJsaPOzZs3TytXrtSKFStUuHBhfffdd2rTpo3GjRunevXqSYoNYsWLFzc+R5Lq1Knj1B6LxWLsOyk5c+Z0aPvNmzdVtWpVp+0iIyPVsmVLp+UeHh76448/HKbmjRMREeE0RfLWrVtVpkwZZc+eXZLUvXt3+fv7G1OExfnf//7nEJTWrFmj1atXa8eOHXrw4IH69OmjkJAQLVq0SDNmzFB4eLjCw8N148YNDR48WHPmzOGhPgAA8MSKK+yNy6GPUtg7ffp0Y1SQp556SvPmzVPmzJk1ZMgQjRkzxhg5JU779u1Vp04dFS9eXPfu3Uu0Xckt7AUAAEDSunbt6vA6JiZGFotFr7/+ul5//XWHda1atZIk3blzRx4eHqpfv77mzZsnf39/SdLUqVMVEhKi7du3Gw8FxcTEGNcrpdjrjDVq1JCnp6cGDRqkggULGtf2Bg0aZIx03L59e50/f95pljJ/f3+nItzo6GgVLlxYW7dufdzDAQBAoho2bKjTp0/Hu27v3r0Jvu+5557Tc8899y+1yr2kpA98fHw0atQojRo16t9smtuIe5B8woQJmjRpkmrVquXwIPn//vc/NWzY0OE92bJl07Bhw9StWzdlzJhR/v7++vDDD13R/CdG7dq1453dIKHzoEuXLurSpcu/3Cr386j98E9xMwACAPBPDxciZM+eXZMmTXJYH/dsn91ul4eHh27fvq1t27Y53YNNjofvARcoUECtW7d2WB/32mazGfdpL1y4oF9//VXTp09XeHi4MSBydHS07Ha7oqKiVKpUKWOGLLPZLLPZLOn/B3VZt26d8eyh1WrVnj179PPPPxvbPHxP+OWXX3Zo09NPP62nn37aOAYJ3ceeNWuWsmTJorp16yosLEyLFi3S8OHDHY6vh4eHLBaLli1bpjt37mjo0KGPdgAB/GsoqgCQLDExMZo2bZpTscPly5eNi1Senp569tlndfPmTX322Wdas2aN/P39tXz5chUuXFhS7EwNhQoV0qBBg1S6dGktWrTICDBxnyNJBw4ckI+Pj8Nnbdq0SZs3b05R27Nnz67Dhw87rZs5c6b++usvp+UWi0V9+vRxCm1//PGHevfurTJlyjgs37Bhgzp27ChJGj58uH7++Wf5+vrq+vXrGjFihGw2myIiIjR8+HCFh4erdevW6tGjh3777Te98847ypUrl6TYqWjr1aunPHnyKDAwUDly5FC2bNnk4eGhN998UxcvXjQCGgAAwJMoPRf2AgAA4NF99913SW6TJUsW7dq1K951hQsXVv/+/Y3XXl5eTg8+xuXJL774wuFa5MMFFJ999tkjtTtuFgsAAAD8+1LyIHmHDh1Uq1YthYSEqEqVKszWAgAAkIiHr3X973//i3ebrVu3at68eerSpYvOnj2rYsWKKTAwUJUrV5bVatWQIUNktVrl6ekpDw8PRUVFqX79+rp//74aNWqklStXqkiRIg4zjcXNIvtPEydO1E8//WQMwjJjxgxVq1ZNly9fVocOHZy2L1u2rMPrGTNmGLNoWCwWWSwWde3aVWfOnJEUe0+5ffv26tu3ryQpNDRUbdu2TdaxiivSsFqt8Q7QMmjQIN26dUvt27dXlSpV1KBBA508edI4xiVLllTz5s3l4+NjFAsDSBs87AnNdQMADwkNDVVAQIDDTceE3Lx5UyNHjtTzzz+vF154Id4puS5fvqyTJ0+qcePGDsutVqtCQ0ONIoPUYLFYdOfOHYfZK1LKZrPJYrHI19fXYfn9+/dlMpmcCkEAAACQcs2aNdPw4cMTLOw9deqUseyfhb2TJ09W0aJFJcUWYaxevVofffRRvIW9N2/eVI0aNfTrr78mWNjLCF4AAAAAAAAAAAAA3FV0dLQ8PT2NQoLo6GhjxojUFhUV5XDf9sCBA/L19VWlSpVks9nifR4xTtysE3HttFgsunfvnrJnz25sEx4eLkn/auHtzz//7DCgIIC0j6IKAAAAAECalJ4LewEAAAAAAAAAAAAAAJA+UFQBAAAAAAAAAAAAAAAAAAAAINXYbLYkZ5ZIzMGDBxUaGqrWrVsnup3dbpeHh0eKPiM+9+/f1927d5U7d+5U2yeAtM/T1Q0AAAAAAAAAAAAAAAAAAAAA8OQ4ePCgWrRoocjISEnSoEGDNG/evGS//+bNm5o2bZqsVquxzG63659jyb/33nsO+717964uXLjg8OfSpUtO+9+yZYv+97//OS3fu3evhgwZkux2AngypKz8CwAAAAAAAAAAAAAAAAAAAADiERwcrAYNGsjX11eSZDabHWatuHz5snLlyiUvLy/9/fffaty4sfz9/R32YbFYVKNGDUmxBRX379/X3LlzVbt2bUnSrVu3tHXrVm3cuFFRUVHy9vbWqlWrtH37dpUvX16SdO/ePf344486fPiwUxv/WaAhSY0bN9Znn32mu3fvKiAgIFWOBYC0j6IKAAAAAAAAAAAAAAAAAAAAAKnit99+0zfffKPx48fHuz4qKkq9evVS3bp1NXjwYJlMJlksFv3yyy/y9PQ0tluxYoXy58+vunXrxrufqVOnKkeOHBo1apSioqI0Z84ceXl5qWrVqnr33XclSSEhIXrzzTed3msymeTr66vbt2/LbDbr8OHDGjhwoDJmzCgptrjCYrGoevXqmjNnzuMeEgBpHEUVAAAAAAAAAAAAAAAAAAAAAB6bzWbTmDFjZDKZlDNnTqf1VqtVw4cPl7+/v3r27ClJxgwWHh4eDtt+9913ioyMjLeoYvPmzTpw4IC2bNmibNmyOaz79ttv1a9fP0nS/fv3HQo1Ll26pKFDh6pdu3Yym80aM2aMgoKCVLVqVVWsWFHBwcHGtps2bdLXX3+dsgMBIF3xTHoTAAAAAAAAAAAAAAAAAAAAAEjc9OnTdffu3XjXxcTEaODAgbp06ZIWLFggf39/SbGzRnh4eMhqtcpisRjbe3p6GgUXdrtdUVFRiomJkSRdvXpV1apVU6tWrdS4cWOjiKJ79+7asWOHOnXqpFy5cmnhwoXau3evsc+wsDBlypRJUVFR2rJli65evao+ffrIZDLF2+aElgN4sjBTBQAAAAAAAAAAAAAAAAAAAIDHcvbsWa1evVoLFy7U66+/7rR+3rx5Klu2rJYuXaqMGTMay61Wq3x8fLRv3z4NGzZM3t7eslgsun//vr788kvNnTtXkmSxWDRhwgQ1bdrUmOVi+PDhql69ulq0aKGIiAhNnjxZZrNZf//9t44fPy673S6r1aqaNWuqQYMGunbtmrJnz66wsDCVKlVKs2fPlp+fn6xW639zkACkSRRVAAAAAAAAAAAAAAAAAAAAAHgsRYsW1a5du4zZJeJ8//33Onz4sGrWrKlp06Y5rY+IiJC/v78aNWqkRo0aSZLefPNNff/997Lb7VqxYoWKFi3q8J5Tp06pT58+CgsL05EjRzRjxgwNGjRIBw8e1N69e7Vp0yaZzWaNHDlSH374oc6ePasGDRro6tWrCgoK0qVLl9SgQQP5+fkZbfjll19Uv359h3ZVqlTp3zhUANIYiioAAAAAAAAAAAAAAAAAAAAAPLZs2bIpLCxMknTjxg3NmjVLO3fuVGBgoMqXL+9UUCFJoaGhypEjh/F67969unbtmp577jlJUr9+/bRy5Uply5bN2KZEiRLas2ePw0wV4eHhmjp1qiTp8OHD+u2333Tt2jVJkqenpySpffv2kqS2bdtKip0lw2Qy6e+//1b9+vU1ffp04zMiIyNlsVhS6cgASMs8Xd0AAAAAAAAAAAAAAAAAAAAAAE+W8+fP6++//9amTZtUunTpBLf7/fff9fTTT0uSLl68qFGjRumDDz6QyWTSc889pxdeeEEdOnTQ+fPnE9zHzp07ZbfbJUlHjhzRt99+q759++rNN9+U1Wp12PbOnTv6/fffdebMGXXt2lX37t3TmTNnVKRIEYftfH19lTlz5pR9eQDpCkUVAAAAAAAAAAAAAAAAAAAAAFJVpUqVNG/ePOXNmzfe9bNmzdKtW7d07NgxlStXTsePH1enTp3Ut29flS9f3tiuT58+atWqlVq3bu0wk0Sc1atXa/z48bpy5Yok6YcfftDEiRP14osvatq0aTKZTA7br1u3TlWrVtXixYtlsVj02Wefaf/+/apRo0aqfXcA6QtFFQDcxrVr1xQREWG8tlgsunr1qqKjo13YKgAAAPybyIAAAACudffuXd24ccNhWWhoqMLCwlzUIgAAADwuMh4AAAAedufOHadlVqvVmDUijqenp86dO2cs//XXXzVz5kydP39ee/bsUcOGDbVu3Tq98cYbateunSQpJibGuLf71ltvaeHChSpRooSxz+joaJ04cUKRkZHasmWL8uXLJ0nq27evatWqJUnKmTOnrl+/Li8vL0nSpUuX9Omnn+rNN9+Ur6+vFi1apMyZMytz5syqUKFC6h4cAOkGRRVAOvXTTz/p3r17j7WPH374QdeuXYt33c6dO7V69erH2r8knTp1StOnT1dUVNRj70uKDVJbtmxJcrvo6GhFRUU5BLOmTZtq+/btxuszZ86obt26DlOCxcTE6MGDB8naPwAAwH+NDJg4MiAAAECsyMhILV68WN9//32q7O/27duaM2eOLBZLktvev39fVqvVeP3JJ5+oT58+Dtt07dpVc+fONV7b7XZFRkY6vC8+c+fO1dq1ax+x9cnz8M3ZxIwaNUoTJ078V9oAAACQlNTMeU9Sxnv33Xd18ODBx9pHct2/f1+3b9/+V/Y9Z84cffLJJ8naNiYm5l9pAwAAQEJGjhypVatWOS2/evWqqlevrqlTpzost1gsio6Odrh3W6tWLW3fvl2lSpVSyZIl1a5dOz3//PPy8vJS48aN9fTTT2vcuHHq3Lmz8Z7o6GiHgt6KFSuqadOmxmtPT081adJES5YsUfbs2eO9xjdhwgQdO3ZMVatWlRSbu2rWrKnAwEB16dJFly9f1sSJE9W9e3d5eHgkeAzIYMCTzcP+z1IwAGme3W5X/fr11aRJEw0fPtxY/sUXX8T74FrhwoVVunRpp+WdO3dW0aJFNWrUKKd1W7du1dixY/XVV18pS5YsKW7rd999p44dOyo4OFhVqlSRJM2cOVOff/65vL29HUJIdHS0JkyYoHLlyiW4v0WLFmn69OnavHmzihQpkuB2q1ev1vvvv5+iNgcFBenAgQPGa4vFoi+//FL169eXn5+f7t27pyZNmmjs2LFq2LChRo0apcKFC+uNN95IcJ/9+/fX77//Lj8/vwS3iYiIUI0aNTR27NgUtftRff311ypTpoyyZ8/+n3weAAB4PGRAMmBqIAMCAOA+GjRooCpVqmjChAmSpNOnT6tfv34ym83y9Pz/8ZZsNpvq1Kmjd955J8F9Xbp0SS1atFCnTp00YMCABLeLiopS2bJlU9zmJUuWqEaNGgoPD9ebb76pxo0bq2vXrvLw8JDFYlHt2rXVs2dPdenSxeF9VqtV0dHR8vX1NZaFhISoWbNmj/T5Q4cO1ZtvvpnoNp07d5a3t7cWLlz4SPsGAABILamV89JjxpOkP/74Q4GBgQoICDCWPffcc+rVq5dee+01Y9nt27fl7e2tjBkzprjt8ZkxY4a2bNmiGTNmqGzZslq/fn2811rjtGrVKtlFubNnz9aiRYt0+PBh45piTEyMIiMj5e/vb/Tvtm3btHTpUgUEBGjWrFny9/d//C8GAACQiKioKFWtWlUffPCBXnzxRYd1wcHB+uCDD/TKK6/oww8/TPY+mzdvrgoVKmjMmDGJbnf37l01aNBALVq00PDhw+Xt7a06deokOJCgJH311VfGjBWSFB4ergwZMhj3qW02m+7duyez2awaNWqoe/fuqlWrlkqXLm3kVJvNZmSy+/fvq2/fvrp79646duyoFi1aJPt7Akg/vFzdAACPbv/+/bpz54569OhhjBxiNps1ceJEFSlSREWLFjW2/eKLL9SsWbN4H6jz8vJS7ty54/2Mxo0ba+fOnbp582aCD9Rdu3ZNrVu31tq1ax1CyNdff62+ffs6bBt3YczT01Pr169XpUqV5Ovrq8GDB6tJkyZq1KiRIiMj9dRTTxnvuX//vtMUYG3atNEPP/yg0NDQeNvu5+cnT09PtWzZUk2aNJHZbDbCUOvWrdWzZ081atRIknThwgX16NFDn376qfG5MTExTqOlnD59WoMGDdKaNWtUoUIF/fHHH7p586YxjViNGjU0ZMgQ5c6d26EK9mGRkZFq2bKlevXqFe96Sfrwww8fe+Tp5IqIiNDMmTO1atUqffvtt+rUqZNOnz79n3w2AABIGVdnQJvNpk8++UTr16/X7du3lT9/fr377ruqWbOmJDJgfMiAAADgv1arVi3dvXtXUmzG2bJlizFr17Bhw/Tuu+/K19dX27dv17fffqvx48crKirKIfvFjSD3sGzZshk5NCIiwulzvb29ZTab5ePjo0OHDsnX19d44Gvu3Lk6f/68Jk2aZGzfr18/lS1bVt26dZMUW0AcFRWlTJkySZIyZsyohg0basqUKTp58qQmTZqkvXv36s6dO5owYYLxAOHDcuTIocOHDxuv4x6emzRpksqUKZPksYuOjla2bNmS3M7LyyvRotnkistjxYoV07Zt2yTF5vj+/furSpUqCg4O1vDhw7V582ZJkoeHh/LkyaMmTZqof//+Tg8XAgCAJ9vj5rwnJeNJ0muvvab33nvP4UE2b29veXk5Pv7Su3dvVapUSYMGDXJYbrFYdOvWrQSOtLNs2bLJbDYbr3v16qW//vpL7du315IlS2Q2m5UvXz7Nnz/f6b0LFy50utYpSdu3b9fgwYMT/Mzy5cs7Lfv8889VuHBhSdLPP/+sjRs36rvvvtP+/fv1/PPPG9tduXJFhw4d0rVr11SgQAFVrVo1wevBAAAAyXX48GFlyZLFIXdIsZlv1apVqlu3rnbs2KGOHTsa91OT4u/vL5PJlOR2AQEBWrBggXr06KELFy5o4cKF8vHx0fDhw1WnTh2HbSMjI9W6dWunfWTMmFFNmjTR+fPn4/2MGTNmaMaMGQ7LmjVrpmnTpkmSfvnlF7Vt21aNGjXSmDFjHLKozWbTwYMHdfLkSfn4+Kh48eKqXr26Q8EzgPSBogognbHb7Zo7d648PDzUpEkTRUdHq1+/furSpYu8vLzUrFkzh2Dw+++/O1zkeZinp6d8fX1ltVoVFRUlf39/NWjQQJcvXza22bdvn/H3999/X+3atZMUW73Zv39/h6m1Ht5v5syZdejQIW3evFmNGjVSpkyZdPnyZTVq1EhFixZVsWLFFBMTo9DQUDVv3lwlS5Z02k+DBg0SvKC1d+/eeJdv375dRYsWlZ+fn3FzMyIiQtHR0dqyZYtDWClcuLC+/PJLSbEX2hIKMt9//73KlCmjChUqSJKOHz+uQoUKGYUkzZo10/HjxzVt2jTVr18/3uPt4eGh5cuX67PPPov3MyTp1q1batiwYYLrExMWFqZly5apc+fOypw5c5LbL1q0SB07dpSPj0+KPg8AAPy30kIGnDNnjhYvXqwOHTqocOHCWrZsmfr06aPdu3crMDCQDEgGBAAAaYDdbtfs2bPl6empoKAgo/C2Y8eOypgxo1EQu3HjRtWsWTPeh7WmT5+uRYsWJfgZM2fOdFrWtWtXDRs2TJIUGBgoKfZm4p07d9SzZ0+nB9zmzJkjKTabent7S5LTCMLdu3dX7ty59eWXX8rLy0uLFy9Wu3btnEZattvtstlsiomJcVieIUMGSVLu3LmNh8/ivPXWW2rdunWCxbFx+33w4IHMZrNMJpPDbGvJudmbXOfOnZPFYpHZbI634DVv3ryaMWOGoqOjderUKc2YMUMRERH/2UxnAAAgbXjcnPekZDxJ8vX1Tdb1LbPZbLTjYb/++qs6dOiQ5PvjrFq1Ss8++6zx2tvbWxMnTlT27Nn1zDPP6OrVqzKZTPFen/Px8VFkZKTTci8vL2XKlMkoGDl37pzmzZun0aNHGzl2y5Yt+u233zRs2DBZLBaH/ZcqVUpTp05VdHS0evfuLSn2mM2YMUMLFy5UlixZFBgYqNDQUN2+fVvt2rXTiBEjUjXHAgAA97Jhwwa1bdtWJpNJw4YNU7Vq1dSqVSvt3LlTly5d0sKFC7VkyRINHDhQ69evT9ZsYd7e3k5ZyWq1KjQ0VLly5XJYXqFCBS1ZskTHjx+XFJs5/fz8nDJYQvfI4z5v6NChev311yVJCxYsUM6cOY0CiZiYGPXu3Vs9e/bUM88843A9sGzZsho7dqz+/PNPh2z4xx9/qF+/frp48aIKFiwom82mCxcuKFeuXJo+fXq8gyACSLsoqgDSmQ0bNuj8+fPau3ev0+jBdrtdp06dcngI7vbt206j7r777rtq3ry57Ha7zGazgoODdfToUc2ZM0fe3t7q37+/U8VmmzZtjItOt27d0htvvBHvRShJCgoK0muvvaYNGzZo3LhxypMnj6pVq6bcuXNr3759+v333/XVV18pLCxM0dHR2r17t/bs2aMyZcroueeeM/ZjNps1evRoI8gkJiQkRM2aNXO6eCdJy5cv1+zZs+Xj4+MQdmw2mzHqyrx58xw+O05YWJjWr1+vRo0aKSQkRJJ05MgRFSlSxHgtSS1btlSDBg10/vx5+fn5KX/+/A77iY6OVuXKlVWvXr0Ev8P27dudRohJrrCwMM2aNUutWrVK8oG60NBQffPNN+rTp0+KPgsAAPz3XJ0B7927p0WLFmny5MnGg2dVqlRRo0aNdODAAb388stkQDIgAABIA1q3bi1fX1/17dtXTZo0MR68nzFjhnx8fIyH5Y4ePaoSJUpo5syZ8vLyUs+ePY19mM1mlSpVSps2bUrWZ7722mvxXie8fv266tevLx8fH6eHt+7fvy+r1aqmTZs6jQD3sBdffFEvvPCC9uzZo1OnTmny5Mm6fv26fHx8jOJYu90ui8WiPHnyOLz34Qz4T8eOHTNmMkvItWvXVLdu3QTX79y5M97lixYtUq1atRLd98Oio6P1559/qkSJEjp16pTTerPZbMy0UbFiRVksFk2ePFmjRo1K9CYxAAB4sjxuzntSMp6UeM5Ljrjv9dVXXxkDqMTn8uXLatCggVPmCgkJUeHChTV06FBJsQ/0XbhwIcEM2KpVK6dlnp6e8vT0NL5LTEyMPv/8c40bN84oGAkNDdXZs2fl7+/vdP3z5ZdfVkxMjMPyKVOm6LPPPtPChQtVrVo1Y/mBAwfUv39/+fn5JTo7BgAAQEKOHDmi7777Th9++KFCQkK0detWvfrqq7p586Y++OADderUSXnz5lW/fv20d+9e9ejRQ7NmzVKWLFkUHh6uCxcuON2zzZs3ryTpwoULDp+1YMECrV69WitXrjSy2pUrV5QtWzY988wzeuaZZyTFZsL33ntP7733XrK/h4eHh7y9vWWz2WQ2m3XixAk99dRTRv7y8fHR0aNH1b17d/n5+Tncb8+QIYMmTZrkkMGuXbumDh066Pnnn9fatWuNGdrCwsI0atQodenSRbt27VL27Nkf9ZADcBGKKoB05NSpU/rwww/Vu3dvZciQQTExMYqMjDQqO4sUKaJjx47p+++/V0REhLJkySIfHx/lyJHDYT8HDx5UixYtZLPZ9PPPP2v79u3q1q2bMWpI5syZnao9TSaTcYHpjz/+UOXKldWxY0c1btzYqZ3FixeXh4eH2rZtK5vNpv79+0uKvVi3ceNGnT17VitWrNCrr76qbt26KTo6Wt98843CwsIcHmpr2bKl8eCa2WyO9wJZ3AW18PBwderUSf7+/sa6y5cvy8PDQ61atTIuVmXMmFHXrl3Tzp07tWPHDlWqVEnt2rVTgQIFtGDBAnXu3NnhwtiBAwf0559/asGCBQoODpaHh4ciIiLk7++vI0eOOLXHarWqbt26mj59uiTpwYMH8vHxUffu3XXz5s0E+1aKvfiVO3du2Ww2RUdH/2sjCM+aNUu9e/dmijEAANKJtJABfXx8FBwc7DCSRlxxR1xBABmQDAgAAFyvf//+6t69u+7cuaNdu3Zp165dkqR+/fqpQ4cOmjt3rl588UU1a9ZMUuwNyT179jgUVZQuXVoBAQG6fPmyrFZrgqPZxsTEyGKxqEmTJnrqqaeM5Xfu3NG9e/fk5eVlzDRmMpnk5+en3bt367PPPpPValXbtm3VqFEjbd68WaVKlVKxYsWMfSxcuFABAQFq0aKF7Ha7xo8fr7Zt2+r69et64403nB64i46O1s6dO42bsUnx8PBIcpTeHDlyaPfu3cYN37jP69ixo8qUKWM8RBfn+++/18CBA52KoJNSoUIFnTp1SiVKlNDp06dVrly5RLcvVKiQrFar/vrrLz399NOP9FkAACD9etyc5w4ZL7kSGjgwIQ9fNzx37py6dOmicuXKafTo0QoKCpLValXBggX1xRdfOL130qRJun37drz79fDwUHBwsCZPnmw8mFe9enVjvc1mk9VqVenSpRUTE6O1a9c6zEDycEHFhQsXtGTJEq1du9ZpNOQ6depoyJAh2r9/v+x2+2MXpQAAAPdy9+5dDRgwQFmzZtXkyZP122+/6bnnnlPZsmXVo0cPeXh46K233pIkZc6cWXPnzlXnzp31yiuvaOTIkfLx8dEbb7zhtN+4AQN//vlnhYaGKjAwUBs2bNCMGTPUqVMnh/vWK1as0NatW/XOO+8Y939tNpumTp2qF154wWG/ERERqlixYoLfx9PTUzVq1FBUVJSRjVatWmWst9vteuutt2Sz2VSjRg2n2d4ezmBTp05VhQoV9P777ztskzlzZn300Udq06aNTpw4kejALQDSFooqgHTE29tbzZo107JlyzR16lT5+/vL09NT33//vaTYkXal2FE1Bg0apN27d8e7n9u3bytnzpwKDw/Xxo0b1bdv30casbZSpUqqUqWKLl++HO/606dPq1u3bmrWrJkaNGig2rVrq1u3bipXrpxy5swpHx8fZc2aVUOGDNGGDRtUpUoV3b9/32mUj4EDB+rq1auqW7euTCaTcXEvOjpanp6eMplMstvtslqt8YaY3r176+LFi/L09JTdbldERITmz5+v48ePa968efLz81OXLl0UHR2tV155RR4eHqpWrZox8pskNWnSROXKlVO+fPnk4eGh/fv3a8CAATpw4IBRXZoQi8WiypUry9vbWxkyZFCGDBmSvEgVGRmpsLAwlStXTkuWLEl0W0natGmTRowYYbxu0KCBpNiRo4ODg522P3funC5fvqzatWs7rQsNDdXo0aN19OhRBQYGavTo0apTp06SbQAAAP+utJABzWaz0824AwcOSJJxUYoMGIsMCAAAXMViseidd97R33//rYkTJ6pBgwb66quvNHfuXL388suSYkdba9++vSwWiywWiwICAoxcF6dhw4aSpC5duujo0aPGQ2c2m00xMTFGfot7fejQIQUGBhrv37Rpk2bMmCGTySRPT0/dv39fjRs31jvvvKMRI0bIbDarb9++qlevnsaOHavt27erd+/eDg/c+fj4aOnSpZo2bZqmT5+ubdu2KSoqSlmyZNFvv/32yMcmIiLCGIkuLpvFtT/u71arVX5+fsZ7vLy8HB4kjHPz5k0VKlTI4TtL//9wXkBAwCO1rVixYjp9+rTCw8N15coV1ahRw2mEvofduHFDkowi6hs3bujDDz/UN998I7vdrurVq+u9995TtmzZHqkdAAAg7UqNnPckZTyLxWIM6PKwESNGOFwzk6SyZcs6bfeoRQUPb1+wYEFt375dI0aM0L59+9S2bVtZLBadO3dOxYsXj/f98c1UYbPZ5OXlpc6dO+uNN97Q77//rtatW+vo0aPKkCGDJGnOnDk6cuSIgoODZbVaE233tm3bVLFiRadruHE6dOigDh06PMrXBgAAkBR7ratatWrKli2bTCaTTp8+rTFjxqhHjx765ptvVLZsWVWtWtXhPe3bt9fPP/+sxYsXa968eTpy5IgyZswos9msRYsWadmyZcaMZDabTTNnzlS+fPk0a9YsTZw4US1atHDY37Bhw1SxYkUtWLBADRs2VKZMmWSxWDRo0CANGjQo2d/FbrfLZDLp22+/ldlsVo8ePVSwYEENGzbM2OaZZ57R4sWLVbVqVWNwwfhERkZq9+7d+vTTT+Nd7+Pjoy1btiS7bQDSBooqgHSkcOHCGj9+vOx2uxo0aKDRo0erXr16kmIflIobBffSpUsymUz64YcfjPcWK1ZMmTNn1p07d/TgwQNlzZpVd+/eVb9+/dS7d29jO6vVqujoaEVERDh8tt1ul91ul6QkR7e9d++eXnrpJdWvX1+DBw+W1WqV2WzW/PnznbYdOXKk5syZIyn+C1i5cuXSyZMnHUZLad26terVq6e+ffs6tPuftm7davx98uTJ2r9/v2rVqqWbN2+qaNGiqlmzptq1ayc/Pz/16dNHrVu3dhqVxdvbW/nz5zdeBwcHq2nTpvL09HQ6RpLk6+tr7CNumjAp9kJWeHh4/AfsITly5FCjRo2S3C5OvXr1tGHDBoWGhqpnz56aO3euAgMDjYtt/zRt2jQNHDgw3nXdu3dX9erV1blzZ3366acaNmyYDh8+zGjGAAC4WFrJgA+Ljo7WnDlzVKtWLePGKBmQDAgAAFzrwYMHypQpk+bOnavx48frww8/lMVi0dy5c+Xr6+uw7ebNm3Xv3j29/fbbCT6ctXDhQoeR11asWKHFixcbIxNLineU465du6pr166SpJMnT6pdu3bq1KmTMcLw2LFjNXbsWC1btkwNGjTQl19+6VSg0LFjR3Xo0EF79uxRhQoV5O3trVq1aun+/fvxtnXChAlq3bp1gsdm0KBB+vrrrx2WjRw5UiNHjjReV69eXUuXLk1wH5J07do1hYWFqWDBgk7r4nJi5syZE93HPxUrVkxfffWVTp06pSxZsigoKCjeooro6GidPn1aCxcuVN26dY2Z64YOHarz589r8uTJMplMmjhxoj7++GONHz/+kdoBAADSrtTMeU9Cxtu+fbvTNcv27durU6dOatq0qcPyhK6XPY6AgADj2qYkNWvWTLVq1Upw+4cLd+NERkbK29vb6Iu465wPHjwwtomOjpbNZpOkJGdZO3nypMMsFgAAAKlpxowZkqSPP/5YNWvWVIUKFdS5c2c9++yz6ty5s+x2u1GkGzdQnre3tyIjI+Xv7y9/f39jX3v37nWYueG5557Thg0blClTJi1atEiVK1eOtw2NGjVyuJ+6bt06IyvF559ZVPr/DPZwQXF898jj9pvYDGfnzp3TgwcPyGDAE4aiCiCduXPnjjw8PGS32xUZGam7d+/K09NTCxYs0I8//qjChQvr1q1biomJ0eLFi2W327V3716tWLFClStX1pkzZ+Tl5SVfX19duXJFNWvWdNh/eHi4Jk6cqIkTJzp9tsViSVYbK1WqpEqVKunixYvKnj27oqOjdenSJXXp0kWjRo0ytosbCS6+EPOwHTt2qGrVqgoKCkpwm4QuJNlsNs2aNUsrVqzQqlWrZDKZjItSgwcPNqbw8vPzS/LBsW+++UYHDx6UFDsayz9lzpxZe/bsiXc0utmzZ6tMmTLGlK23b9/W5MmTNWbMGCOo7dmzR/fu3XukB+qyZs2qrFmzGrOGFCtWTPny5Yt322PHjsnb2zvBEUoqVapkVN5myJBBr776qkJDQxM97gAA4L+R1jLg7NmzdfHiRU2bNs1YRgYkAwIAANcKCAjQBx98IIvFomLFiunYsWPKnTu3hgwZon79+qlNmzbGttHR0cZMBwn57bffjFm4EpLYw10///yzevfurfbt26tixYrGzchSpUpp8eLF6tGjh8MN13/y9PRU48aNjdd79uyR2Wx2ym+1atWK92G5uAftvL29NXr0aA0fPtx476uvvqru3bsb+48bKTgpcQXM8d0sDQ8Pl4eHR5Izm/1TsWLFNGfOHJ0+fdphJOc4/xz1uEaNGho3bpzxumnTpipZsqQx81r16tV1+PDhR2oDAABI21Iz56X3jLdr1y55eno6XUszmUzKnDmzcuXKZSy7efOmtm7dqubNmz9y4WtSzp8/rwIFCsjT01NmsznJbG232x2KXKKiohzaFBkZKUlO123jm2kjPtevX0+0TwEAAB7XpUuXFBwcrEWLFkmS6tat61AcEcfHx8f4+z+LEs6dO6effvrJYdaxggULyt/fX9euXUsyz/z5558qVKiQbDZbimZpjYyMdLin++DBAwUHBys4ONhhu+Q8I3n9+nX5+/s7fF8A6R9FFUA606dPH/3222968OCBhg8fLpvNpueff15+fn5q1KiRhgwZovXr1ysmJkZz5sxRTEyMSpUqZYSUKlWq6Pjx4zp79qyio6ON6eKl2EAQGhqqKVOm6MUXX3T43KtXrxqjnyXlr7/+0uLFi7V582Z17dpVPXr00I0bNzRhwgQNHjxYvXr1kiSFhYVJUqIPbEVHR+v999/Xiy++qLFjxxrLb9++rZCQEON1ZGSknnrqKaONkZGR2rNnjxYsWKC//vpLc+fOValSpfTRRx/p66+/NoLVoEGDVKRIEY0bN07Tpk1TzZo19fbbbxujqsQJDw/X+++/r0yZMqlgwYJas2aNcUHRbrerffv2qlevXrwP00mxIfHgwYM6duyYpP8fbWThwoXGBbS7d+/qmWeeSdYxTonp06c73HD9p4enfI07PolNYwYAAP47aSkD/vDDD5o/f74GDhzo8HAXGdAZGRAAAPyXLBaLtm7dqoULFypXrlz67LPPFBgYqLVr1+rjjz9W4cKFjW3DwsJUpEiRRPe3adMmffHFF9q7d6/xQFt0dLRDHouOjlaGDBkcZvn69ddftXr1am3ZskXt27fXO++8oz179mjjxo2SYgs5ixUrpnXr1mn48OF67rnnVLNmTb300ktq0qSJQxs2b96sb775RhMmTFD27Nnjbaenp2e8D/7duXNHkpQpUyanAlQPDw9lz55d3t7eCg4O1tChQxOcseNhW7ZsUenSpR0e1osTFhamTJkyPfKMX8WKFdPNmzd16NCheIsq8ubNq9mzZ8vDw0N58uRxeiCwWbNm2rJli+bNm6djx47pxo0bypMnzyO1AQAApG2pmfPSe8bbs2ePvLy8kjVAyfXr1zVu3DjVq1cv1YsqFixYIF9fX7311luqU6dOktt/+OGHeuWVV4zX9+7dU2BgoOx2u27evKkSJUrop59+ive9Dx48iHe2i4f5+/vrr7/+erQvAQAAkExnz57VwIEDlT17dv3444/atGmT2rZtK7vdrtdeey3e9yxevNipYHTWrFkqVqyYqlSp4rB82LBhatasmRYvXmzMjvZPV69eVevWrfX5559rzpw5Wr9+faJtzp07t9PMtREREQoMDFR4eLiio6M1d+7cBK8JxsTEJDoIi7+/vyIiIhQWFpbqWROA61BUAaQzK1askCTVr19fo0ePVr169SRJY8aMMbbZtm2bTp06pU2bNql58+ZO+/D09NTRo0eVIUMGDRgwQG+//bb69Omjixcvymaz6amnnnJ6T3w3ChPy9ddfa//+/bJYLFq1apVWrVolKXYUlfXr1+vAgQOSpNOnTytnzpzGA3VxD5k9bM+ePYqIiFDHjh0dlm/cuFE7duyQFPtAW1RUlBYvXqxnn31WUuzocsuXL9fTTz+tKVOmqECBApKkPHnyqHr16mrbtq2xXaNGjfTss89q8+bNunTpktPDdFarVUOGDFFERIS2bNmi7t27a968ecaDgStXrtTVq1fVqVOnBI+JxWJR7dq1nUYp7tatm9Moxf+GvXv3qlixYg4XP/8p7hgBAIC0J61kwNDQUA0YMEA1a9ZUt27dHNaRAZ2RAQEAwH/pxo0bmj17tmJiYnT27FmHh7bGjx+vKlWqGNnrzJkz6ty5s6T485jFYtEXX3yh1q1bO4wQfOPGDbVv3954HR0d7VQI+/333+unn37S1KlTVa9ePdntdhUtWlRms1lTpkwxclfu3Lk1b948HTx4UJs3b3Yo2JViR++dPXu2KlasmOgNzEyZMik8PNxp+dWrVyUpwQf1pNh8tnTpUuXNm1evv/56gttJ0rfffqsDBw5o0qRJCe4roWLbxGTJkkU5c+bU3r17NXbsWF2/ft1hvdlsVsmSJeN9b3h4uFq1aiVfX181b95c7du318WLFzV//vxHbgcAAEi7UivnPQkZz2QyJbuINe76W0KzZqSUzWbT/v37NWTIEGNQm+DgYN28eVMLFizQvHnz9N577ylfvnzq3r27Onbs6PRdr169qpw5c+revXt67rnn5OXl5TR7hc1mU1hYmHr06KGBAwcm2qYSJUro4MGDTjNixLl06ZK6deum6dOnJ5gtAQAAEvLgwQOdPXtWgYGBOnr0qHLkyKF8+fLp2rVrkqSlS5cqZ86cxvbNmjVzymBfffWVduzYoXnz5jntPygoSCNGjNDo0aOVLVs2tWzZ0mmbffv2KUeOHMqTJ4+8vb1Vr149jRs3Tr169VLnzp2VK1cudejQQQcOHNCBAwecPufu3bu6f/++AgMDNXPmTK1bt06RkZHy9fV1aGtERIT8/Pz0xRdfJHpdsVixYvL09NTBgwf1wgsvxLtN3GxzD+dqAGkbRRVAOrd3716VKFHCuDgyf/58nT592hg92N/fP973bd26Va+++qrKly+vIUOGKDQ0VCVLlpSvr6/Txa1H1b59e7Vs2VIVKlTQtm3blC1bNu3bt0+jR49WxowZZbfbFRAQoG3btql58+ay2WzxTolqt9u1dOlS+fj4OF386datm/r27ZtgG/z9/bVy5Up5e3urUqVKTg+q/XParj59+sS7v+joaI0YMULffvutli1bpnz58unjjz9Whw4d9PTTT8vf318zZ87UsmXL5Ovrm2B7+vfvr4iICOPi5cP/G/f3evXqpWhqMun/p06LiopyWme1WjV//nzNnTs30X0kNpUvAABIW1yRAe/fv6+3335bPj4++uijj5zyGRnQGRkQAAD8l/LkyaOvvvpKQ4YMUenSpfXmm29KkqpWrWo8NJchQwYdO3ZMVqtVVatW1R9//BHvrAYbNmzQnTt3nEbEzZ07t/bu3ZtoO7p27aouXbpo4sSJGjBggMO6L774QoMHDzZe582bV3v37o33xuOsWbMUFham4cOHJ/p5uXLl0oULF5yWnzp1SoGBgYlmrVKlSqlly5aaPn26WrZsmeBMvVevXtWQIUNUtmxZvfTSS/Fuc+PGjXjzbXIUK1ZM169fV/HixZ2KKhJz9OhRXbx4UXv27DEKab/55psUtQEAAKRdqZXznoSMlxZ8//33unPnjho0aKCYmBhJsYWycaMZBwYGysfHR35+fgoMDJSXl5fTNbgLFy7omWeeUebMmXXixAndvHlTL730kiZMmKC6detKkkaNGqUTJ06od+/eSbapVatWWrZsmVauXOlULBwdHa13331XGTJkUIkSJVLpKAAAAHdStmxZHTp0SIGBgQ7LQ0NDJUn58+ePd6bYOKdOndLQoUPVsmVLI+v80yuvvKLz589r2LBhOn78uAYOHOhwre7zzz83ZkDz9PSU2Ww2slbmzJmVNWtWSbEDrGTKlCne/GUymRQYGKgRI0ZoxIgR+uSTT3T06FEtX75cXl5eCgkJ0auvvqoxY8YkWlAhxQ4sWK9ePX3yySeqWbOmsmTJ4rD+yJEjWrVqlWbOnJnofgCkLRRVAOlYcHCwfv75Z33wwQey2+2KjIzUpUuXNHfuXFWsWFHLly+Pd1TavXv36uTJk5o8ebKKFCmiO3fuKH/+/JozZ45q166dKqN1xPdwVtxIHS+88IJy5cqlAQMGaMOGDercubNq1Kihnj17Omy/du1aHTt2TK1bt1aHDh303nvvqVmzZsluw9GjR7Vy5Upt3rxZ2bJl0/Hjx5UlSxYVLFhQknTw4EF5e3urfPny8vb21qhRo1S2bFljWrKLFy9qxIgRunDhgpYuXaqyZctKir3ZOmHCBA0dOlReXl6aMWNGohegvv76a3300Ucym81GYIy7wLZ8+XJjmc1mU1RUlEqVKvVIM4NIUmBgoPLkyaPly5frpZde0vnz51W+fHkVKVJEmzZtUr169YzwCAAA0jdXZcDx48fr5MmTGjdunC5duqRLly5JkrJmzWpcJCMD/j8yIAAAcIWECibjRsbdt2+f2rdvr3feeUdr167VZ599psWLFztse+PGDU2bNk3Vq1fXli1bdOPGDQ0dOjTZbbDZbOrcubM6deqk/v3768aNGzp37pxq1KghSfrrr7+0f/9+vfLKK4qJidHevXu1bt06zZ0718hI3377rRYtWqQRI0YkWYBapkwZHTt2TBaLRdOnT9fbb7+tgIAA7du3TxUqVEiyvb169dJrr72WYEHFn3/+qe7du8tqtWrKlCnxHuPo6Gj99ttvRnZ8VMWKFdPhw4dVpEgRHTx4MNnvi8t6mzdvVrVq1bR7926tXLnS6QY3AABI/x435z0pGc9utye7zUm5ceNGorNl3LhxI97lq1evVrVq1ZQpUybdvXs3WZ/18OwaMTEx+vHHH9WuXTtjWfbs2TV27FgNHTpUn376qb777jvt27dPa9asSda9+5IlS6pbt2768MMPFRISotdff13Zs2fXqVOnNHPmTIWEhGjlypXxzmIBAACQHH5+fjpx4oSOHTum7777TvXr19czzzyT5PsOHDigAQMG6Omnn9bo0aMT3XbIkCHKmjWrpkyZos2bN2vmzJmqWbOmQkJC9N1332nIkCGSlKxM889tjh49qhIlSjhkq549e+rgwYMaPny4+vfvr169eqldu3bJvjc9YsQItWvXTm3atFH//v1VtWpV3b9/Xzt37tScOXPUrl07NWjQIFn7ApA2UFQBpEMhISG6evWqMmbMqM8++0z58+fXt99+qwwZMmjGjBnGdgUKFNC5c+ck/f8otqGhoRo7dqyef/55FSlSRJLUrl07HT16VD/++GOqTQ1vs9kkyagutdvtRkXm3r179f7772vGjBkKCgpSmzZtNHr0aF29elXvvvuuTCaTvvnmG02aNEmvvfaaxo0bp/3792vYsGFauHChrl69qosXL+rXX3+Vv7+/PD09ZbFYFBERoQcPHqhWrVqSpFWrVikiIsJ4qHDmzJkqWbKkRo0aJSm2gvXmzZtatmyZcbymTJmi559/XpkyZdKtW7fk6emp9evXK3fu3JJiR/zdv3+/FixYoIwZM+revXvatGmTsmbNqjJlysR7LKpWraqNGzcqICDAuOB5+fJlNWjQQJs2bTJGkIl7oC6urx7VtGnT9P7772vjxo3Kli2b5s2bp8jISK1bt85pVGYAAJD+uDoD7ty5U3a73chScVq1aqWJEydKIgM+jAwIAABcxWazaerUqZo+fbokyWKxKCYmRteuXdPgwYNVqVIlNW/eXJcuXdLGjRvVpk0bLVy4UPnz59fdu3fVq1cv+fj4aNq0abLb7erfv78aNGig/PnzKzIyUt9//70CAgLk5eUlq9WqBw8e6Pbt2ypdurSyZ8+uvXv36ueff9b48eOVMWNGffHFF5o8ebKOHj0qT09PXb58WZMmTVKjRo2UN29eFS9eXIcOHTJmNAsJCVH//v1VqFAhhwfNEtKiRQu1bdtWa9as0aJFi9SuXTuFhYXpyJEjmjBhgs6dO6eYmBiHB9lsNptCQ0MVEhIiScqcObPOnj0rb29vPf3005JiH3ZbtWqVpk6dqoCAAC1ZskQFChRw+OxJkybp77//1smTJ3XhwgX16dMnRX1WvHhx5c2bN8HCjoQ8++yz6t+/v1auXKkVK1aofPnyGjZsmCZNmqRLly7FW2wNAADSr5TmvMyZMz8RGS8gIEAWi0VbtmzRhg0bnN4TN+JwUuJmkG3Tpk2yjrvFYjH+funSJX355Zd67733dP36dd26dUuSdPPmTd2+fVvR0dG6evWqIiMjFRERoatXryomJka3b9/WtWvXFBQUpEOHDslisahSpUoOn9OwYUMdO3ZMHTt2lCStWLHikfLcO++8o+LFi2v+/PlatWqVpNhinDp16mj16tXGoDMAAACPasiQIdq2bZu8vLxUunRpValSReXLl1dUVJQkxVs4EHffuFChQmrcuLGGDh1q3B+NEx0d7fS+N998UxUrVtR3332nmjVrSpIWLlyooKAglSxZUufPn9f9+/cVGRmpq1evKjo6Wrdv35avr68k6dq1a7p7966sVqsuXryooKAg+fj4aNeuXapatarDZ3l7e2vWrFlq3ry5vvjiC9WuXdso3EiO/Pnza8OGDZo2bZpGjhyp+/fvS4odGG/IkCHq0KFDsvcFIG3wsKdmKT+A/8S1a9e0ePFi9e3b17jRNmLECGXPnt3h/9j37t2rPn36qFatWpo1a5bMZrMWLlyo2bNna8eOHcaUr2FhYWrevLly5sypdevWpUobb9++rWrVqunIkSPKli2b9u3bp+HDh+u1117Ttm3bNH36dJUvX97Y/ujRo5o/f76mTZsmSXr55ZeVJ08eLViwwHjALDw8XFu3btXBgwd19uxZ3bhxQ5GRkQ6f27VrVw0bNkw//fST2rdvr+DgYFWuXFmSNHXqVO3du1fbt2+XFDt6cI8ePfT1118rV65cevDggerXr68+ffo4hJrbt29r//79+vHHH/X1118rJiZGHTp0UJcuXXTt2jV9/PHH2rdvn3Lnzq2KFSuqYsWKxvv/97//af/+/cqYMaNDBazNZtOtW7eUPXt2h+V2u11hYWFq1arVI40Ok5CoqCj98ccfKlWq1GPvCwAAuBYZkAyYXGRAAADcW48ePVS5cmW9+eabkmKLPTt27KilS5fqjTfeUK9evYwsEhERoV69eqlHjx6qXr26xo8frw0bNmjZsmUOxaOHDx/Wzp07deLECf31118KCwtzGCU4Z86c2rt3rzw8PNSqVSuVLl1aEyZMkCSdO3dOTZs21YYNG1SmTBnZbDbVrl1br7/+ujFr2dixY/XLL79o48aNioyM1IwZM1S/fn0j0yVlzJgxWrVqlWrVqqVFixapb9++OnLkiPbv368ePXrou+++S9Z+4t4vSdu3b9ewYcNUrVo1TZo0STly5HDafsqUKVqxYoWKFy+u559/Xp06dWL0XwAA8K9Jac7bt2/fE5HxpNhrdnEP7yXl4sWL6tixow4cOKCgoCBj+Y8//qj27dvrq6++MmbgjU/cACmrVq3Ss88+a7x3+PDhWrdunSZPnqzt27c7zFSbEIvFoho1aujTTz9Vx44dFRAQoMmTJ+vvv//WxYsXdeLECR0+fFh//vmn6tWrp7Nnz+qPP/5QmTJlVKxYMWXPnl3ZsmXTK6+8kqyZK65fv6579+4pX758KR7MBQAAIM6RI0d0584d1a5d22FQkFOnTqlFixbasWOHMVidJFWsWFELFy5U7dq1493f7t27dfjwYW3cuFEDBgxQt27dEv38//3vf8qUKZM6duyoxo0by2w2JzrjmBRbSGuxWLR27Vrdv39fHTt21NatWxUQEKDr16/rzJkz+v7777V//37lz59fhQoV0pdffqmsWbOqXLlyyp07t7Jly6Znn302WbPhRkdH68KFC8qUKZND9gSQvlBUATzBYmJiFBkZ6TTC2ZUrV5Q3b16HZadOnZLZbFahQoX+1TZZLBY9ePBAAQEBiW53584deXt7O1Wo/pPNZjNGYbHb7fL19ZW3t7du3rypXbt2qX379sa2f/zxh8LDw40H+SwWi86fP69ixYoZ25w+fVrFihVzuPAVGRmp1q1bq3Tp0mrSpIlq167tdLHq0qVL2r9/vw4dOqQGDRro1VdfTe4hAQAASFVkQDIgAABAfEJDQxUYGJjkdn/99ZdRiJsQu92u6OhoRUdHy263y9PTU/7+/rJardqxY4cqVKhgjKprt9v1xRdfqE6dOkbOO3XqlAoVKmTkq2vXrsnb21vZsmVL8ff7/ffflS9fPmXKlEl79uzR+fPn1a1bN0VFRcnLy8uYPSyh72O1WmW1Wh0eOjt9+rSKFy+e4PtiYmKSvIELAADwb0tOznsSMt6jCgkJUbNmzbRnz55UncHLYrEkq7AhIUeOHJG/v7/y58+v1157TdmyZVOZMmVUvXp11alTx9j3pUuX9M033+jXX3/VmTNnVLBgQU2ePDm1vgYAAMBj+/XXX/Xqq68mWawa3/vGjBmjunXrqkePHsnKVo+Twe7cuaOdO3eqXbt2+vTTT7VmzRqVLl1a5cqVU5MmTYzZaS0Wi7777jv9+OOPOnnypP7880/NnDlTJUqUSNHnAkh/KKoAAAAAAAAAAAAAAAAAAAAAAABuydPVDQAAAAAAAAAAAAAAAAAAAAAAAHAFiioAAAAAAAAAAAAAAAAAAAAAAIBboqgCAAAAAAAAAAAAAAAAAAAAAAC4JYoqAAAAAAAAAAAAAAAAAAAAAACAW/JydQMeh81mU0xMjDw9PeXh4eHq5gAAgHTMbrfLZrPJy8tLnp7UnaZlZEAAAJCayIHpAxkQAACkJjJg+kEOBAAAqYUMmH6QAQEAQGpKbg5M10UVMTExOn78uKubAQAAniBlypSR2Wx2dTOQCDIgAAD4N5AD0zYyIAAA+DeQAdM+ciAAAEhtZMC0jwwIAAD+DUnlwHRdVBFXLVKmTBmZTCYXtyZtslqtOn78OMfIhegD16MPXI8+cD36IGlxx4hRSdI+MmDSOOddjz5wPfogbaAfXI8+SBo5MH0gAzrj/HY9+sD16APXow9cjz5IGTJg+kEOTBr/DrgefeB69IHr0QeuRx8kjQyYfpABk8Y573r0gevRB2kD/eB69EHSkpsD03VRRdz0XiaTiR9CEjhGrkcfuB594Hr0gevRB0lj+tC0jwyYfBwj16MPXI8+SBvoB9ejD5JGDkzbyIAJ45i4Hn3gevSB69EHrkcfpAwZMO0jByYfx8j16APXow9cjz5wPfogaWTAtI8MmHwcI9ejD1yPPkgb6AfXow+SllQOpPQWAAAAAAAAAAAAAAAAAAAAAAC4JYoqAAAAAAAAAAAAAAAAAAAAAACAW6KoAgAAAAAAAAAAAAAAAAAAAAAAuCWKKgAAAAAAAAAAAAAAAAAAAAAAgFuiqAIAAAAAAAAAAAAAAAAAAAAAALgliioAAAAAAAAAAAAAAAAAAAAAAIBboqgCAAAAAAAAAAAAAAAAAAAAAAC4JYoqAAAAAAAAAAAAAAAAAAAAAACAW6KoAgAAAAAAAAAAAAAAAAAAAAAAuCWKKgAAAAAAAAAAAAAAAAAAAAAAgFuiqAKAW/D29nZ1EwAAAPAfIwMCAAAAAAAA7oFrgQAAAO6HDAggNVFUAcAtlHymlEwmk6ub8VisNrurmwAAAJCukAEBAADcU3rPUOm9/QAAAK7AtUAAAAD3QwYEkJq8XN0AAPgveHuZ1H/Nz/rjerirm5IiRXJm1Iy2FVzdDAAAgHSFDAgAAOCeTJ4e6TYHkgEBAABShmuBAAAA7ocMCCA1UVQBwG38cT1cv/0V5upmAAAA4D9EBgQAAHBP5EAAAAD3QwYEAABwP2RAAKnF09UNAAAAAAAAAAAAAAAAAAAAAAAAcAWKKgAAAAAAAAAAAAAAAAAAAAAAgFuiqAIAAAAAAAAAAAAAAAAAAAAAALgliioAAAAAAAAAAAAAAAAAAAAAAIBboqgCAAAAAAAAAAAAAAAAAAAAAAC4JYoqAAAAAAAAAAAAAAAAAAAAAACAW6KoAgAAAAAAAAAAAAAAAAAAAAAAuCWKKgAAAAAAAAAAAAAAAAAAAAAAgFuiqAIAAAAAAAAAAAAAAAAAAAAAALgliioAAAAAAAAAAAAAAAAAAAAAAIBboqgCAAAAAAAAAAAAAAAAAAAAAAC4JYoqAAAAAAAAAAAAAAAAAAAAAACAW6KoAgAAAAAAAAAAAAAAAAAAAAAAuCWKKgAAAAAAAAAAAAAAAAAAAAAAgFuiqAIAAAAAAAAAAAAAAAAAAAAAALgliioAAAAAAAAAAAAAAAAAAAAAAIBboqgCAAAAAAAAAAAAAAAAAAAAAAC4JYoqAAAAAAAAAAAAAAAAAAAAAACAW6KoAgAAAAAAAAAAAAAAAAAAAAAAuCWKKgAAAAAAAAAAAAAAAAAAAAAAgFt65KKK27dvq379+rp8+bKx7MyZM3r55ZdVuXJlTZo0SXa7/bHXAQAAIG0hBwIAALgfMiAAAID7IQMCAAC4J3IgAABwZ49UVHHr1i316NFDV65cMZZZLBb16NFDpUqV0saNGxUSEqJNmzY91joAAACkLeRAAAAA90MGBAAAcD9kQAAAAPdEDgQAAO7ukYoqBg0apGbNmjksO3DggMLDwzVixAgVKFBAgwYN0oYNGx5rHQAAANIWciAAAID7IQMCAAC4HzIgAACAeyIHAgAAd+f1KBuPGzdO+fPn1/jx441lp06dUrly5eTn5ydJKl68uEJCQh5r3aOyWq0pep87iDs2HCPXoQ9cz2azyWQyuboZqSK9/o44D1yPPkgaxyZxaTEH0mcJ45x3PfrA9ciAaQPnguvRB0nj2CSMDJi2cX67Hn3gegn1wZOQA9PL74rzwPXog5TheCUsLWZAiT5LDP8OuB594HpcC3Q9zgPXow+SxrFJXFrMgfRZwjjnXY8+cD0yYNrAueB69EHSkntsHqmoIn/+/E7LwsPDlS9fPuO1h4eHPD09dffu3RSvCwgIeJRm6fjx44+0vTviGLkefeA6fn5+euaZZ1zdjFRx+vRpPXjwwNXNSDHOA9ejD5BSaTEH8ntOGsfI9egD1yEDpi2cC65HHyAlyIDpA8fE9egD13u4D56UHJjeMiDngevRB0gtaTEDSvzGk4Nj5Hr0ges8KRlQSn858J84D1yPPkBKpcUcyO85aRwj16MPXIcMmLZwLrgeffD4HqmoIj4mk0lms9lhmY+PjyIjI1O87lEvopUpU+aJqThLbVarVcePH+cYuRB94Ho2m83VTUg1xYsXd3UTUoTzwPXog6TFHSMkn6tzIL/nhHHOux594HpkwLSBc8H16IOkkQMfDRkw7eD8dj36wPWe5D5ILxnwSe6D9II+SBky4KNxdQaUyIGJ4d8B16MPXI9rga7HeeB69EHSyICPztU5kN9zwjjnXY8+cD0yYNrAueB69EHSkpsDH7uoIiAgQGfPnnVYFhERIW9v7xSve1Qmk4kfQhI4Rq5HHyA1pPffEOeB69EHSE2uzoH8npPGMXI9+gCp4Un4DXEuuB59gNRCBkx7OCauRx+43pPYB+nt+zyJfZDe0Af4N7k6A0r8xpODY+R69AFSQ3r/DXEeuB59gNTk6hzI7zlpHCPXow+QGp6E3xDnguvRB4/P83F3UKZMGf3yyy/G68uXL8tisSggICDF6wAAAJD2kQMBAADcDxkQAADA/ZABAQAA3BM5EAAAuJPHLqqoXLmy7t27py1btkiS5s+frxo1ashkMqV4HQAAANI+ciAAAID7IQMCAAC4HzIgAACAeyIHAgAAd+L12Dvw8tK4ceM0ePBgTZ48WVarVStWrHisdQAAAEj7yIEAAADuhwwIAADgfsiAAAAA7okcCAAA3EmKiipOnz7t8Lphw4bavXu3jh8/rooVKypbtmyPvQ4AAABpDzkQAADA/ZABAQAA3A8ZEAAAwD2RAwEAgLt67Jkq4gQFBSkoKChV1wEAACDtIwcCAAC4HzIgAACA+yEDAgAAuCdyIAAAcAeerm4AAAAAAAAAAAAAAAAAAAAAAACAK1BUAQAAAAAAAAAAAAAAAAAAAAAA3BJFFQAAAAAAAAAAAAAAAAAAAAAAwC1RVAEAAAAAAAAAAAAAAAAAAAAAANwSRRUAAAAAAAAAAAAAAAAAAAAAAMAtUVQBAAAAAAAAAAAAAAAAAAAAAADcEkUVAAAAAAAAAAAAAAAAAAAAAADALVFUAQAAAAAAAAAAAAAAAAAAAAAA3BJFFQAAAAAAAAAAAAAAAAAAAAAAwC1RVAEAAAAAAAAAAAAAAAAAAAAAANwSRRUAAAAAAAAAAAAAAAAAAAAAAMAtUVQBAAAAAAAAAAAAAAAAAAAAAADcEkUVAAAAAAAAAAAAAAAAAAAAAADALVFUAQAAAAAAAAAAAAAAAAAAAAAA3BJFFQAAAAAAAAAAAAAAAAAAAAAAwC1RVAEAAAAAAAAAAAAAAAAAAAAAANwSRRUAAAAAAAAAAAAAAAAAAAAAAMAtUVQBAAAAAAAAAAAAAAAAAAAAAADcEkUVAAAAAAAAAAAAAAAAAAAAAADALVFUAQAAAAAAAAAAAAAAAAAAAAAA3BJFFQAAAAAAAAAAAAAAAAAAAAAAwC1RVAEAAAAAAAAAAAAAAAAAAAAAANwSRRUAAAAAAAAAAAAAAAAAAAAAAMAtUVQBAAAAAAAAAAAAAAAAAAAAAADcEkUVAAAAAAAAAAAAAAAAAAAAAADALVFUAQAAAAAAAAAAAAAAAAAAAAAA3BJFFQAAAAAAAAAAAAAAAAAAAAAAwC1RVAEAAAAAAAAAAAAAAAAAAAAAANwSRRUAAAAAAAAAAAAAAAAAAAAAAMAtUVQBAAAAAAAAAAAAAAAAAAAAAADcEkUVAAAAAAAAAAAAAAAAAAAAAADALVFUAQAAAAAAAAAAAAAAAAAAAAAA3BJFFQAAAAAAAAAAAAAAAAAAAAAAwC1RVAEAAAAAAAAAAAAAAAAAAAAAANwSRRUAAAAAAAAAAAAAAAAAAAAAAMAtUVQBAAAAAAAAAAAAAAAAAAAAAADcEkUVAAAAAAAAAAAAAAAAAAAAAADALVFUAQAAAAAAAAAAAAAAAAAAAAAA3FKqFVVs2bJFzz33nCpUqKAuXbro8uXLkqQzZ87o5ZdfVuXKlTVp0iTZ7XbjPYmtAwAAQPpADgQAAHA/ZEAAAAD3RA4EAABwP2RAAADgDlKlqOLixYuaPn26Zs+erR07dihPnjwaMWKELBaLevTooVKlSmnjxo0KCQnRpk2bJCnRdQAAAEgfyIEAAADuhwwIAADgnsiBAAAA7ocMCAAA3EWqFFWcPHlS5cqVU6lSpZQnTx61bt1a586d04EDBxQeHq4RI0aoQIECGjRokDZs2CBJia4DAABA+kAOBAAAcD9kQAAAAPdEDgQAAHA/ZEAAAOAuvFJjJ0WKFNHRo0d18uRJ5c+fX6tWrVLNmjV16tQplStXTn5+fpKk4sWLKyQkRJISXfeorFZranyNJ1LcseEYuQ594Ho2m00mk8nVzUgV6fV3xHngevRB0jg2KePKHEifJYxz3vXoA9cjA6YNnAuuRx8kjWPz6MiAaQPnt+vRB66XUB88CTkwvfyuOA9cjz5IGY5XypAD0yb+HXA9+sD1uBboepwHrkcfJI1jkzJkwLSJc9716APXIwOmDZwLrkcfJC25xybViiqaNGmiVq1aSZLy5cun9evXa/78+cqXL5+xnYeHhzw9PXX37l2Fh4cnuC4gIOCRPv/48eOp8TWeaBwj16MPXMfPz0/PPPOMq5uRKk6fPq0HDx64uhkpxnngevQBUpsrcyC/56RxjFyPPnAdMmDawrngevQBUhMZMG3hmLgefeB6D/fBk5ID01sG5DxwPfoA/wVyYNrGMXI9+sB1npQMKKW/HPhPnAeuRx8gtZEB0zaOkevRB65DBkxbOBdcjz54fKlSVHHs2DHt27dP69evV+HChTV//nx1795d1apVk9lsdtjWx8dHkZGRMplMCa571KKKMmXKPDEVZ6nNarXq+PHjHCMXog9cz2azuboJqaZ48eKubkKKcB64Hn2QtLhjhEfjyhzI7zlhnPOuRx+4HhkwbeBccD36IGnkwEdHBkwbOL9djz5wvSe5D9JLBnyS+yC9oA9ShgyYMuTAtIl/B1yPPnA9rgW6HueB69EHSSMDpgwZMG3inHc9+sD1yIBpA+eC69EHSUtuDkyVoorPP/9cL7zwgsqWLStJGjBggNasWaOAgACdPXvWYduIiAh5e3snuu5RmUwmfghJ4Bi5Hn2A1JDef0OcB65HHyC1uTIH8ntOGsfI9egDpIYn4TfEueB69AFSExkwbeGYuB594HpPYh+kt+/zJPZBekMf4L9ADkzbOEauRx8gNaT33xDngevRB0htZMC0jWPkevQBUsOT8BviXHA9+uDxeabGTqxWq27cuGG8joiI0P379+Xl5aVffvnFWH758mVZLBYFBASoTJkyCa4DAABA+kAOBAAAcD9kQAAAAPdEDgQAAHA/ZEAAAOAuUqWoomLFivryyy+1dOlSbdu2Tb169VKOHDnUsWNH3bt3T1u2bJEkzZ8/XzVq1JDJZFLlypUTXAcAAID0gRwIAADgfsiAAAAA7okcCAAA4H7IgAAAwF14pcZOmjVrpnPnzmnZsmUKDQ1V0aJFNXPmTHl7e2vcuHEaPHiwJk+eLKvVqhUrVsR+sJdXgusAAACQPpADAQAA3A8ZEAAAwD2RAwEAANwPGRAAALiLVCmq8PDwUJ8+fdSnTx+ndQ0bNtTu3bt1/PhxVaxYUdmyZUvWOgAAAKR95EAAAAD3QwYEAABwT+RAAAAA90MGBAAA7iJViiqSEhQUpKCgoEdeBwAAgPSNHAgAAOB+yIAAAADuiRwIAADgfsiAAADgSeHp6gYAAAAAAAAAAAAAAAAAAAAAAAC4AkUVAAAAAAAAAAAAAAAAAAAAAADALVFUAQAAAAAAAAAAAAAAAAAAAAAA3BJFFQAAAAAAAAAAAAAAAAAAAAAAwC1RVAEAAAAAAAAAAAAAAAAAAAAAANwSRRUAAAAAAAAAAAAAAAAAAAAAAMAtUVQBAAAAAAAAAAAAAAAAAAAAAADcEkUVAAAAAAAAAAAAAAAAAAAAAADALVFUAQAAAAAAAAAAAAAAAAAAAAAA3BJFFQAAAAAAAAAAAAAAAAAAAAAAwC1RVAEAAAAAAAAAAAAAAAAAAAAAANwSRRUAAAAAAAAAAAAAAAAAAAAAAMAtUVQBAAAAAAAAAAAAAAAAAAAAAADcEkUVAAAAAAAAAAAAAAAAAAAAAADALVFUAQAAAAAAAAAAAAAAAAAAAAAA3BJFFQAAAAAAAAAAAAAAAAAAAAAAwC1RVAEAAAAAAAAAAAAAAAAAAAAAANwSRRUAAAAAAAAAAAAAAAAAAAAAAMAtUVQBAAAAAAAAAAAAAAAAAAAAAADcEkUVAAAAAAAAAAAAAAAAAAAAAADALVFUAQAAAAAAAAAAAAAAAAAAAAAA3BJFFQAAAAAAAAAAAAAAAAAAAAAAwC1RVAEAAAAAAAAAAAAAAAAAAAAAANwSRRUAAAAAAAAAAAAAAAAAAAAAAMAtUVQBAAAAAAAAAAAAAAAAAAAAAADcEkUVAAAAAAAAAAAAAAAAAAAAAADALVFUAQAAAAAAAAAAAAAAAAAAAAAA3BJFFQAAAAAAAAAAAAAAAAAAAAAAwC1RVAEAAAAAAAAAAAAAAAAAAAAAANwSRRUAAAAAAAAAAAAAAAAAAAAAAMAtUVQBAAAAAAAAAAAAAAAAAAAAAADcEkUVAAAAAAAAAAAAAAAAAAAAAADALVFUAQAAAAAAAAAAAAAAAAAAAAAA3BJFFQAAAAAAAAAAAAAAAAAAAAAAwC1RVAEAAAAAAAAAAAAAAAAAAAAAANwSRRUAAAAAAAAAAAAAAAAAAAAAAMAtUVQBAAAAAAAAAAAAAAAAAAAAAADcEkUVAAAAAAAAAAAAAAAAAAAAAADALf0rRRUff/yxevToYbw+c+aMXn75ZVWuXFmTJk2S3W5P1joAAACkH2RAAAAA90MGBAAAcE/kQAAAAPdDBgQAAE+yVC+qOHPmjFatWqX//e9/kiSLxaIePXqoVKlS2rhxo0JCQrRp06Yk1wEAACD9IAMCAAC4HzIgAACAeyIHAgAAuB8yIAAAeNKlalGF3W7Xu+++q86dO6tAgQKSpAMHDig8PFwjRoxQgQIFNGjQIG3YsCHJdQAAAEgfyIAAAADuhwwIAADgnsiBAAAA7ocMCAAA3IFXau5s3bp1OnXqlF599VXt27dPtWrV0qlTp1SuXDn5+flJkooXL66QkBBJSnTdo7Baran3JZ4wcceGY+Q69IHr2Ww2mUwmVzcjVaTX3xHngevRB0nj2KQcGTDt4Zx3PfrA9ciAaQPnguvRB0nj2KQMGdD1OL9djz5wvYT64EnIgenld8V54Hr0QcpwvFKOHJj28O+A69EHrse1QNfjPHA9+iBpHJuUIwOmPZzzrkcfuB4ZMG3gXHA9+iBpyT02qVZUERERoenTp+upp57S1atXtXXrVn366aeqUKGC8uXLZ2zn4eEhT09P3b17V+Hh4QmuCwgISPZnHz9+PLW+xhOLY+R69IHr+Pn56ZlnnnF1M1LF6dOn9eDBA1c3I8U4D1yPPkBqIwOmbRwj16MPXIcMmLZwLrgefYDURAZMWzgmrkcfuN7DffCk5MD0lgE5D1yPPsB/gRyYtnGMXI8+cJ0nJQNK6S8H/hPngevRB0htZMC0jWPkevSB65AB0xbOBdejDx5fqhVVfPnll3rw4IGWLVumLFmy6O2339ZLL72kjRs3qnXr1g7b+vj4KDIyUiaTSWazOd51jxKgypQp88RUnKU2q9Wq48ePc4xciD5wPZvN5uompJrixYu7ugkpwnngevRB0uKOER4NGTBt4px3PfrA9ciAaQPnguvRB0kjBz46MmDawPntevSB6z3JfZBeMuCT3AfpBX2QMmTAlCEHpk38O+B69IHrcS3Q9TgPXI8+SBoZMGXIgGkT57zr0QeuRwZMGzgXXI8+SFpyc2CqFVVcvXpVZcuWVZYsWWJ37OWl4sWL68qVK7p165bDthEREfL29lZAQIDOnj0b77pHYTKZ+CEkgWPkevQBUkN6/w1xHrgefYDURgZM2zhGrkcfIDU8Cb8hzgXXow+QmsiAaQvHxPXoA9d7EvsgvX2fJ7EP0hv6AP8FcmDaxjFyPfoAqSG9/4Y4D1yPPkBqIwOmbRwj16MPkBqehN8Q54Lr0QePzzO1dpQrVy5FRUU5LPvrr780bNgw/fLLL8ayy5cvy2KxKCAgQGXKlElwHQAAANI+MiAAAID7IQMCAAC4J3IgAACA+yEDAgAAd5FqRRXPPfecQkJCtHr1al29elXLly/X77//rlq1aunevXvasmWLJGn+/PmqUaOGTCaTKleunOA6AAAApH1kQAAAAPdDBgQAAHBP5EAAAAD3QwYEAADuwiu1dpQlSxYtXLhQEydO1MSJE5UjRw5NmzZNTz31lMaNG6fBgwdr8uTJslqtWrFiReyHe3kluA4AAABpHxkQAADA/ZABAQAA3BM5EAAAwP2QAQEAgLtItaIKSSpfvrzWrFnjtLxhw4bavXu3jh8/rooVKypbtmzJWgcAAIC0jwwIAADgfsiAAAAA7okcCAAA4H7IgAAAwB2kalFFYoKCghQUFPTI6wAAAJB+kQEBAADcDxkQAADAPZEDAQAA3A8ZEAAAPCk8Xd0AAAAAAAAAAAAAAAAAAAAAAAAAV6CoAgAAAAAAAAAAAAAAAAAAAAAAuCWKKgAAAAAAAAAAAAAAAAAAAAAAgFuiqAIAAAAAAAAAAAAAAAAAAAAAALgliioAAAAAAAAAAAAAAAAAAAAAAIBboqgCAAAAAAAAAAAAAAAAAAAAAAC4JYoqAAAAAAAAAAAAAAAAAAAAAACAW6KoAgAAAAAAAAAAAAAAAAAAAAAAuCWKKgAAAAAAAAAAAAAAAAAAAAAAgFuiqAIAAAAAAAAAAAAAAAAAAAAAALgliioAAAAAAAAAAAAAAAAAAAAAAIBboqgCAAAAAAAAAAAAAAAAAAAAAAC4JYoqAAAAAAAAAAAAAAAAAAAAAACAW6KoAgAAAAAAAAAAAAAAAAAAAAAAuCWKKgAAAAAAAAAAAAAAAAAAAAAAgFuiqAIAAAAAAAAAAAAAAAAAAAAAALgliioAAAAAAAAAAAAAAAAAAAAAAIBboqgCAAAAAAAAAAAAAAAAAAAAAAC4JYoqAAAAAAAAAAAAAAAAAAAAAACAW6KoAgAAAAAAAAAAAAAAAAAAAAAAuCWKKgAAAAAAAAAAAAAAAAAAAAAAgFuiqAIAAAAAAAAAAAAAAAAAAAAAALgliioAAAAAAAAAAAAAAAAAAAAAAIBboqgCAAAAAAAAAAAAAAAAAAAAAAC4JYoqAAAAAAAAAAAAAAAAAAAAAACAW6KoAgAAAAAAAAAAAAAAAAAAAAAAuCWKKgAAAAD8H3v3HWZFYf4P+7MsRRBFsfcShCjBQsReATVqNKIxlmhiI+GbaGKJ3Vij2DWxJGIvMRY02BNDlFiiiSUqNjDEhtgFBAQWds/7B++eH+vuwgLLHpZz39flJWdmzpyZec7sfnZmnhkAAAAAAAAAAICypKkCAAAAAAAAAAAAAAAoS5oqAAAAAAAAAAAAAACAsqSpAgAAAAAAAAAAAAAAKEuaKgAAAAAAAAAAAAAAgLKkqQIAAAAAAAAAAAAAAChLmioAAAAAAAAAAAAAAICypKkCAAAAAAAAAAAAAAAoS5oqAAAAAAAAAAAAAACAsqSpAgAAAAAAAAAAAAAAKEuaKgAAAAAAAAAAAAAAgLKkqQIAAAAAAAAAAAAAAChLC6Wp4vDDD8+9996bJBk9enT22Wef9OnTJxdccEEKhUJxujmNAwCg9ZEDAQDKjwwIAFB+ZEAAgPIkBwIAi6tmb6q4//7789RTTyVJqqqqMmjQoPTs2TP33HNPxowZUwxVcxoHAEDrIwcCAJQfGRAAoPzIgAAA5UkOBAAWZ83aVDFhwoRccMEFWWeddZIkTzzxRCZPnpyTTz45a665Zo499tgMHTp0ruMAAGhd5EAAgPIjAwIAlB8ZEACgPMmBAMDirm1zzuyCCy5I//79M3369CTJm2++mY022igdO3ZMkvTo0SNjxoyZ67h5VV1d3QxLv3iq3Ta2UemoQenV1NSksrKy1IvRLFrr98h+UHpqMHe2zYIpRQ5Us8bZ50tPDUpPBlw02BdKTw3mzraZfzJgadm/S08NSq+xGiwOObC1fK/sB6WnBvPH9pp/zgcvevwcKD01KD3HAkvPflB6ajB3ts2CcSxw0WKfLz01KD0ZcNFgXyg9NZi7pm6bZmuqePbZZ/PMM8/kwQcfzG9+85skyeTJk7P66qsXp6moqEibNm0yceLEOY7r0qXLPH32yJEjm2clFmO2UempQel07NgxG2ywQakXo1mMGjUqU6dOLfVizDf7QempAQtDqXKg7/Pc2UalpwalIwMuWuwLpacGNDcZcNFhm5SeGpTe7DVYXHJga8uA9oPSUwNagvPBizbbqPTUoHQWlwyYtL4c+HX2g9JTAxYGxwIXXbZR6alB6ciAixb7QumpwYJrlqaK6dOn54wzzsiZZ56Zzp07F4dXVlamffv2dabt0KFDpk2bNsdx83oQrVevXotNx1lzq66uzsiRI22jElKD0qupqSn1IjSbHj16lHoR5ov9oPTUYO5qtxHzppQ50Pe5cfb50lOD0pMBFw32hdJTg7mTA+edDLhosH+XnhqU3uJcg9aSARfnGrQWajB/ZMB553zwosvPgdJTg9JzLLD07AelpwZzJwPOH8cCF032+dJTg9KTARcN9oXSU4O5a2oObJamiquvvjrf+ta3ssMOO9QZ3qVLl7z11lt1hk2ZMiXt2rWb47h5VVlZ6YswF7ZR6akBzaG1f4fsB6WnBjS3UuZA3+e5s41KTw1oDovDd8i+UHpqQHOSARcttknpqUHpLY41aG3rszjWoLVRAxY254MXfbZR6akBzaG1f4fsB6WnBjQ3xwIXbbZR6akBzWFx+A7ZF0pPDRZcszRVPPDAAxk/fnw23XTTJMm0adPyyCOPZLXVVsvMmTOL040dOzZVVVXp0qVLevXqlaFDhzY4DgCA1kEOBAAoPzIgAED5kQEBAMqTHAgAlItmaaq4/fbb64SkCy+8MBtttFEGDBiQ3XffPcOGDctee+2VIUOGZKuttkplZWX69OmTSZMmNTgOAIDWQQ4EACg/MiAAQPmRAQEAypMcCACUi2Zpqlh55ZXrvO7UqVOWXXbZdO3aNeecc06OO+64XHjhhamurs5tt90264Pbtm10HAAArYMcCABQfmRAAIDyIwMCAJQnORAAKBfN0lTxdeeff37x3/3798+jjz6akSNHpnfv3unatWuTxgEA0PrIgQAA5UcGBAAoPzIgAEB5kgMBgMXVQmmq+LqVVlopK6200jyPAwCgdZMDAQDKjwwIAFB+ZEAAgPIkBwIAi4s2pV4AAAAAAAAAAAAAAACAUtBUAQAAAAAAAAAAAAAAlCVNFQAAAAAAAAAAAAAAQFnSVAEAAAAAAAAAAAAAAJQlTRUAAAAAAAAAAAAAAEBZ0lQBAAAAAAAAAAAAAACUJU0VAAAAAAAAAAAAAABAWdJUAQAAAAAAAAAAAAAAlCVNFQAAAAAAAAAAAAAAQFnSVAEAAAAAAAAAAAAAAJQlTRUAAAAAAAAAAAAAAEBZ0lQBAAAAAAAAAAAAAACUJU0VAAAAAAAAAAAAAABAWdJUAQAAAAAAAAAAAAAAlCVNFQAAAAAAAAAAAAAAQFnSVAEAAAAAAAAAAAAAAJQlTRUAAAAAAAAAAAAAAEBZ0lQBAAAAAAAAAAAAAACUJU0VAAAAAAAAAAAAAABAWdJUAQAAAAAAAAAAAAAAlCVNFQAAAAAAAAAAAAAAQFnSVAEAAAAAAAAAAAAAAJQlTRUAAAAAAAAAAAAAAEBZ0lQBAAAAAAAAAAAAAACUJU0VAAAAAAAAAAAAAABAWdJUAQAAAAAAAAAAAAAAlCVNFQAAAAAAAAAAAAAAQFnSVAEAAAAAAAAAAAAAAJQlTRUAAAAAAAAAAAAAAEBZ0lQBAAAAAAAAAAAAAACUJU0VAAAAAAAAAAAAAABAWdJUAQAAAAAAAAAAAAAAlCVNFQAAAAAAAAAAAAAAQFnSVAEAAAAAAAAAAAAAAJQlTRUAAAAAAAAAAAAAAEBZ0lQBAAAAAAAAAAAAAACUJU0VAAAAAAAAAAAAAABAWdJUAQAAAAAAAAAAAAAAlKVma6oYPnx4+vXrlw022CD77rtvxowZkyQZPXp09tlnn/Tp0ycXXHBBCoVC8T1zGgcAQOsgBwIAlB8ZEACgPMmBAADlRwYEAMpBszRVvPfeeznllFNy3HHH5Yknnsiqq66aU089NVVVVRk0aFB69uyZe+65J2PGjMm9996bJHMcBwBA6yAHAgCUHxkQAKA8yYEAAOVHBgQAykWzNFWMGTMmxxxzTHbbbbcsv/zyOeCAA/Lqq6/miSeeyOTJk3PyySdnzTXXzLHHHpuhQ4cmyRzHAQDQOsiBAADlRwYEAChPciAAQPmRAQGActG2OWay44471nn99ttvZ6211sqbb76ZjTbaKB07dkyS9OjRo/j4rzmNm1fV1dULsPSLt9ptYxuVjhqUXk1NTSorK0u9GM2itX6P7AelpwZzZ9vMn1LmQDVrnH2+9NSg9GTARYN9ofTUYO5sm3knAy4a7N+lpwal11gNFocc2Fq+V/aD0lOD+WN7zR85cNHk50DpqUHpORZYevaD0lODubNt5o8MuGiyz5eeGpSeDLhosC+UnhrMXVO3TbM0VcyuqqoqN9xwQw455JC8//77WX311YvjKioq0qZNm0ycODGTJ09udFyXLl3m6TNHjhzZbMu/uLKNSk8NSqdjx47ZYIMNSr0YzWLUqFGZOnVqqRdjvtkPSk8NWJhaOgf6Ps+dbVR6alA6MuCixb5QemrAwiIDlp5tUnpqUHqz12BxyYGtLQPaD0pPDWhpcuCixzYqPTUoncUlAyatLwd+nf2g9NSAhUkGXPTYRqWnBqUjAy5a7AulpwYLrtmbKi6//PJ06tQpP/jBD3L55Zenffv2dcZ36NAh06ZNS2VlZaPj5rWpolevXotNx1lzq66uzsiRI22jElKD0qupqSn1IjSbHj16lHoR5ov9oPTUYO5qtxHzr6VzoO9z4+zzpacGpScDLhrsC6WnBnMnBy4YGbB07N+lpwaltzjXoLVkwMW5Bq2FGswfGXDByYGLDj8HSk8NSs+xwNKzH5SeGsydDLjgZMBFh32+9NSg9GTARYN9ofTUYO6amgObtani6aefzh133JG77ror7dq1S5cuXfLWW2/VmWbKlClzHTevKisrfRHmwjYqPTWgObT275D9oPTUgIWlFDnQ93nubKPSUwOaw+LwHbIvlJ4asDDIgIsG26T01KD0FscatLb1WRxr0NqoAS1JDlw02UalpwY0h9b+HbIflJ4asLDIgIsm26j01IDmsDh8h+wLpacGC65Nc83o/fffz69+9auceeaZ6datW5JZ3aIvv/xycZqxY8emqqoqXbp0meM4AABaDzkQAKD8yIAAAOVJDgQAKD8yIABQDpqlqWLatGn56U9/mv79+6dfv36ZMmVKpkyZkk033TSTJk3KsGHDkiRDhgzJVlttlcrKyvTp06fRcQAAtA5yIABA+ZEBAQDKkxwIAFB+ZEAAoFy0bY6ZPPXUUxkzZkzGjBmTu+66qzj873//e84555wcd9xxufDCC1NdXZ3bbrtt1ge3bdvoOAAAWgc5EACg/MiAAADlSQ4EACg/MiAAUC6apamif//+GTVqVIPjVl999Tz66KMZOXJkevfuna5du9Z5X2PjAABY9MmBAADlRwYEAChPciAAQPmRAQGActEsTRVzs9JKK2WllVaa53EAALRuciAAQPmRAQEAypMcCABQfmRAAGBx0abUCwAAAAAAAAAAAAAAAFAKmioAAAAAAAAAAAAAAICypKkCAAAAAAAAAAAAAAAoS5oqAAAAAAAAAAAAAACAsqSpAgAAAAAAAAAAAAAAKEuaKgAAAAAAAAAAAAAAgLKkqQIAAAAAAAAAAAAAAChLmioAAAAAAAAAAAAAAICypKkCAAAAAAAAAAAAAAAoS5oqAAAAAAAAAAAAAACAsqSpAgAAAAAAAAAAAAAAKEuaKgAAAAAAAAAAAAAAgLKkqQIAAAAAAAAAAAAAAChLmioAAAAAAAAAAAAAAICypKkCAAAAAAAAAAAAAAAoS5oqAAAAAAAAAAAAAACAsqSpAgAAAAAAAAAAAAAAKEuaKgAAAAAAAAAAAAAAgLKkqQIAAAAAAAAAAAAAAChLmioAAAAAAAAAAAAAAICypKkCAAAAAAAAAAAAAAAoS5oqAAAAAAAAAAAAAACAsqSpAgAAAAAAAAAAAAAAKEuaKgAAAAAAAAAAAAAAgLKkqQIAAAAAAAAAAAAAAChLmioAAAAAAAAAAAAAAICypKkCAAAAAAAAAAAAAAAoS5oqAAAAAAAAAAAAAACAsqSpAgAAAAAAAAAAAAAAKEuaKgAAAAAAAAAAAAAAgLKkqQIAAAAAAAAAAAAAAChLmioAAAAAAAAAAAAAAICypKkCAAAAAAAAAAAAAAAoS5oqAAAAAAAAAAAAAACAsqSpAgAAAAAAAAAAAAAAKEuaKgAAAAAAAAAAAAAAgLKkqQIAAAAAAAAAAAAAAChLmioAAAAAAAAAAAAAAICyVPKmitGjR2efffZJnz59csEFF6RQKJR6kQAAaAFyIABA+ZEBAQDKkxwIAFB+ZEAAoDUpaVNFVVVVBg0alJ49e+aee+7JmDFjcu+995ZykQAAaAFyIABA+ZEBAQDKkxwIAFB+ZEAAoLUpaVPFE088kcmTJ+fkk0/OmmuumWOPPTZDhw4t5SIBANAC5EAAgPIjAwIAlCc5EACg/MiAAEBr07aUH/7mm29mo402SseOHZMkPXr0yJgxY5r8/tpHglVVVaWysnKhLGNrV1NTkw4dOmTGjBmprq4u9eKUJTUovZqamiTJ+isvmQ6t9EfFuissmerq6lb7HbIflJ4azF3tdvHI0ZaxIDlQBpw7+3zpqUHpyYCLBvtC6anB3MmBLUcGbF41NTVZYokl7N8lpAal11gNKisrW20ObG0Z0H5Qemowf2TAliUHLlz+7is9NSg9xwJLz35QemowdzJgy5IBFy77fOmpQenJgIsG+0LpqcHcNTUHlrSpYvLkyVl99dWLrysqKtKmTZtMnDgxXbp0mev7a38ovv766wttGRcXr732WqkXoeypQekd8I0k3+hU6sWYT4W89NJLpV6IBWY/KD01mLvafMHCtSA5UAZsOvt86alB6cmAiwb7QumpwdzJgQufDLhw2L9LTw1Kr6EatN4c2DozoP2g9NRg/siALUMObBl+DpSeGpRe682ASWvNgV9nPyg9NZg7GbBlyIAtwz5fempQejLgosG+UHpqMHdzy4ElbaqorKxM+/bt6wzr0KFDpk2b1qSmirZt26ZXr15p06ZNKioqFtZiAgBloFAopKamJm3bljQelY0FyYEyIADQnOTAliMDAgCLChmwZcmBAMCiQAZsWTIgALCoaGoOLGlK7NKlS9566606w6ZMmZJ27do16f1t2rSpF74AAFj0LUgOlAEBAFonGRAAoDzJgQAA5UcGBABamzal/PBevXrl5ZdfLr4eO3ZsqqqqmvSUCgAAWi85EACg/MiAAADlSQ4EACg/MiAA0NqUtKmiT58+mTRpUoYNG5YkGTJkSLbaaqtUVlaWcrEAAFjI5EAAgPIjAwIAlCc5EACg/MiAAEBrU1EoFAqlXIDhw4fnuOOOy5JLLpnq6urcdtttWW+99Uq5SAAAtAA5EACg/MiAAADlSQ4EACg/MiAA0JqUvKkiST7++OOMHDkyvXv3TteuXUu9OAAAtBA5EACg/MiAAADlSQ4EACg/MiAA0FosEk0VAAAAAAAAAAAAAAAALa1NqRcAAAAAAAAAAAAAAACgFDRVAK3e+PHj8+KLL+aLL74o9aKULTUoPTUAAAAAAIDFj+P/pacGAAAAsPjTVNEKjB8/Pn379s3YsWOLw4YPH55+/fplgw02yL777psxY8YUx91zzz357ne/m0033TTHHnvsPB/cOeaYY3LOOec02/IvLlqqDtddd1222mqr9O7dO0cddVTGjx/f7OvSWjVUg4ceeig777xzzj777Oy444556KGHiuNGjx6dffbZJ3369MkFF1yQQqHQpM/597//nV133TWbb755brzxxmZfj9aspWpw5513ZptttknPnj1z2GGH5ZNPPmn2dWmtWqoGtWbMmJE99tgj//rXv5ptHYB511iukPtaTnPXQOZruoZ+983p95sM2PxaqgYyYONaqga1ZEAovQXJefbh5rEgNZCzm8/81EHWXnDzmj3mRM6eP81ZAzkbWodzzjknPXr0KP630047JZnz8X/HBptXS9ZAXmlYYzWY3eGHH5577723+FpGaV4tWQMZpWEtWYNajiNAaTX0919jPwvuvffeOsNr/5v9Z8LcyID1tVQNZMDGzUsNkmTYsGHZYYcdsskmm+SQQw6p8745kQEb11I1kAHnrKXqUEsObECBRdrnn39e+MEPflDo3r174f333y8UCoXCu+++W+jTp0/hoYceKnz66aeFX/ziF4X99tuvUCgUCk8//XRh4403Ljz11FOFsWPHFgYOHFg44IADmvx5TzzxRGGLLbYoTJw4caGsT2vVUnX497//Xdh9990LY8aMKbzzzjuFgQMHFk488cSFum6tRUM1mDhxYmHzzTcvjBo1qlAoFAp//vOfCzvssEOhUCgUpk+fXthxxx0Lv/71rwvvvvtuYeDAgYWhQ4c26XN69+5duOKKKwpvv/12YcCAAYVnnnlm4a1YK9JSNXjuuecKW265ZeHpp58ufPjhh4UDDzywcOyxxy68FWtFWqoGs7v66qsL3bt3Lzz77LPNuzJAkzWWK+S+ltPcNZD5mq6h331z+v0mAza/lqqBDNi4lqrB7GRAKK0FzXn24QW3IDWQs5vP/NRB1l5w85o95jYvOXveNWcN5GxoPfbbb7/CiBEjChMnTixMnDixMGnSpDke/3dssPm1VA3klcY1VIPZ3XfffYXu3bsX7rnnnkKhIKMsDC1VAxmlcS1Vg9k5jgCl09Dff4VC4z8Lpk+fXhw2ceLEwocffljYfPPNC++9916TPk8GrK+laiADNm5ea/Duu+8Wtt9++8Krr75a+OCDDwonn3xy4aCDDmrS58iADWupGsiAc9ZSdZidHFifJ1Us4o499tjstttudYaNGTMmxxxzTHbbbbcsv/zyOeCAA/Lqq68mmdV5tO+++2brrbfOaqutlhNOOCEvvPBCkzobp02blrPOOivHHXdcll566YWyPq1VS9XhlVdeyXbbbZd11103a621Vnbfffe88847C2u1WpWGajBlypSccsop6d69e5Lkm9/8ZiZOnJgkeeKJJzJ58uScfPLJWXPNNXPsscdm6NChc/2c+++/PyussEJ+/vOfZ+21187PfvazJr2vHLRUDd5+++2ceeaZ2WqrrbLyyitn7733Lu5b5a6lalDrnXfeyQ033JDVVlut+VYCmGeN5YpbbrlF7mshzV0Dma/pGvrdN6ffbzJg82upGsiAjWupGtSSAaH0FuT4nn24ecxvDeTs5jU/dZC1F9y8Zo85kbPnT3PWQM6G1mHmzJkZPXp0Nt100yy99NJZeuml07lz5zke/3dOuHm1ZA3klYY1VoNaEyZMyAUXXJB11lmnOExGaV4tWQMZpWEtWYNajiNAaTX099+cfha0b9++OGzppZfOsGHDsvPOO2eNNdaY62fJgA1rqRrIgI2b1xq8/vrr2WijjdKzZ8+suuqq2XvvvfP222/P9XNkwMa1VA1kwDlrqTrUkgMbpqliEXfOOefkxz/+cZ1hO+64Yw444IDi67fffjtrrbVWklmPf1l11VWL49q0mVXitm3bzvWzrr766kybNi1t27bNM888M8+PBFyctVQd1ltvvfztb3/Le++9l88//zxDhw7NVltt1Vyr0ao1VINVVlkle+65Z5JZjyK64YYbsvPOOydJ3nzzzWy00Ubp2LFjkqRHjx4ZM2bMXD9n1KhR2WKLLVJRUZEk2XDDDfP6668356q0Wi1Vg3333bc4j6TuvlXuWqoGtU4//fQMHDhQeIISayxXTJkyRe5rIc1dA5mv6Rr63Ten328yYPNrqRrIgI1rqRrUkgGh9Bbk+J59uHnMbw3k7OY1P3WQtRfcvGaPOZGz509z1kDOhtZh9OjRKRQK2WuvvbLhhhvm8MMPz7hx4+Z4/N854ebVkjWQVxrWWA1qXXDBBenfv3823njj4jAZpXm1ZA1klIa1ZA1qOY4ApdXQ339z+1lQa/r06bnlllvyk5/8pEmfJQM2rKVqIAM2bl5r0K1btzz77LN5/fXXM2nSpNx+++3Zeuut5/o5MmDjWqoGMuCctVQdasmBDdNUsYibWxdjVVVVbrjhhhx44IFJkvXXXz9///vfi8Hn3nvvzYYbbpilllpqjvMZN25cbrzxxqy11loZN25cLrroohx55JEC1P+vpeqw3XbbZa211spOO+2UrbbaKlOnTm1y+F3czakGb775Zrbeeus8/fTTOeWUU5IkkydPzuqrr16cpqKiIm3atCnePaYxX39f586d8/HHHy/g0i8eWqoGsxs/fnzuvPPO4r5V7lqyBvfcc08mT56cww47bMEXHFggjeWKTTbZRO5rIc1dA5mv6Rr63Ten328yYPNrqRrMTgasqyVrIAPComF+jyvZh5vP/NRAzm5+81MHWXvBzWv2mBM5e/40Zw1mJ2fDouu///1v1ltvvVxyySV56KGH0q5du5x++unF8Q0d/3dOuHm1ZA3klYbNqQbPPvtsnnnmmRx//PF13iOjNK+WrMHsZJT/p6Vr4DgClF5Df//NLZfUeuCBB7LRRhvV+RnQGBmwcS1VAxmwcfNag27dumWXXXbJgAEDsummm+bll1/OiSeeONfPkQEb11I1mJ0MWF9L1kEObJymilbu8ssvT6dOnfKDH/wgSXLYYYdlxowZ2XvvvbP//vvn2muvzQ9/+MO5zufee+/N8ssvnxtvvDE/+9nPcsstt+S5557L008/vbBXYbHQXHV4+OGHM27cuDzyyCP517/+lfXWW6/eH8XU16NHj9x0003p1q1bTj755CRJZWVl2rdvX2e6Dh06ZNq0aXOc19ff15T30Lw1mN1ZZ52VTTbZJDvssENzLu5iqTlr8MUXX+TSSy/Nueee26S7WgELV2O5Qu5rOc1dA5lvwczp95sM2DIWRg1mJwPO3cKogQwIi475yRj24eY1PzWQs5vf/NRB1l445OzSk7Nh8bbnnnvmrrvuyoYbbpg11lgjv/71r/P0009n8uTJSRo+/u/YYPNqyRrIKw2bUw3OOOOMnHnmmencuXOd98gozaslazA7GeX/ackaOI4Ai6655ZJad9xxR/bff/8mzVMGnDcLowYy4LyZUw1eeumlPP7447n77rvz4osv5rvf/W4GDhw41yYhGXDeLIwazE4GbJqFUQc5cM5skVbs6aefzh133JG77ror7dq1S5Iss8wyueOOO/Luu+/m+uuvz8SJE7PHHnvMdV4ff/xxtthii+Ivjs6dO2ettdbK2LFjF+o6LA6asw4PPfRQDjjggKy77rpJklNPPTXf/va38+WXX2bppZdeqOvRmlVUVGSDDTbI+eefnx133DETJ05Mly5d8tZbb9WZbsqUKcUaNaZLly754osv5uk9NG8Nag0dOjTPP/98hg0bthCWePHTnDU499xz8/3vfz/rr7/+wlxkoIkayxWVlZVyXwtp7hrIfAtmTr/fZMCWsTBqUEsGbJqFUQMZEBYd83NcyT7cvOanBnJ285ufOsjaC4ecXXpyNpSXpZdeOjU1Nfnkk0/SuXPnBo//Oye8cC3MGsgrTVNbg9NPPz3f+ta3GrzYSkZZuBZmDWrJKHO2MGvgOAK0Hl/PJUny7rvv5r333stWW23VpHnIgAumOWogAy6Y2Wvw8MMPZ/fdd8+GG26YJDn66KNzxx135M0335zj7zUZcME0Rw1qyYDzrznqIAfOmSdVtFLvv/9+fvWrX+XMM89Mt27d6o1fccUV87e//S3HHXdcKisr5zq/lVdeOdOnTy++rqmpyUcffZRVV121WZd7cdPcdaiurs5nn31WfP3JJ58Uh1PfM888kwsuuKD4unYbt2nTJr169crLL79cHDd27NhUVVWlS5cuc5zn19/3xhtvZKWVVmrmJV98LIwaJMkrr7yS8847L5deemmWX3755l/wxcjCqMGDDz6YW2+9NZtuumk23XTTvPDCCxk0aFCGDBmycFYCaJLGcoXc13KaqwYy34KZ0+83GbBlLIwaJDLgvFgYNZABYdEzLxnDPrxwzEsN5OyFZ17qIGsvHHJ26cnZsHgbPHhwHn744eLrkSNHpk2bNnn//fcbPf5fy7HB5tGSNZBXGtZYDV566aU89thjxb91HnzwwZx11lk588wzZZRm1pI1SGSUhrRkDRxHgEVXYz8LVlllleKwRx55JDvssEOTLwiXAefNwqiBDDhv5lSDr2/LKVOm5KuvvprrtpQB583CqEEiA86rhVEHOXDOPKmiFZo2bVp++tOfpn///unXr1+mTJmSJOnUqVMqKiqSJLfeemvWXXfd9O/fv857J0+enA4dOtT7hb7rrrtmn332yV//+tdstNFGufXWW1NVVZXevXu3zEq1QgujDr17986NN96YlVdeOUsssURuvvnmbLLJJll22WVbZqVamXXXXTc///nPs/baa2e77bbL5Zdfnq233jpLLbVU+vTpk0mTJmXYsGHZa6+9MmTIkGy11VbFg5mN1aBv3745++yz8+yzz2bTTTfNDTfckG222aYUq9cqLIwafPbZZxk0aFAGDhyYnj17FvetJZdcssXXrzVYGDX4+9//Xuf1sccemx//+MfZdtttW2y9gPoayxVyX8tprhrIfAtmTr/fZMCWsTBqIAPOm4VRAxkQFj0NZQz7cMualxrI2QvPvNRB1l445OzSk7Nh8bb++uvn8ssvzworrJCZM2fmnHPOyYABA/LNb34zxxxzTIPH/2s5Ntg8WrIG8krDGqvBL37xi8ycObM43YUXXpiNNtooAwYMyNJLLy2jNKOWrIGM0rCWrIHjCLDoauxnQceOHYvTPPnkk9l7773rvVcGbB4LowYy4LyZUw169+6dU045JTfddFOWW2653H333Vl++eXTo0ePJDJgc1kYNZAB593CqIMcOBcFWoXu3bsX3n///UKhUCj87W9/K3Tv3r3ef7XjJ06cWNhss80KL7/8cr357LjjjoW//e1vDX7G448/Xvje975X6NWrV2H33XcvPP/88wtvhVqphV2HadOmFc4555zCNttsU+jZs2fhoIMOKrz77rsLd6Vamdm3caFQKDzxxBOFXXfdtbDJJpsUjjrqqMLnn39eHPe3v/2tsOGGGxa23HLLwmabbVYYPXp0cdyc9oXbbrut0LNnz8Lmm29e2HHHHQuffvrpwluhVmhh1+DGG29scN/i/2mJ/WB2Bx10UOHZZ59t3pUA5kljuULuaznNWQOZb959/XffnH6/yYALx8KugQw4dy2xH8xOBoTSaixj2IdbzvzUQM5ufvNaB1m7+cxL9pCzF47mqIGcDa3HxRdfXNh0000L22+/feGcc84pTJkypVAozPn4v2ODzaulaiCvNK6xGszuxBNPLNxzzz3F1zJK82qpGsgojWvJ/WB2jiNAaX397785/SyYOnVqoWfPnoX//ve/9eYjA86/hV0DGXDumlqDmpqawhVXXFHYYYcdCj179izstddehZEjRxbfJwPOv4VdAxmwaVpiX5idHFhXRaFQKJS6sQNgYfn4448zcuTI9O7dO127dm3y+959992MGTMmm222WTp37rwQl3DxN781oPmoAQCLozn9fpMBW8bCqAHzRg0AgJYkZ5eejAcA9ckopSejlJ4aAEDTyIDAnGiqAAAAAAAAAAAAAAAAylKbUi8AAAAAAAAAAAAAAABAKWiqAAAAAAAAAAAAAAAAypKmCgAAAAAAAAAAAAAAoCxpqgAAAAAAAAAAAAAAAMqSpgoAAAAAAAAAAAAAAKAsaaoAAAAAAAAAAAAAAADKkqYKAAAAAAAAAAAAAACgLGmqAAAAAAAAAAAAAAAAypKmCgAAAAAAAAAAAAAAoCxpqgAAAAAAAAAAAAAAAMqSpgoAAAAAAAAAAAAAAKAsaaoAAAAAAAAAAAAAAADKkqYKAAAAAAAAAAAAAACgLGmqAEgybdq0Bod//PHHmT59egsvDQAAAAAwJ4VCodSLAAAAdVRXV5d6EQCAxcCMGTPqvJ6X42DPPPNMDjnkkHm63u2jjz7KE088Ue9zm2rq1Knz/d6F6eWXX84ZZ5yRCRMmNPk9//nPf/L888/XGz5z5sxccsklGTt27BzfP3Xq1DzxxBP57LPP5nVx66iqqir+u7q6Og899FA+/vjj4rBXXnmlzjTz65lnnskf//jHBZ4PLC40VQAL5MUXX8ykSZPm+/3PP/98nV/4s3vkkUfypz/9aY7v//zzz7P33nvXCz8jRozI448/3qRluPvuu7Pzzjs3GDSuvPLK9OvXL19++WWT5pXMatC455578r///a/J7wEAKCeFQiEnnHBCnnrqqVIvSoMuueSSJme5Bx54IDfccEPxdXMcvAIAFj9OhM6/SZMmZf/998+YMWPqDH/wwQfzwx/+MOPGjZvj+19++eW89tprzbY8NTU1i2yOTZIJEyYslIaTeTn5DAC0HDlz/tx111157LHHmnWew4cPz7e//e16ubUxhUIhM2fObNJ/DdV14sSJ+eCDD4qvv/rqq7z77rsaOwCgFXruuefqZIhLLrkkhx12WJJk9OjR2XffffPFF180aV4TJ07MM888k7Zt2zb585966qkMHDgwbdr8v8uJJ06cmI8++qjOf41dIzh06ND07ds3n3zySXFYVVVVpkyZ0uB/NTU1TV62pvr973+fI444ok4zw/3335+XXnopXbp0qTNtoVDI9OnTM3PmzHrz+dOf/pQhQ4bUG/7Pf/4zQ4YMyfDhw+e4HJ999lkGDhyYt956qzhs6tSp9bbl559/3ug8xowZk5122in/+c9/kiSVlZU57rjjivP8+OOPc8QRR+T888+v997nn38+V155Za655poMGTKkzn9XXHFF3n///UybNi1Tp05NMqs548EHH5zjOkE5afpPToCvKRQKOe6447LLLrvkpJNOKg7/y1/+0uDBt2984xv51re+VWfYFVdckfXWWy+nnXZavemrqqpy8cUXZ9ddd80yyyzT4DJUVFTktddeS2VlZZ3h77zzTu66667suOOOc12P7bbbLmeddVb++te/Zo899qgz7t///nf22GOPLL300nOdT622bdvmwgsvzPe+972ccsopTX4fAEC5+M9//pP77rsv22233VynraqqSv/+/bPEEkukTZs2qampycyZM9O+ffvi+LZt26ZNmzYpFAqZOnVq7r333iy//PLFeVx55ZXFaWZXXV2d5ZdfPt///vczadKkdO7cOW3atMmNN96YLbfcMuuuu+5cl++pp57KiBEjcthhh+XUU0/NuHHjMmTIkLRr124etwoAsDh57rnn0rVr13zjG99IMutE6OjRo3PDDTdk9OjROeWUUzJkyJB07dp1rvOa3xOhp556al5//fU686k9WVZrySWXzFJLLVXv/UOHDs2QIUNyzz33ZMUVV0wyK3c1dgFcx44d62Wt5rLUUktlxRVXzGmnnVbnBix33nlnpk6dmpVXXnmO77/wwguz6qqr5qKLLioO++ijj+pNt9xyyzUpww0fPjxHHXVULr/88uy6665NWodf/vKXeeONN9KxY8dGp5kyZUq22mqrnH322U2aZ0M++OCDHHrooTn++OOz0047zfd8GnL88cdnjTXWyK9//etUVFQ067wBgKaTM5vH8OHD06NHj/Tt27c47KSTTsqf//znOtNde+21DR7DnDFjRgqFQvEYZZL07NkzU6dOzb///e9ifZJZdzWuqqpKp06d6szj+eefz0EHHdSk5T322GPz05/+tM6w22+/Pffff38eeeSRJMm//vWvDBo0KP/617+yzDLL5JprrqnXYPGtb32rScdkAYCWdd1112XmzJm5/vrrkyRvvfVWVlpppSTJGmuskUKhkEGDBuWWW27JEkssMcd51V5D9/Vr6eakQ4cOadeuXZ33XHjhhRk6dGid6Q477LCceOKJ9d7/wAMPZPvtty/muyS59NJLc+ONNzb4eY888ki987DV1dU55JBDMmDAgOy9995NXvZa2267be6+++784Ac/yLXXXps11lgjDz74YCZMmJBvfvObDb6nNutNnjw5kyZNSvv27fOvf/0rRx55ZL744otUV1ensrIyXbt2ze23354uXbrktttuy/e///107ty5wXnW5sPZ6/Too4/mhBNOqDPdt771rdxzzz0NzmPddddN//79c9hhh+Xaa6/NpptumjZt2qRdu3b56quvcuSRR6Z79+715pkkX3zxRV5//fWMGTMm1dXV6dWrV8aNG5dRo0Zl2223zVdffZULL7ww48ePz2WXXZb27dvXybRQ7jRVAPPtH//4RyZMmJBBgwYV78jbvn37nH/++enWrVvWW2+94rR/+ctfsttuu9Vrqmjbtm1WWWWVBue/884755FHHsnnn39er6miqqoqFRUVxYNoFRUVmTZtWiorK/Pll19m8uTJWWKJJfK///0vU6dOzZJLLpm11167+P7XX389zzzzTDp06JAk2XPPPTN+/PjceuutmT59evbdd998/PHHee+99+odzKoNTEnywx/+MKNGjUr79u3rnEycMmVKbr/99jz00EPFYYVCITNmzMguu+yS3/zmN/nqq68yaNCgfPjhh/nDH/5QPLj2xz/+MT/84Q/nuv0BAFqDL7/8Mu3bt69zIO7222/P2muvnd12263e9LVNE9XV1enYsWPat2+fTz75JDfccEO22mqr/Otf/8odd9yRyy67LElyyCGH5Mc//nF23HHHjB49OnvssUcx49UaPXp0ZsyYkcceeyx9+/bNEksskREjRuQb3/hGtt5664wfPz5bbrllHn744XzjG9+Yp4NHnTt3LubAvffeO4ceemjOPffcnHnmmQuw1QCA1s6J0AU/ETq74447LldffXUmT56czp07Z8yYMXn++edz2223zfUiuw4dOtRrZujbt2+9C8wefPDBOsczG7PzzjtnwIABmTx5cpOXf9q0adlrr73ys5/9rNFpzj333AV6IvAXX3yRgw46KHvvvXedhooePXokSZ599tksu+yyGT9+fLbYYosksy4m7N+/f4YMGZJtt902G264YQ488MCccsopOfzww9O2bdtcc801SZLBgwfnJz/5Sc4999wGb5ADALQMObN5cubX1yGZdS53++23zxVXXJFk1o35GjtG+MADD+Tkk09ucNyZZ57Z4LHBUaNG1Xldm2N///vf12nC+Lqdd965XuadPn162rVrV6fGtQ3CtTem+f3vf59tt90266+/fpJZTcmTJk3SVAEAi5jq6uq8+OKLufjii5PMyiSvvvpqzjjjjCSzmkyvuOKKDBgwIA8//HCd/HPaaafl7rvvbnC+tceEZnfvvfemZ8+exddTpkxJRUVFqqurU1FRkenTp2fGjBnp0KFDOnTokO985zv57W9/myT53ve+12A2eu+99zJ69OhcddVVmTBhQjp16pT27dtnySWXzGabbZZbb721OO1HH32U7bffvt58CoVCzjvvvPz73//OgAEDmrrp6vjWt76VP/3pTznyyCPToUOH3HPPPamsrKxzfWCtmpqazJgxo9gY8cADD+Sss85KZWVlZs6cmbPPPjtnnXVWZsyYkQEDBmTPPffMiBEjcu211+auu+7K8ccfnyuvvLJOnpw2bVqqq6uLT7+YOXNmpkyZksrKynTo0CFdu3bNM888k2TWccBXX3213jp89dVX+fzzz9OuXbv89Kc/zTvvvJNPPvkkn376aZJZzcwjR47MV199lcGDB+fLL7/MZ599liWXXDLLLrtsklnZceedd85ZZ52VJDnjjDNy33335be//W0x585+LryiosINVGA2miqA+VIoFPL73/8+FRUV2WWXXTJjxoz84he/yCGHHJK2bdtmt912qxPi3njjjQaDVZs2bbLEEkukuro606dPT6dOndKvX7+MHTu2OM3jjz9e/PeZZ56ZAw44IDfddFMuueSS4i/1TTfdNB07dszll1+eU045JdXV1Zk2bVqOO+64vP/++9lvv/1y/PHHF+czZcqUjB07Nh06dEhFRUW6dOmSDz/8MIVCoRhy/vznP6empibf+c53iutcXV2dzp0757nnnksy60kb06ZNyworrFA8UHXiiSemU6dOOf300+uEjqqqqrz22mvFA3+PPfZYCoVCdtxxx9xyyy0566yzMnr06IXyiDMAgFLp06dPo+NqT+g1ZLfddstll12WqqqqrLHGGrniiisyZMiQTJ8+PVOmTMkhhxySJPn8889zzTXX5Oabb87MmTOz5ppr1ruz3e9+97t88cUX2XLLLXPuueema9eu2WmnnXLggQdm7733Ll4QV5tXZz9JOX369Hz44Ydp3759oxfsVVdX56OPPspqq62WE088Meutt17GjBmTtddee55OSgMAiwcnQpvnRGiS7LvvvnnllVeKr4cNG1Zn/Ow3Jpn9IrWamppMmTKleLyupqYm06ZNy8yZM9O5c+d06NAhl19+ebbffvu88cYb2WuvvRrcFscdd1z+9re/NXiX5SeffDKXX355nWHjx4/PaaedlgMPPLDO8IqKitxyyy25//77G13XL774Iv379290/JwUCoWceOKJ6d+/f4466qgGpxk1alS22GKLvPnmm8VhK6+8ctq0aZPPPvssn3zySWbMmJFx48YlmZWzN9lkk+K0yy+/fK6//voMGDAgffr0yS677DJfywoAzD85s/ly5uw376s1fvz4LLfccnUuumvsArOdd945m222Wdq1a5fnnnsuyy23XLp161Znmrvuuisbb7xx1l133UyfPr3ePGqPG66yyipZa6215ri8X3+ayAEHHJDXXnstSbLBBhskmbVtklnHY4cOHZq2bdtmxx13LH4PRowY4em6ALAIqs1oq666asaMGZOPPvooEyZMSNeuXTNmzJjidJdffnlWXHHFvPHGG1lnnXWyxBJLpF27dll55ZVz5513Fqd78sknc9ppp+Uf//hHcdjYsWPzwx/+sF62GjRoUP79738XX2+44YZJZj3BoU2bNvWyUENPOLvllluy//77Z4UVVsg111yTe++9N/fee+88nSM9/vjj8/LLL9e76fK8WmmllXLXXXdlypQpueaaazJw4MBMnjy5znHCZFbDQ20WTZL99tsvBxxwQC6++OKMHj06Q4YMSTIrX3300Uf5/ve/n7322qt4U5Lvf//7GTRoUAYPHpzll18+yaxtduWVVxY/o/YmzgMHDsyGG27YpG1Z++Sx2kaMJHnhhReKT4X71a9+Vdyu++67b2pqalJVVZWf/exn9Y4JzpgxI0suuWSD20kjBTROUwUwX4YOHZp33nknjz32WL1AUygU8uabb9Zphhg/fnydu7+dfvrp2XPPPYuPRb311lvz7LPP5uqrr067du3yy1/+st6dRfbbb79iwDnssMNyyCGHZNq0aenTp09eeOGFtGvXLu3bt8/TTz+d66+/Pi+88EKuvvrqHHTQQVlhhRXqzKtPnz7p06dP7rzzzrzzzjs5/vjj88QTT+TJJ5/MmWeemcmTJ+eee+7JBRdckL322ivvvfdedtpppzz66KN15vX444/nkksuyUUXXZStt946w4cPz1NPPZU//OEPGTt2bH75y1/m9NNPT69evXLeeeflvvvuy/33358uXbpk7Nix6d27d/r06VO8+8q9996bI488sllqBACwKHj44YfrPKni2GOPLR7Iev311zN+/PhsvfXW9d5Xe5e1mTNn5v7770+HDh3qnOg899xz8+abb+aBBx4oDqs9cNRQ80Nto0VDJ3RrDxo1dPDof//7X/baa68kafDgYaFQSE1NTfr27VscVpt7n3nmmXTt2rXhDQMALLacCG2+E6EdOnTIYYcdlsMOOyxJ8umnn2bAgAG5++67i0+//ec//1nvUffjxo1Lv3796gy7++67s/zyy+fpp59uMPc1tH7t2rXLbrvtlvPPPz9J8sknn9S5q/KECRMyffr04t2hd9pppwYvVJsxY0b69OmTHXfcsdF1ffDBB+s1BzfViBEj8sEHH+Sqq65qdJraporZm0/atWuXFVZYIZ9//nk++OCDJCn+/7PPPsuqq65aZx7LLrtszj///Jx44onp169fg98fAGDhkTMXPGfuvPPOmTBhQr766qs8+eSTufHGG3PYYYdl4MCBeeWVV3LccccVp62oqMj777+ftdZaK+3atctyyy1XHNe5c+d07tw5VVVVueCCC7Lmmmvmj3/8Y3F8TU1Nbr311jz55JO54447GlyWeVnvrx/vvPvuu3PrrbfmjjvuyF/+8pcks3LxoYcempdffjkdOnRocP4ungOARc+NN96YL7/8MgMGDEi7du0yY8aMtG3btsHrxwqFQqZPn54///nPWW+99dKmTZtUVlZm5ZVXLk5T+8SC2YfVNnh+PVNcfvnl6dChQ04++eSMGDEiL7zwQqqqqtKhQ4c8+eSTc31C7P/+97888MADeeihh1JTU5OhQ4dm++23L17MX11dnSlTphSnr20O+LpPP/00f/rTn/KDH/xgjp/XmNdeey33339/fvSjH2W11VbLH/7wh8ycOTMHHHBAvvvd7+bTTz+tc8yuuro6hx9+eHEbt2nTJlVVVRk2bFh+/etfZ8SIEenYsWM6deqUo446KksttVROPfXUJEmXLl1y00035dBDD83uu++eo48+OgcccEB+/OMf56CDDsr999+f8847L3/84x+zwQYbpE2bNnnqqafmui2TZJtttslLL71UfOpuTU1NTj755Lz++uv573//m2uvvTZPPvlkZsyYkV/+8pfp1KlTkv/XXPvaa6/l+uuvT7t27fLSSy+lffv2OfXUU/Pee+9l/PjxOfHEE+s1AgN1OeINzLM333wz5557bn7+859nySWXzMyZMzNt2rTiI7G6deuWl156Kc8991ymTJmSZZZZJh06dCh2ZiazDtJ973vfS01NTf7zn//kwQcfzBFHHJE2bdqkXbt2WXrppeuEu2TWgaXagFN7IG7atGlJkpdeeilvvfVWdt1117zwwgv57LPPiidWa2pqGuy8nDp1aq666qrstNNOadOmTZZccsn86U9/yiabbJJRo0ZlySWXLF4c99VXXyVJlltuuWIgSZK99947n3zySS6//PKMGzcuZ599dvbbb7+8+uqr+eMf/5hVVlkl66yzTi688MI8/vjjufXWW7PGGmsUl6v2Lig1NTUZP3582rdvX9yOAACLg9kfXf+Xv/wlL7zwQu66666ssMIKefbZZ/Pqq68WmxYacswxxxTvojb7Sb8ZM2aksrIyvXr1Kg4rFAqZOXNmzjvvvGKD7iWXXJIPP/yweIHab37zm1RWVuaLL77I0KFD8/TTT2fgwIGNfn6PHj0ycuTIBpsxkllPH/u///u//OMf/yg239Y2d9Q2hgAA5cWJ0AU/EVqroqIinTp1Kuas2ubVrl27FoctvfTS9d638sor58knn0xFRUW233777LPPPjnttNOKmbBNmzZNPpFZWVmZr776KkOGDMnNN9+cYcOGFY91Dhs2LJdddll+8IMfZNCgQTn88MOLdwpOZm2fDh06ZODAgfn888/n+Fn77LNPVlllldTU1BTv+txUt99+e4MXP9baZJNNik+oGDVqVDbaaKO8/PLLSWZdlPnZZ5/lgw8+yNZbb53XXnsthUIh48ePr9dUkSRbbLFFll122Tz++OPZaaedmryMAMCCkzMXPGcOHjw4SfLb3/42q6++er73ve9lxRVXzFlnnZUOHTrku9/9bnHanj175qyzzkpVVVUGDRqUY445pt782rdvn6OPPjqnnHJKRowYkR122CFJ8uyzz2b8+PFzbHqdlwaHr09b2zDx9ttv13tSxex3Hj711FNz2mmnJZm1jbfccssmfyYA0DJuuummdOnSpXg92r777putt946Rx999FzfW1FRkUKhUCdH1ea5pmSr5ZZbLjNnzsyzzz6bZFYGrL1uraamZq5NoE888USmTZuW/fffv3ht3S9/+cvi+BdeeCG9e/ee63rceOONTTpW15iZM2dm3Lhx2WWXXXLwwQfnhBNOyIEHHpi2bdtm+PDhTZrHvffem4qKivTt2zdHH310VllllWy77baZOXNmevbsmd/97nfFxorVVlstd9xxR0444YR88sknSf7fMcp//vOfSWZd21jb6FpdXd2khtp27doVr4384IMPctJJJ+XTTz/NDTfckH79+qWmpibbbLNNTj311Dz66KM566yzst122xWzX4cOHbLSSiulffv2mTBhQjbeeOOsvPLKmThxYiorK7PSSitlmWWWyccff5yZM2fO20aGMqGpAphntXdou/nmm3PppZemU6dOadOmTZ577rkkyTXXXJMk+fvf/55jjz02jz76aL15jB8/PiuuuGLxiRBHHXXUPD2h4ZFHHslzzz1XfKzpGWeckR122CFvvfVWTj/99FRVVeX0009PMusuxzU1NfXmccEFF6Rjx4751a9+lWTW0ysGDhyYX//61znwwANTUVGR888/P+edd14++uijLLXUUvUaHioqKvJ///d/OeKII/LYY4+lV69emTp1agYPHpztttsuF110UTp27Jif/exn+fGPf1znROQKK6yQp59+OiussEKWX3753H333fn+97/f5G0AANCajBkzJqeddlp+8Ytf5Fvf+laSFJ80NidXXXVVKisri0+EqDVgwIDsv//+2W+//YrDau+KV3sCMZl1MLBQKOSdd95Jp06dstpqqyWZdeKxS5cuxbsKJ6nzZLXZ51lZWZkZM2bUeyxsVVVVsWnkjTfeKF7Y16ZNGw0VAFDGnAhd8BOhtSorK3PllVfmyiuvrDP860+h+Lq2bdtmxRVXzF/+8pdUV1enoqIilZWVxUaF6urqJj1lYfPNN8+f/vSnnH322dl4440zdOjQrLjiitlvv/2y2Wab5bTTTssWW2yRyy67LP3798+RRx6Znj17JkmqqqrSp0+ftGvXLksuuWSWXHLJuV44N23atHz55ZfZaKONik+2bYpXXnklZ5xxRqPju3fvnldffTXJrBvm9OzZs9hUsdpqq+Xzzz/PuHHj0qtXr7z00ksZO3ZsZs6c2WBTRZJsv/32efnllzVVAEALkzMXPGd++9vfTpIss8wyWWWVVbL55ptnypQpWXbZZXPZZZcV7wqcJNdff32j85k6dWpxW22zzTb57ne/mxVXXDFffPFFkuSOO+7IhhtumHXWWSdffPFFqqur07Fjxzrnmmuz4eeff56PPvpojsvdWI5cZ511ik+qeP755/PDH/6wzvhzzz23ePOZBW14BgAWjtqbBifJyy+/nFdffTXnn39+nYxWq7Kyst45yHHjxjWYo5qSrZLk8ccfz5dffpn27dvnoIMOyhFHHJH+/ftnxowZcz2P+93vfjcrrbRSvv3tb+fHP/5xDj/88Cy11FLF8ZtttlluvfXW4uuPPvoo22+/fb35LOhxxI022ihXXHFF8QmtFRUVue666+o8SWx2X1+ujz/+OJdffnkOO+ywtGvXrvikty233DIPPfRQrrzyykyYMKE4faFQyNixY3PttdfWOS/92Wef5emnn04y68Z/66+/fk455ZQmbctao0aNytChQ3PnnXdml112yVVXXZUll1yyeFO/7bffPg888EAGDx6cgQMH5vvf/35OO+20dOzYMd26dcuJJ56YV155Jddcc02OPvrorL/++hk2bFhee+21HHvssUlSvLaydl08zQz+H00VwDz7xje+kfPOOy+FQiH9+vXLr3/96+Kj699+++3iXdfef//9VFZW5vnnny++t3v37qmpqcnUqVOz7LLLZuLEifnFL36Rn//858VpqqurM2PGjHrhsFAoFIPIZ599lvHjx2fPPffMSy+9lPvuu694J5Mrr7wyP/7xj3PNNddk/fXXz3LLLZfx48cnmXUys3379nn++eczdOjQXHHFFcWDY48++mjWXnvt/OY3v8nOO++cbt265ZZbbkky6+4p66yzToPb45NPPsngwYNzzjnnZLvttssvf/nL7LTTThk8eHB+9KMfZa+99soqq6yS8847L+edd17xYN0OO+yQ3/3ud/n73/+e3//+9/n73/+eNddcc8GKAwCwCBo3blx+8pOfZNKkSbnsssty2WWX1Rnfo0ePOq9vvPHGbLXVVkn+3xPKjj322Dz88MN1pjv77LNz9tlnF1/vvffeGTx4cJ0DP4ccckiSZNCgQdlyyy1z1FFHJUnuu+++9O/fP/vss08+/fTTJP/vRHLtE8VqzelpFk899VSWWWaZvPnmm9luu+2atkEAgMWaE6ELfiK0VqFQyE9/+tP89Kc/TTLrONx3vvOdPPTQQ8Xt/OSTT9a5IG929913X5JZDbDf+973cscdd2SppZaq1zDbmA4dOmT69Om56aab0qNHj0yYMCEDBw7MlClTik/O/eY3v5lrrrkmTz31VJ1Gjfbt2xcbGR544IFMnjx5rp+3/PLLz3OjwldffZUJEyZkxRVXbHSa7t27Z9iwYamqqsqYMWMyYMCA4rhVVlklI0eOTKdOnbLhhhtm9dVXzyuvvJIkjTZVrLjiinnxxRfnaTkBgAUnZzZfzkxmNSEcccQR2WmnnfLggw822kRx5pln5oADDqgz7Prrr88VV1xRZ9iDDz5Y772zPxniN7/5Tfbdd9/i69rjj4cffvhcl3V+LnRr6KaDAMCiq1Ao5IILLkhNTU122223Bqc58sgji+c6k1kZYbXVVstjjz1WHDZ8+PD8/Oc/LzYYJMm7776bnXfeucF53nLLLcUnme6444459dRTs+GGG2by5MlZbrnl5rjMyy+/fHbdddfceeedWWqppbLPPvvMyyo3u9nPOR977LE56qij6uXUCy64oPh0iVpTp07N+PHjc8kll+SSSy4pZs4bbrghf/jDH1JZWVlsIv7ss89y2mmn5emnn86dd95Z56m1d9xxR1ZYYYWMGzcuO+64Yy666KJsu+22mTx5crExek6++uqr/OIXv8jyyy+f66+/Pn369Eky61rK7t27F5uTO3XqlHPOOScbbbRRnnnmmeKNZAqFQh5//PH8+te/Tr9+/bL++usnSWbMmFE8D57MOsdeXV2dm266KX/961/neFwRyo2mCmC+TJgwoXhHk2nTpmXixIlp06ZNrr322rzwwgv5xje+kS+++CIzZ87MDTfckEKhkMceeyy33XZbCoVC2rZtmyWWWKL4WPnZTZ48Oeeff37OP//8ep9b2yV58MEH5+CDD86XX36Zs88+u86BpLvvvjs77bRT1lhjjey///4ZMGBAXnjhhXz00UfZd999c88992TTTTfN3/72t/zmN7/Jvffem8GDB+euu+7KiiuumPPOOy/JrDuVnHzyyfnkk0/yyiuvZKONNqqzLDNmzMgf//jH/P73v0/fvn3z9NNP5/LLL08y64K+yy67LF9++WUGDx6cu+++O3379s3BBx+ck08+OQcffHBWWGGF/PWvf820adPy7LPPpl+/fjnqqKPy4osv5pJLLskWW2zRnCUDACiJ//73vxk4cGC6dOmSNdZYI3vvvXfx7mjXXXddRo0alYsuuijJrANCffv2bfAkbPv27XPSSSfl4IMPbvBzbrzxxrz//vv1hn/66ae59NJL88QTT+Suu+4qDp/94NEKK6yQUaNG5cUXX8yVV16ZKVOm1Dmp26dPnzz++ONp27Ztfv3rX6djx4454YQTMmPGjHTt2jXbbLNN/vnPf+YnP/nJ/G8oAGCx40Togqu963HticHanNi+ffvisMaaI95///2MGDEiq666arp165ZXX301Z555ZgYPHpwZM2YUb9AyJ0svvXSOP/74JMnf/va3DB48OLvvvntuvvnmPProozn00EPzne98JwMHDsw222zT6Hyuuuqq9OrVq3hR3fjx43PhhRfmrLPOKq7T8OHDM2nSpHluqmjbtm0qKiry1VdfNXox4zrrrJOampo89thjqampybrrrlsct+qqq2bEiBFp27Ztdtttt2JTRbt27YpPYvu6KVOmNKkpBQBYOOTM+TN+/Pjcc889+fe//51nn302Sy+9dPbaa69sueWW6du3b0444YRsscUW+d73vpck+c9//pPjjjuueHPB2bVt2zbrrrtuo3c//rrq6up6F9LVnt8eNmxY8YK3hnz9hjSze/vtt+tcyDe7GTNmNGnZAIBFw+23356XXnopnTp1yiWXXJK+ffsWxz311FM5/vjjc+ihh9Z5z+xPSWiK6urqOq//9a9/5d///neOOuqoXHPNNTn00EPz/vvvp23bthk3bly++c1vznWeI0eOzMUXX5zrr78+H374YcaNG1d8kuuMGTOKN7dLUnyq18IyadKkHHrooTn33HMbzVDt27ev16i79tpr589//nNWXXXVdOnSJSeffHKWXXbZnHDCCSkUCvn3v/+dKVOm5A9/+EOuu+669OjRI1dffXWdHDZx4sTccsst+dGPfpQrrrgivXv3zk9+8pMst9xyef755xs9zja7adOm5eKLL87yyy+fioqKOk8z++STT/K///2vzrCtt946m222WT744IOsscYamTx5ci6//PKss846ueCCC4rTffvb385OO+2UP/3pT8Vm4crKyjz99NOZNm1ave8VlDNNFcB8OfLII/Paa69l6tSpOemkk1JTU5Ndd901HTt2zE477ZRf/epXufvuuzNz5sxcffXVmTlzZnr27Jl27dpl4403zsiRI/PWW29lxowZ+eyzz4rzraqqyqeffppLLrkk3/3ud+t85kcffVTnkaivvvpqRo0alTZt2hRPGP7xj3/M8OHD89BDD2X11VfP5ptvnnXWWSe77757zjjjjCyzzDLF7spVVlklZ511Vv7v//4vAwYMyPvvv5+hQ4cW57/mmmtmzTXXzP33358nn3yyeLFfrUKhkL/85S855ZRT8r3vfS9///vfs9Zaa6V79+657rrrstNOO+WUU07JlVdemeeffz4nnnhi1l9//fTq1as4j06dOqVTp0559tlns+eee+Z///tfDj/88AwZMkRTBQDQ6r3yyiv58Y9/nLXXXjvXX399Dj300Cy99NJZeeWVkyRLLrlk2rdvX3w9c+bMJKlzh99alZWVufbaa3PnnXc2+FkTJ07MrrvuWm/4k08+mYceeigXXXRRvvWtbxWHn3DCCXnsscey2WabpVu3bklm3enu5ptvzv7775/u3bsXp+3YsWPx6WYdOnTIEkssUeeuvdtvv31OPPHEfPLJJ+7kAQAUORG64GbMmJGrr746V199dZ3hTWk8uOqqq7LRRhtlySWXTLt27XLKKafkjTfeyLhx45KkyScyn3766Vx77bWprq7OZZddVrzxyq677po+ffrkxhtvzJ577plvfetb6du3bzbaaKP06NGjTtNBu3bt8uSTT+all15K8v/qdt111xUvpps4cWKjF8TNSfv27bPqqqtm9OjR2WyzzRqcpm3btllnnXVy3333ZZ111qmzbKuttlo+/fTTzJw5M6uvvnrWWGONvPzyy1l55ZUbvRP06NGjs956683zsgIAzUPOnD+dOnXKLbfckp133jmTJk3KVlttVafxpG/fvhkxYkTxKWnDhw/PLrvsUjx2Obsvv/wyyy67bLp27TrfyzMvNZl92pkzZ+bLL7/MjBkzsvbaa+f+++9Pkrz44os55JBDMmXKlFRUVGTatGm5/fbbM2LEiCSzGmZmf3IGALDoeP755zN48OD87Gc/yyqrrJLTTz89G2+8cbp27ZopU6bk9NNPz5FHHlnnurlkVkb44IMPGmwgaGjY7E2X06dPz29+85vsuOOOWWeddZLMOs70m9/8JkkyduzYrLnmmnNc7hkzZhSf6nrggQcmmfWE09rG0//85z9zvBFJcxsyZEjef//9LL/88o1Os9RSSzX4RNmGjstNnTo106ZNS5KMGDEiHTp0yPXXX1/vxsxJctFFF6Vdu3bZc889i080O+aYY5LMesrZ3LZlMivnDxkyJG3btq1zXG7mzJmZOnVqrr766tx4443F4YVCIVVVVVlnnXVy//33Z6mllspNN92UysrKVFVVZfLkyamoqMhKK62UFVdcMX/605+y55571lnmmTNnznF7QbnRVAHMl9tuuy3JrINLv/71r4t36DjrrLOK0zzwwAN58803c++999b5hZzMumDt2WefzZJLLpmjjz46P/3pT3PkkUfmvffeS01NTdZaa616n/n1A1ZPPvlkbr311vzkJz9J27Zt88QTT+Tcc8/NpZdemtVXXz1JssMOOySZ9eiu2267LaeddlqdedQ+LmvHHXdM+/bt691hbc8998yVV16ZpZdeOttuu22dcYVCITfccEPxrnj9+vVLv379kiSPPPJIunXrlm222aZOONx9990zY8aMzJgxo/hZr7zySnr16pVx48Zl/fXXT9++fRu9WBAAoDXp1atXTjjhhOyxxx71DvLNq4qKivzkJz/JIYcc0uD466+/Ph988EG94XvvvXe22WabVFRUZMKECcUMtsMOO+Tkk09Ov379ssoqqyRJunXrlr/+9a9ZYokl5mnZtt9++7Rv3z4PPvhgDjvssHlbMQBgseREaPO45ZZb6lxA9vHHH2ennXbKI488ktVWW63R9z3//PMZNmxYfvvb3xafVrbllltmyy23zFNPPZUll1xyrhfAXXbZZbnpppvSsWPH9OnTJyNGjMhBBx3U4LS1xzNvvvnmVFVV5f77769znLGqqirbbrttvSdVHHHEEfWeVDE/dthhhwwdOrTRpook6d69ex588MF6N7JZZZVVMmHChEyePDmrrLJKVl999dx0003ZfPPNG5zPxIkTM3z48BxxxBHztawAwIKRM+dfhw4d8uijj2aJJZbIL37xi3rj+/fvn4suuihvvvlmxo8fn+HDh+fBBx9scF5ffPHFXJ/OMTc1NTVNnnb2TPzee+9lzz33LN5leeutty6O69ixY7bddtucf/75KRQKOe2007LxxhsnSX7wgx8s0PICAAvHSy+9lEGDBqV///752c9+ljZt2uSpp57KT3/60wwZMiRHH310+vTpkx/+8If13ltdXZ2VV165zk2En3zyyZx88sl56qmn6k2/zDLLFP/dtm3bbLzxxjnkkEPy5ptv1pluzJgx+fTTT7PJJpvMcdnbtWuX008/PR06dMg3v/nNrLrqqsUbiCTJZpttlltvvbX4+qOPPsr2228/120yP0aPHp0bb7wxZ5555hxz2iqrrJL33nuvzrBXXnklQ4cOzfjx4zN+/PiMHj0606dPz/Dhw3PwwQcnmXXN3/nnn9/ofDfccMNssskmxRv11aqpqcm///3vnHDCCXNdhyOPPDJHHnlkveG/+MUvMnr06Hz88ce59tpr51iXrl275oQTTsh9993X4PjevXvXed2pU6f85z//meuyQbnQVAE0i8ceeyzf/OY3i8FoyJAhGTVqVIYMGZJjjjmm3uNMk+S+++7Lvvvum4033ji/+tWv8umnn2b99dfPEkssMcfHmNbaeeedM2DAgGKzxTbbbJO77ror3/rWt/Lll1+mqqoqyy+/fL766qsMHz48v/3tb+vdObhQKGTw4MHp1KlTunfvnh//+Me56aabindTWW211TJ16tTssssu9RouzjjjjPz5z3+u1x2azDoweNFFF+WSSy6pM7ympibV1dU544wzio/Tuv/++/OrX/0qjz766DzfJQYAYFFWUVFRzDzJ3O++NrcTiQ3lq9nfu99++zU4bvr06enfv3+D42rvEDK7E044IYcffvgcl+Wrr77Kiy++mE8//TQDBgzI9773vVx33XXZd999s9RSS+Wuu+7KlltumTXWWGOO8wEAFj9OhC64999/P1OnTk1lZWWd4Z9//nmSWc0VX8+WNTU1qampSY8ePbLSSitljz32yC677FJsqqj17LPPZuONN270KQy1dt9993Tt2jX77rtvnn322bz22mt57LHH6k03ZcqU9O7dO4cddlhOP/30fPrpp1l66aXrTPPLX/4yU6ZMKd7xefb/1/57xx13nO87HR988MEZMGBAfvjDHzZ4p7xk1sWSDz74YL3jrrVPYFt55ZXTtm3b4s1qZn8y2+wuvfTSbLzxxk26GzUA0LzkzAU3p5uprLLKKjnooIPyq1/9Kp999lmOOeaYRo/tvf7669l9990XaFnm90kV6667bl599dX897//zZtvvllsmh06dGj69euXZZddNg8++GDatm1bfEIvALDoqampyZ/+9KdccMEF2WuvvfLrX/+6eLxq8ODB+eEPf5j+/funZ8+exWbWr9tmm22y5ppr1nkia+1xqcae0jps2LDstttuad++fc4555wkyRtvvFFnmptvvjmbbbZZVlpppXrvnzFjRi6++OIcfvjhWXHFFbPbbrslSSZNmpSXX345//3vf7PPPvvM49ZYMNOmTctxxx2XHj16zPWze/XqlQ8//DAff/xx/vKXv2TTTTfNCiuskGWXXTa9e/fOmmuumRtuuCGrr756TjrppCSzbub8dZ999lmefvrp7LbbbmnXrl2xgfWTTz6pM90jjzySr776qnjD6q8bMmRIttxyy/Tq1avB8TfddFMef/zxPPDAA3n66afzf//3fznvvPPqPK3u60455ZScdNJJadeuXfE7deutt+avf/1r8Ubayaxazpw5cw5bC8qPpgpggd166635z3/+k9/85jcpFAqZNm1a3n///fz+979P7969c8stt9Q74PTYY4/l9ddfz4UXXphu3bplwoQJWWONNXL11Vdn2223Ld6hbU4uueSSTJo0qfhL//rrry+eJD3++OPTtWvXYsNE7d3fLr744uL7v/zyy5x66ql57rnncuutt2aNNdbIEUcckfHjx6e6ujrXX399fve732XPPffMww8/nF69etW5G93ZZ5+dc889t97J3STZaaed8sMf/rDBOykXCoXiBYOffPJJunTpkiWWWCKrrrpqXn/99fztb3+b4532AABaq6qqqkbH3XzzzXnttdeSpNGLybbddtt6d8+o9fzzzzc675VWWilPPfVU2rVrV6dRdptttsngwYOLTySrqalJVVVVvZOrhUIh48aNyxtvvJF33nknY8eOzYMPPpjVVlste+yxR5LkqKOOykMPPZRTTjklv/vd7zJs2LDceuuteeCBBxpdLgBg8eJEaPP5/e9/n0ceeaTecbfai8l+/vOf12mKKBQKmTFjRpZbbrk8/vjjWWONNXLRRRfVm+/kyZNzzz33NHpnuKeffjrvv/9+9t9//3Tv3j3du3dv8jLXLtvX6zRixIhcdNFFad++ffHCwdqTlbfccktxWE1NTaZPn56ePXvWe2Lv3Kyzzjo54ogjcswxx+T2229v8P216/L1dercuXO6dOlSbKaoPY7bUFPF0KFD88ADD+See+6Zp+UDABaMnNlyVl555bz11lvp0KFDevbs2eA0o0ePzqhRo3LWWWct0GfVni/ea6+9mjzt7K9PPfXUdOjQIX379s0SSyyRRx55JLfffntuueWWDB06NH369FngpwcDAAvPzJkz8+qrr+bYY4+tc33ZRx99lFtvvTX//e9/s/TSS+d///tf7r777uy55571frc3dlO5ZNZ52a9ff1ddXZ0zzzwzr7zySk4//fQ6w2tv/PGPf/wjd999d2644YY6762srMwHH3yQMWPG5KabbsqAAQMyevToXHHFFfnggw8yffr0dOvWLd27d0/Pnj3zxRdfZOrUqRkzZkxxHrU3THnnnXdSVVWVddddd942WgNqampyzDHH5K233srtt99ep3G3Ieuvv366d++eG264ISNGjMjEiRPzi1/8os6N+G6//fY6+auioiLvvvtuJk2alPbt26dQKOThhx/Oeeedl+7du2f99devszzJrPp+8MEHOe+88/KjH/2oTu3atm2bTz75JBMnTswf//jHLLHEEvWaKp5//vlcd911ef7553PNNddk7bXXztprr51lllkmxx13XLbccsscfPDB2WKLLYrrPGXKlLzzzjvFJ5rNbtKkSZkxY0Y++uijetvks88+S6dOneb69DkoB5oqgPk2ZsyYfPTRR+ncuXPuv//+rLHGGvnXv/6VJZdcMr/97W+L06255pp5++23k8x6rOqnn36as88+O7vuumvx7hgHHHBAnn322bzwwgsZMmTIXD/7lVdeyWOPPZY//elPSZKNN944r732Wl544YV8+9vfzoABA/KrX/0qxxxzTFZcccWccMIJ2WeffXLggQemd+/eee+993LggQembdu2ue2224rLcfPNN2fEiBEZMGBAxo4dm0svvTQ777xztt1225x44okZPnx4jjzyyGy66aZNavxoSEVFRfGE8PDhw7PvvvsmSTbZZJN069YtN910U6N3YAYAaM3atGlT58K42e+w9r///S/PPvtsBg0a1OgBmy5dujTafDp69OgGh7/99tuZPn16vaeO1X7++PHj6x08qm2u6NatWzp06JDDDjss//znP9OpU6f07ds3gwYNypZbbplll122+J4VVlgh5513Xn75y19m4MCBee2115p0QhQAWHw4Edo8J0KT5Lzzzst5551Xb/iHH36YHXbYIffff3+xCWBuardFTU1NzjjjjHTu3Ll4N98kxXz63nvv5Z///Gf++c9/Zv/9968zj7k9Ua32cxqy+eab55577kmXLl2KnzV27Nj069cv9957b5ZccsniZ0yfPj0dOnRo0np93c9//vOMHTs2P/jBD3LDDTfUuyvx7E0V77//fp1xq666anF71v5/lVVWqTPNDTfckN/97ne56qqrss4668zXMgIA80fObL6c+eGHH+aTTz7J22+/XcxHEyZMyNNPP53bbrstb731Vk4//fR88MEHOfzww9OtW7dsu+22+eY3v5ktttgiyy67bC644IJssMEGc306x9zUNtpef/31c3yixPbbb1/vDsLnnXdeJkyYkLvvvjudOnVKMuuJYvvss08uvfTSPPPMM7nqqqvqvGfGjBlzvcgQAGg57du3z+DBg5PMuoD+hRdeyFNPPZUXX3wxm2++ea6//vpssskm+eMf/5jf//73Oe+887Lxxhtngw02yH777ZdvfOMbDc63ttn1pptuSr9+/YrDC4VCRowYkalTp2a77bar856qqqpUV1dnxowZue+++/KjH/0oW265ZZ1ptttuu1x33XX585//nN69e+eb3/xmPv/882y++ebZYYcd6jwZdptttsmUKVNSWVmZ/fbbr858llpqqRx11FHZcMMNc/PNN9cZ19BTYuf2JIW2bdtm3333zXrrrdfozfm+7vTTT8/hhx+eQqHQYJPvzJkz6xzr23rrrXP33Xdn0003LQ5r165dDj/88DoNFUkyffr0JLOyV+3NX372s5/VmWbzzTfPXXfdlc022yzLLbdcdtlllyTJc889lzvvvDP/+c9/8uGHH+Y73/lO/vznP9e5mfXuu++eXr165aKLLsohhxySFVZYIT/+8Y8zcODAvPnmm/nRj36U9u3bN3iT6CT16pHMqv9OO+3kekWIpgpgAXTu3DkHH3xwjjrqqOKBuRkzZtSb7osoaHIAAQAASURBVJlnnsmRRx6Z7bffPt/4xjdyyy23ZOLEiTn++OOL03z55Zc56aSTstFGGzXpUa6XXnppdtxxx+LBqpVWWilbbLFFnnjiiXz7299Ov379stpqq2XkyJHp169fNthgg+y000755z//WXxU16mnnloMJ7UeeuihnHDCCdlll10yZMiQ4l3d9txzzyy77LI59dRT8/rrr9cJSQ2prq5u0iNbDzzwwOK/Kysrc8UVV8z1PQAArdXDDz9c53XtwbkkOfPMM+vd3e3RRx/NSSedlE6dOqVQKKSysjIvvvhig/OeNm1aampqMnz48Hz11Ve54IIL0q9fv5xzzjl5/vnnG2yIbdu2bYMHh6qrq1NVVZUHHngg6667bgYOHJg99tgj3/nOd4onKRuyyy675OKLL865556bQqFQ72I8AGDx5kRo850IbUzte5ty3K3W9OnTU1VVlXfeeScjR47MJZdcUqfhdo011kj37t1z6KGHpm3btjn11FPrzaNQKOSDDz7IBhtsMMfP+bpTTjkl//jHP9K5c+c6F7DV1NRkqaWWyt57711neKFQyJdffpkBAwY0+jSNxlRUVGTw4MG58cYbs8wyyxSHjxo1qt6/V1111TrDhw0bVvz3EkssUWdcrVVWWSW33HJLNtxww3laLgBgwcmZzZczX3/99fzsZz9Lhw4dstlmm+XLL7/MHnvskYkTJ2avvfbK7373u+KTO370ox/l9ttvz8MPP5y//OUveeCBB/LQQw/ln//8Z6699to5flZT1DbuLrfccnN9UtnsF/VNmjQpn3zySa6++uri00aSWTek+eMf/5i99torW2yxRbGRpqqqKnvvvXfeeuutHHbYYQu83ABA83v11Vfz17/+Nd/5zndy7rnn1rkB3Y9+9KMccMABeeaZZ/LUU09l1KhRdS6y/7pevXplwIABueGGG+rd2LiysjK77757vYy37777Fm8KfOmllzZ485Cjjz46Rx99dJ1hyy23XI499th60z711FNzXeemqL0xyZw888wz6du3b/r27dvk+fbp0yfDhw/P5MmTG7yhX1VVVZ1rILfeeus899xzTZr3WmutVTy2tuWWW2b//fevd7xzhx12yAsvvFDvvWuuuWYmTpyYgw8+OLvuumuDT4Orne6KK67I6NGjM3To0Gy77bZJkm9/+9t57bXXmrScQMMqCvNy9gFgPsycOTPTpk2rc0eUDz74oF4oefPNN9O+ffsm3WlkwoQJmTp1ap07pk2aNClLLbVU8XWhUKhzUnLmzJlzPClb65133snaa6/d4LipU6dmiSWWmOtdPLbZZpscdNBBGTRo0Fw/DwCgXJ177rl55ZVXcuedd5Z6UZrVzJkzM3PmzCyxxBKlXhQAoERuuumm3H///fnOd76T73znO/WexDVjxow6J0KvvfbaOT4V9aSTTsqIESPqXShWWVmZrbfeOhdffHG9R7rPrrq6utG7k7Wkpp4I7dq1a4Pj3njjjey11155+OGHG704cE6aenzw6x5++OFcfPHFDV68BwDQkuTMhjU1Z3bo0CFjx47NOuusU9wuo0ePzkorrZQuXbo0+t4JEyZkmWWWSU1NTZ544onssMMOzbn4zeqNN97IcsstlxVXXLE47MEHH8zSSy9d7wJKAIBFWVVVVZ2nmTWke/fui0QeBRYPmioAAAAAAICFzolQAAAWBjkTAACABaWpAgAAAAAAAAAAAAAAKEuNP6cRAAAAAAAAAAAAAABgMaapAgAAAAAAAAAAAAAAKEuaKgAAAAAAAAAAAAAAgLLUttQLsCBqamoyc+bMtGnTJhUVFaVeHACgFSsUCqmpqUnbtm3Tpo2+00WZDAgANCc5sHWQAQGA5iQDth5yIADQXGTA1kMGBACaU1NzYKtuqpg5c2ZGjhxZ6sUAABYjvXr1Svv27Uu9GMyBDAgALAxy4KJNBgQAFgYZcNEnBwIAzU0GXPTJgADAwjC3HNiqmypqu0V69eqVysrKEi/Noqm6ujojR460jUpIDUpPDUpPDUpPDeaudhu5K8miTwYEmsLvPqCp5MDWQQacO7/7Fg3qUHpqUHpqUHpqMHcyYOuxsHNgOe4v1nnxX+dyW9/EOlvnxVO5rW+y8NdZBmw9HAsEmqIcf1cC86epObBVN1XUPt6rsrLSD8W5sI1KTw1KTw1KTw1KTw3mzuNDF30yIDAv/KwAmkoOXLTJgE1nGy0a1KH01KD01KD01GDuZMBFX0vlwHLcX6zz4q/c1jexzuWi3Na53NY3WfjrLAMu+hwLBOaFnxVAU80tB2q9BQAAAAAAAAAAAAAAypKmCgAAAAAAAAAAAAAAoCxpqgAAAAAAAAAAAAAAAMqSpgoAAAAAAAAAAAAAAKAsaaoAAAAAAAAAAAAAAADKkqYKAAAAAAAAAAAAAACgLGmqAAAAAAAAAAAAAAAAypKmCgAAAAAAAAAAAAAAoCxpqgAAAAAAAAAAAAAAAMqSpgoAAAAAAAAAAAAAAKAsaaoAykK7du1KvQgAALQwGRAAoDzJgQAA5UcGBAAoPzIg0Jw0VQBlYf0NeqaysrLUi7FAqmsKpV4EAIBWRQYEAChPrT0HyoAAAPOutWfARA4EAJhXMiDQnNqWegEAWkK7tpX55R3/yX8/mVzqRZkv3VbsnN/uv0mpFwMAoFWRAQEAylNrzoEyIADA/GnNGTCRAwEA5ocMCDQnTRVA2fjvJ5Pz2rgvS70YAAC0IBkQAKA8yYEAAOVHBgQAKD8yINBc2pR6AQAAAAAAAAAAAAAAAEpBUwUAAAAAAAAAAAAAAFCWNFUAAAAAAAAAAAAAAABlSVMFAAAAAAAAAAAAAABQljRVAAAAAAAAAAAAAAAAZUlTBQAAAAAAAAAAAAAAUJY0VQAAAAAAAAAAAAAAAGVJUwUAAAAAAAAAAAAAAFCWNFUAAAAAAAAAAAAAAABlSVMFAAAAAAAAAAAAAABQljRVAAAAAAAAAAAAAAAAZUlTBQAAAAAAAAAAAAAAUJY0VQAAAAAAAAAAAAAAAGVJUwUAAAAAAAAAAAAAAFCWNFUAAAAAAAAAAAAAAABlSVMFAAAAAAAAAAAAAABQljRVAAAAAAAAAAAAAAAAZUlTBQAAAAAAAAAAAAAAUJY0VQAAAAAAAAAAAAAAAGVJUwUAAAAAAAAAAAAAAFCW5rmpYvz48enbt2/Gjh1bHDZ69Ojss88+6dOnTy644IIUCoUFHgcAwKJFDgQAKD8yIABA+ZEBAQDKkxwIAJSzeWqq+OKLLzJo0KB88MEHxWFVVVUZNGhQevbsmXvuuSdjxozJvffeu0DjAABYtMiBAADlRwYEACg/MiAAQHmSAwGAcjdPTRXHHntsdttttzrDnnjiiUyePDknn3xy1lxzzRx77LEZOnToAo0DAGDRIgcCAJQfGRAAoPzIgAAA5UkOBADKXdt5mficc87JGmuskfPOO6847M0338xGG22Ujh07Jkl69OiRMWPGLNC4eVVdXT1f7ysHtdvGNiodNSi9mpqaVFZWlnoxmkVr/R7ZD0pPDebOtpmzRTEHqhkwJzIg0FT2scbJgK2Lv/sWDepQeotLDmzN3yH7QempwdzZNo1bFDNgsvBqVo77i3Ve/JXb+iaLTwZMml63cqxzua1zua1vsvDXuZy25fxYFHOgmgFzUo4ZEJg/Td3H5qmpYo011qg3bPLkyVl99dWLrysqKtKmTZtMnDhxvsd16dJlXhYrI0eOnKfpy5FtVHpqUDodO3bMBhtsUOrFaBajRo3K1KlTS70Y881+UHpqwPxaFHOg7zMwJzIgwIKTAVsn22jRoA6ls7jkwMUhA9oPSk8NmB+LYgZMFv73uRz3F+u8+Cun9V1cMmAy7zmwnOpcq9zWudzWNynPdV4ULIo50HcBmJNyzoDAwjFPTRUNqaysTPv27esM69ChQ6ZNmzbf4+b1IFqvXr0Wm46z5lZdXZ2RI0faRiWkBqVXU1NT6kVoNj169Cj1IswX+0HpqcHc1W4jmq7UOdD3GZgTGRBoKjlw3siAiy5/9y0a1KH0Fpcc2JozoP2g9NRg7mTAeVPqDJgsvBxYjvuLdV7817nc1jdZfDJg0vQcWI51Lrd1Lrf1TRb+OsuA867UObCcvv/AvCvHDAjMn6bmwAVuqujSpUveeuutOsOmTJmSdu3azfe4eVVZWSlAzYVtVHpqQHNo7d8h+0HpqQHNqdQ50PcZKBd+1gGLEhlw0WcbLRrUgQW1OHx/7AelpwY0l1JnwGThf5/LcX+xzou/clvfxcW81qwc61xu61xu65uU5zovqkqdA30XgHLhZx0sGtos6Ax69eqVl19+ufh67NixqaqqSpcuXeZ7HAAAiz45EACg/MiAAADlRwYEAChPciAAUE4WuKmiT58+mTRpUoYNG5YkGTJkSLbaaqtUVlbO9zgAABZ9ciAAQPmRAQEAyo8MCABQnuRAAKCctF3gGbRtm3POOSfHHXdcLrzwwlRXV+e2225boHEAACz65EAAgPIjAwIAlB8ZEACgPMmBAEA5ma+milGjRtV53b9//zz66KMZOXJkevfuna5duy7wOAAAFj1yIABA+ZEBAQDKjwwIAFCe5EAAoFwt8JMqaq200kpZaaWVmnUcAACLPjkQAKD8yIAAAOVHBgQAKE9yIABQDtqUegEAAAAAAAAAAAAAAABKQVMFAAAAAAAAAAAAAABQljRVAAAAAAAAAAAAAAAAZUlTBQAAAAAAAAAAAAAAUJY0VQAAAAAAAAAAAAAAAGVJUwUAAAAAAAAAAAAAAFCWNFUAAAAAAAAAAAAAAABlSVMFAAAAAAAAAAAAAABQljRVAAAAAAAAAAAAAAAAZUlTBQAAAAAAAAAAAAAAUJY0VQAAAAAAAAAAAAAAAGVJUwUAAAAAAAAAAAAAAFCWNFUAAAAAAAAAAAAAAABlSVMFAAAAAAAAAAAAAABQljRVAAAAAAAAAAAAAAAAZUlTBQAAAAAAAAAAAAAAUJY0VQAAAAAAAAAAAAAAAGVJUwUAAAAAAAAAAAAAAFCWNFUAAAAAAAAAAAAAAABlSVMFAAAAAAAAAAAAAABQljRVAAAAAAAAAAAAAAAAZUlTBQAAAAAAAAAAAAAAUJY0VQAAAAAAAAAAAAAAAGVJUwUAAAAAAAAAAAAAAFCWNFUAAAAAAAAAAAAAAABlSVMFAAAAAAAAAAAAAABQljRVAAAAAAAAAAAAAAAAZUlTBQAAAAAAAAAAAAAAUJY0VQAAAAAAAAAAAAAAAGVJUwUAAAAAAAAAAAAAAFCWNFUAAAAAAAAAAAAAAABlSVMFAAAAAAAAAAAAAABQljRVAAAAAAAAAAAAAAAAZUlTBQAAAAAAAAAAAAAAUJY0VQAAAAAAAAAAAAAAAGVJUwUAAAAAAAAAAAAAAFCWNFUAAAAAAAAAAAAAAABlqdmaKoYNG5Yddtghm2yySQ455JCMHTs2STJ69Ojss88+6dOnTy644IIUCoXie+Y0DgCA1kEOBAAoPzIgAEB5kgMBAMqPDAgAlINmaap47733cvnll+eqq67KQw89lFVXXTUnn3xyqqqqMmjQoPTs2TP33HNPxowZk3vvvTdJ5jgOAIDWQQ4EACg/MiAAQHmSAwEAyo8MCACUi2Zpqnj99dez0UYbpWfPnll11VWz99575+23384TTzyRyZMn5+STT86aa66ZY489NkOHDk2SOY4DAKB1kAMBAMqPDAgAUJ7kQACA8iMDAgDlolmaKrp165Znn302r7/+eiZNmpTbb789W2+9dd58881stNFG6dixY5KkR48eGTNmTJLMcRwAAK2DHAgAUH5kQACA8iQHAgCUHxkQACgXbZtjJt26dcsuu+ySAQMGJElWX3313H333RkyZEhWX3314nQVFRVp06ZNJk6cmMmTJzc6rkuXLvP0+dXV1c2xGoul2m1jG5WOGpReTU1NKisrS70YzaK1fo/sB6WnBnNn28yfUuZANQPmRAYEmso+Nu9kwEWTv/sWDepQeotLDmzN3yH7QempwdzZNvNnccyB5bi/WOfFX7mtb7L4ZMCk6XUrxzqX2zqX2/omC3+dy2lbNqfFMQMCi4dyzIDA/GnqPtYsTRUvvfRSHn/88dx99935xje+kSFDhmTgwIHZYost0r59+zrTdujQIdOmTUtlZWWj4+a1qWLkyJELvA6LO9uo9NSgdDp27JgNNtig1IvRLEaNGpWpU6eWejHmm/2g9NSA5lbKHOj7DMyJDAiw8MiAizbbaNGgDqWzuOTAxSED2g9KTw1obotzDizH/cU6L/7KaX0XlwyYzHsOLKc61yq3dS639U3Kc50XZYtzBgRat3LOgMDC0SxNFQ8//HB23333bLjhhkmSo48+OnfccUe6dOmSt956q860U6ZMSbt27eY4bl716tVrsek4a27V1dUZOXKkbVRCalB6NTU1pV6EZtOjR49SL8J8sR+UnhrMXe02Yt6UMgf6PgNzIgMCTSUHzjsZcNHk775FgzqU3uKSA1tzBrQflJ4azJ0MOH8WxxxYjvuLdV7817nc1jdZfDJg0vQcWI51Lrd1Lrf1TRb+OsuA82dxzIDA4qEcMyAwf5qaA5ulqaK6ujpffPFF8fWUKVPy1VdfpW3btnn55ZeLw8eOHZuqqqp06dIlvXr1ytChQxscN68qKysFqLmwjUpPDWgOrf07ZD8oPTWguZUyB/o+A+XCzzpgUSMDLtpso0WDOrCgFofvj/2g9NSA5rY458By3F+s8+Kv3NZ3cTGvNSvHOpfbOpfb+ibluc6LssU5AwIsKvysg0VDm+aYSe/evfO3v/0tN910Ux544IH87Gc/y/LLL5+DDz44kyZNyrBhw5IkQ4YMyVZbbZXKysr06dOn0XEAALQOciAAQPmRAQEAypMcCABQfmRAAKBcNMuTKnbbbbe8/fbbufnmm/Ppp59mvfXWyxVXXJF27drlnHPOyXHHHZcLL7ww1dXVue2222Z9cNu2jY4DAKB1kAMBAMqPDAgAUJ7kQACA8iMDAgDlolmaKioqKnLkkUfmyCOPrDeuf//+efTRRzNy5Mj07t07Xbt2bdI4AAAWfXIgAED5kQEBAMqTHAgAUH5kQACgXDRLU8XcrLTSSllppZXmeRwAAK2bHAgAUH5kQACA8iQHAgCUHxkQAFhctCn1AgAAAAAAAAAAAAAAAJSCpgoAAAAAAAAAAAAAAKAsaaoAAAAAAAAAAAAAAADKkqYKAAAAAAAAAAAAAACgLGmqAAAAAAAAAAAAAAAAypKmCgAAAAAAAAAAAAAAoCxpqgAAAAAAAAAAAAAAAMqSpgoAAAAAAAAAAAAAAKAsaaoAAAAAAAAAAAAAAADKkqYKAAAA/j/27jzOqrr+H/gLhmEEFxRNUVHTDFQSlcTdXMAlNXNJzbTcUvmaZkouqLnkistX+lruK+4KhltWUppLmpobrhhZgoioLAICM8zc3x885v4YgWEGBme5z+fjMQ+9Z7uf9/ncc++bzznvcwAAAAAAAAAAoCQpqgAAAAAAAAAAAAAAAEqSogoAAAAAAAAAAAAAAKAkKaoAAAAAAAAAAAAAAABKkqIKAAAAAAAAAAAAAACgJCmqAAAAAAAAAAAAAAAASpKiCgAAAAAAAAAAAAAAoCQpqgAAAAAAAAAAAAAAAEqSogoAAAAAAAAAAAAAAKAkKaoAAAAAAAAAAAAAAABKkqIKAAAAAAAAAAAAAACgJCmqAAAAAAAAAAAAAAAASpKiCgAAAAAAAAAAAAAAoCQpqgAAAAAAAAAAAAAAAEqSogoAAAAAAAAAAAAAAKAkKaoAAAAAAAAAAAAAAABKkqIKAAAAAAAAAAAAAACgJCmqAAAAAAAAAAAAAAAASpKiCgAAAAAAAAAAAAAAoCQpqgAAAAAAAAAAAAAAAEqSogoAAAAAAAAAAAAAAKAkKaoAAAAAAAAAAAAAAABKkqIKAAAAAAAAAAAAAACgJCmqAAAAAAAAAAAAAAAASpKiCgAAAAAAAAAAAAAAoCQpqgAAAAAAAAAAAAAAAEqSogoAAAAAAAAAAAAAAKAkKaoAAAAAAAAAAAAAAABKkqIKAAAAAAAAAAAAAACgJC2VoorLL788AwYMKL4ePXp09t9///Tt2zeDBw9OoVBo0DwAAFoPOSAAQOmRAwIAlCZ5IABA6ZEDAgBtWZMXVYwePTp33XVXzjjjjCRJZWVlBgwYkF69emX48OEZM2ZMHnjggUXOAwCg9ZADAgCUHjkgAEBpkgcCAJQeOSAA0NY1aVFFoVDI2WefncMOOyxrr712kuSpp57K9OnTM2jQoKy99to5+eSTM2zYsEXOAwCgdZADAgCUHjkgAEBpkgcCAJQeOSAAUAqatKjivvvuyzvvvJPu3bvniSeeSFVVVd55551ssskm6dSpU5KkZ8+eGTNmTJLUOw8AgNZBDggAUHrkgAAApUkeCABQeuSAAEAp6NBUG5oxY0aGDBmSddZZJxMmTMiDDz6Ya6+9Nptttlm6d+9eXK5du3Zp3759pk6dmunTpy90XpcuXRr83tXV1U0VRptTu2/so+ajD5pfTU1NysrKmrsZTaK1fo4cB81PHyyafbN45IBASyUHBBrKMdZ4csCWyb/7Wgb90PzaSh7Ymj9DjoPmpw8Wzb5ZPG0xDyzF40XMbV+pxZu0nRwwaXi/lWI/l1rMpRZvsvRjLqV92ZTaYg4ItA2lmAMCi6ehx1iTFVU8/vjjmTlzZm677basuOKKOfbYY/O9730vw4cPz3777Vdn2YqKisyaNStlZWXp2LHjAuc1JoEaNWpUk8TQltlHzU8fNJ9OnTplo402au5mNIl33303M2fObO5mLDbHQfPTBzQ1OSDQUskBAZYeOWDLZh+1DPqh+bSVPLAt5ICOg+anD2hqbTkPLMXjRcxtXynF21ZywKTxeWAp9XOtUou51OJNSjPmlqwt54BA61bKOSCwdDRZUcWECRPSu3fvrLjiinM33KFDevbsmQ8//DCTJk2qs+yMGTNSXl6eLl265L333lvgvMbYeOON20zFWVOrrq7OqFGj7KNmpA+aX01NTXM3ocn07NmzuZuwWBwHzU8fLFrtPqJx5IBASyUHBBpKHth4csCWyb/7Wgb90PzaSh7YmnNAx0Hz0weLJgdcPG0xDyzF40XMbT/mUos3aTs5YNLwPLAU+7nUYi61eJOlH7MccPG0xRwQaBtKMQcEFk9D88AmK6ro1q1bZs+eXWfa+PHjc9ppp+W2224rThs3blwqKyvTpUuXbLzxxhk2bNgC5zVGWVmZBGoR7KPmpw9oCq39M+Q4aH76gKYmBwRY+nzXAS2NHLBls49aBv3AkmoLnx/HQfPTBzS1tpwHluLxIua2r9TibSsa22el2M+lFnOpxZuUZswtWVvOAQFaCt910DK0b6oN7bjjjhkzZkzuvvvuTJgwIUOHDs3bb7+d7bbbLtOmTcuIESOSJNdff3222WablJWVpW/fvgudBwBAyycHBAAoPXJAAIDSJA8EACg9ckAAoFQ02ZMqVlxxxdx444255JJLcskll2SVVVbJlVdemXXWWSfnn39+Bg4cmEsvvTTV1dW544475r55hw4LnQcAQMsnBwQAKD1yQACA0iQPBAAoPXJAAKBUNFlRRZJsuummueeee+ab3r9///z5z3/OqFGj0qdPn3Tt2rVB8wAAaPnkgAAApUcOCABQmuSBAAClRw4IAJSCJi2qqM9qq62W1VZbrdHzAABoveSAAAClRw4IAFCa5IEAAKVHDggAtBXtm7sBAAAAAAAAAAAAAAAAzUFRBQAAAAAAAAAAAAAAUJIUVQAAAAAAAAAAAAAAACVJUQUAAAAAAAAAAAAAAFCSFFUAAAAAAAAAAAAAAAAlSVEFAAAAAAAAAAAAAABQkhRVAAAAAAAAAAAAAAAAJUlRBQAAAAAAAAAAAAAAUJIUVQAAAAAAAAAAAAAAACVJUQUAAAAAAAAAAAAAAFCSFFUAAAAAAAAAAAAAAAAlSVEFAAAAAAAAAAAAAABQkhRVAAAAAAAAAAAAAAAAJUlRBQAAAAAAAAAAAAAAUJIUVQAAAAAAAAAAAAAAACVJUQUAAAAAAAAAAAAAAFCSFFUAAAAAAAAAAAAAAAAlSVEFAAAAAAAAAAAAAABQkhRVAAAAAAAAAAAAAAAAJUlRBQAAAAAAAAAAAAAAUJIUVQAAAAAAAAAAAAAAACVJUQUAAAAAAAAAAAAAAFCSFFUAAAAAAAAAAAAAAAAlSVEFAAAAAAAAAAAAAABQkhRVAAAAAAAAAAAAAAAAJUlRBQAAAAAAAAAAAAAAUJIUVQAAAAAAAAAAAAAAACVJUQUAAAAAAAAAAAAAAFCSFFUAAAAAAAAAAAAAAAAlSVEFAAAAAAAAAAAAAABQkhRVAAAAAAAAAAAAAAAAJUlRBQAAAAAAAAAAAAAAUJIUVQAAAAAAAAAAAAAAACVJUQUAAAAAAAAAAAAAAFCSFFUAAAAAAAAAAAAAAAAlSVEFAAAAAAAAAAAAAABQkhRVAAAAAAAAAAAAAAAAJUlRBQAAAAAAAAAAAAAAUJKWSlHFUUcdlQceeCBJMnr06Oy///7p27dvBg8enEKhUFyuvnkAALQ+8kAAgNIjBwQAKD1yQACA0iQPBADaqiYvqnjooYfyzDPPJEkqKyszYMCA9OrVK8OHD8+YMWOKSVV98wAAaH3kgQAApUcOCABQeuSAAAClSR4IALRlTVpUMWXKlAwePDjrrrtukuSpp57K9OnTM2jQoKy99to5+eSTM2zYsEXOAwCgdZEHAgCUHjkgAEDpkQMCAJQmeSAA0NZ1aMqNDR48OP3798/s2bOTJO+880422WSTdOrUKUnSs2fPjBkzZpHzAABoXeSBAAClRw4IAFB65IAAAKVJHggAtHVNVlTx/PPP57nnnssjjzySCy64IEkyffr0dO/evbhMu3bt0r59+0ydOrXeeV26dGnUe1dXVzdNEG1Q7b6xj5qPPmh+NTU1KSsra+5mNInW+jlyHDQ/fbBo9s3ia648UJ8B9ZEDAg3lGFs8csCWx7/7Wgb90PzaSh7Ymj9DjoPmpw8Wzb5ZPG3xfHApHi9ibvtKLd6k7eSAScP7rRT7udRiLrV4k6Ufcynty6ZmLBBoiUoxBwQWT0OPsSYpqpg9e3bOOeecnHvuuVluueWK08vKytKxY8c6y1ZUVGTWrFn1zmvsINqoUaMWv/Elwj5qfvqg+XTq1CkbbbRRczejSbz77ruZOXNmczdjsTkOmp8+oKk1Zx7o8wzURw4IsPTIAVs2+6hl0A/Np63kgW0hB3QcND99QFNq6+eDS/F4EXPbV0rxtpUcMGl8HlhK/Vyr1GIutXiT0oy5JTMWCLRUpZwDAktHkxRVXH311fnWt76VHXfcsc70Ll265L333qszbcaMGSkvL693XmNtvPHGbabirKlVV1dn1KhR9lEz0gfNr6amprmb0GR69uzZ3E1YLI6D5qcPFq12H9E4zZkH+jwD9ZEDAg0lD2w8OWDL5N99LYN+aH5tJQ9szTmg46D56YNFkwM2Xls9H1yKx4uY237MpRZv0nZywKTheWAp9nOpxVxq8SZLP2Y54OIxFgi0VKWYAwKLp6F5YJMUVTz88MOZPHlyNt988yTJrFmz8thjj2XNNdfMnDlzisuNGzculZWV6dKlSzbeeOMMGzZsgfMaq6ysTAK1CPZR89MHNIXW/hlyHDQ/fUBTa8480OcZKBW+64CWRg7YstlHLYN+YEm1hc+P46D56QOaUls/H1yKx4uY275Si7etaGyflWI/l1rMpRZvUpoxt2TGAgGWPt910DI0SVHFXXfdVSdJuvTSS7PJJptk3333zZ577pkRI0Zkn332yfXXX59tttkmZWVl6du3b6ZNm7bAeQAAtA7yQACA0iMHBAAoPXJAAIDSJA8EAEpFkxRVdOvWrc7rzp07Z6WVVkrXrl1z/vnnZ+DAgbn00ktTXV2dO+64Y+4bd+iw0HkAALQO8kAAgNIjBwQAKD1yQACA0iQPBABKRZMUVXzZJZdcUvz//v37589//nNGjRqVPn36pGvXrg2aBwBA6yMPBAAoPXJAAIDSIwcEAChN8kAAoK1aKkUVX7baaqtltdVWa/Q8AABaN3kgAEDpkQMCAJQeOSAAQGmSBwIAbUX75m4AAAAAAAAAAAAAAABAc1BUAQAAAAAAAAAAAAAAlCRFFQAAAAAAAAAAAAAAQElSVAEAAAAAAAAAAAAAAJQkRRUAAAAAAAAAAAAAAEBJUlQBAAAAAAAAAAAAAACUJEUVAAAAAAAAAAAAAABASVJUAQAAAAAAAAAAAAAAlCRFFQAAAAAAAAAAAAAAQElSVAEAAAAAAAAAAAAAAJQkRRUAAAAAAAAAAAAAAEBJUlQBAAAAAAAAAAAAAACUJEUVAAAAAAAAAAAAAABASVJUAQAAAAAAAAAAAAAAlCRFFQAAAAAAAAAAAAAAQElSVAEAAAAAAAAAAAAAAJQkRRUAAAAAAAAAAAAAAEBJUlQBAAAAAAAAAAAAAACUJEUVAAAAAAAAAAAAAABASVJUAQAAAAAAAAAAAAAAlCRFFQAAAAAAAAAAAAAAQElSVAEAAAAAAAAAAAAAAJQkRRUAAAAAAAAAAAAAAEBJUlQBAAAAAAAAAAAAAACUJEUVAAAAAAAAAAAAAABASVJUAQAAAAAAAAAAAAAAlCRFFQAAAAAAAAAAAAAAQElSVAEAAAAAAAAAAAAAAJQkRRUAAAAAAAAAAAAAAEBJUlQBAAAAAAAAAAAAAACUJEUVAAAAAAAAAAAAAABASVJUAQAAAAAAAAAAAAAAlCRFFQAAAAAAAAAAAAAAQElSVAEAAAAAAAAAAAAAAJQkRRUAAAAAAAAAAAAAAEBJUlQBAAAAAAAAAAAAAACUJEUVAAAAAAAAAAAAAABASVJUAQAAAAAAAAAAAAAAlKQmK6oYOXJk+vXrl4022igHHHBAxowZkyQZPXp09t9///Tt2zeDBw9OoVAorlPfPAAAWgd5IABA6ZEDAgCUJnkgAEDpkQMCAKWgSYoqPvjgg5xxxhkZOHBgnnrqqayxxho588wzU1lZmQEDBqRXr14ZPnx4xowZkwceeCBJ6p0HAEDrIA8EACg9ckAAgNIkDwQAKD1yQACgVDRJUcWYMWNy0kknZY899sgqq6ySgw8+OG+88UaeeuqpTJ8+PYMGDcraa6+dk08+OcOGDUuSeucBANA6yAMBAEqPHBAAoDTJAwEASo8cEAAoFR2aYiM77bRTndfvv/9+1llnnbzzzjvZZJNN0qlTpyRJz549i4//qm8eAACtgzwQAKD0yAEBAEqTPBAAoPTIAQGAUtEkRRXzqqyszM0335zDDz88Y8eOTffu3Yvz2rVrl/bt22fq1KmZPn36Qud16dKlUe9ZXV3dZO1va2r3jX3UfPRB86upqUlZWVlzN6NJtNbPkeOg+emDRbNvltxXnQfqM6A+ckCgoRxjS0YO2HL4d1/LoB+aX1vJA1vzZ8hx0Pz0waLZN0uureSBpXi8iLntK7V4k7aTAyYN77dS7OdSi7nU4k2WfsyltC+XlraSAwJtQynmgMDiaegx1uRFFUOGDEnnzp1z4IEHZsiQIenYsWOd+RUVFZk1a1bKysoWOq+xRRWjRo1a4na3dfZR89MHzadTp07ZaKONmrsZTeLdd9/NzJkzm7sZi81x0Pz0AUvTV50H+jwD9ZEDAnw15IAtj33UMuiH5tNW8sC2kAM6DpqfPmBpamt5YCkeL2Ju+0op3raSAyaNzwNLqZ9rlVrMpRZvUpoxtxZtLQcEWrdSzgGBpaNJiyqeffbZ3HPPPbnvvvtSXl6eLl265L333quzzIwZMxY5r7E23njjNlNx1tSqq6szatQo+6gZ6YPmV1NT09xNaDI9e/Zs7iYsFsdB89MHi1a7j1g8zZEH+jwD9ZEDAg0lD1x8csCWxb/7Wgb90PzaSh7YmnNAx0Hz0weLJgdcMm0pDyzF40XMbT/mUos3aTs5YNLwPLAU+7nUYi61eJOlH7MccMm0pRwQaBtKMQcEFk9D88AmK6oYO3ZsfvnLX+bcc8/N+uuvn2RuYjNs2LDiMuPGjUtlZWW6dOlS77zGKisrk0Atgn3U/PQBTaG1f4YcB81PH7A0NFce6PMMlArfdUBLJAdsueyjlkE/sKTawufHcdD89AFLQ1vNA0vxeBFz21dq8bYVje2zUuznUou51OJNSjPmlq6t5oAALYXvOmgZ2jfFRmbNmpVjjz02/fv3T79+/TJjxozMmDEjm2++eaZNm5YRI0YkSa6//vpss802KSsrS9++fRc6DwCA1kEeCABQeuSAAAClSR4IAFB65IAAQKlokidVPPPMMxkzZkzGjBmT++67rzj9L3/5S84///wMHDgwl156aaqrq3PHHXfMfeMOHRY6DwCA1kEeCABQeuSAAAClSR4IAFB65IAAQKlokqKK/v375913313gvO7du+fPf/5zRo0alT59+qRr16511lvYPAAAWj55IABA6ZEDAgCUJnkgAEDpkQMCAKWiSYoqFmW11VbLaqut1uh5AAC0bvJAAIDSIwcEAChN8kAAgNIjBwQA2or2zd0AAAAAAAAAAAAAAACA5qCoAgAAAAAAAAAAAAAAKEmKKgAAAAAAAAAAAAAAgJKkqAIAAAAAAAAAAAAAAChJiioAAAAAAAAAAAAAAICSpKgCAAAAAAAAAAAAAAAoSYoqAAAAAAAAAAAAAACAkqSoAgAAAAAAAAAAAAAAKEmKKgAAAAAAAAAAAAAAgJKkqAIAAAAAAAAAAAAAAChJiioAAAAAAAAAAAAAAICSpKgCAAAAAAAAAAAAAAAoSYoqAAAAAAAAAAAAAACAkqSoAgAAAAAAAAAAAAAAKEmKKgAAAAAAAAAAAAAAgJKkqAIAAAAAAAAAAAAAAChJiioAAAAAAAAAAAAAAICSpKgCAAAAAAAAAAAAAAAoSYoqAAAAAAAAAAAAAACAkqSoAgAAAAAAAAAAAAAAKEmKKgAAAAAAAAAAAAAAgJKkqAIAAAAAAAAAAAAAAChJiioAAAAAAAAAAAAAAICSpKgCAAAAAAAAAAAAAAAoSYoqAAAAAAAAAAAAAACAkqSoAgAAAAAAAAAAAAAAKEmKKgAAAAAAAAAAAAAAgJKkqAIAAAAAAAAAAAAAAChJiioAAAAAAAAAAAAAAICSpKgCAAAAAAAAAAAAAAAoSYoqAAAAAAAAAAAAAACAkqSoAgAAAAAAAAAAAAAAKEmKKgAAAAAAAAAAAAAAgJKkqAIAAAAAAAAAAAAAAChJiioAAAAAAAAAAAAAAICSpKgCAAAAAAAAAAAAAAAoSYoqAAAAAAAAAAAAAACAkqSoAgAAAAAAAAAAAAAAKEnNXlQxevTo7L///unbt28GDx6cQqHQ3E0CAOArIA8EACg9ckAAgNIkDwQAKD1yQACgNWnWoorKysoMGDAgvXr1yvDhwzNmzJg88MADzdkkAAC+AvJAAIDSIwcEAChN8kAAgNIjBwQAWptmLap46qmnMn369AwaNChrr712Tj755AwbNqw5mwQAwFdAHggAUHrkgAAApUkeCABQeuSAAEBr06xFFe+880422WSTdOrUKUnSs2fPjBkzpjmbBADAV0AeCABQeuSAAAClSR4IAFB65IAAQGvToTnffPr06enevXvxdbt27dK+fftMnTo1Xbp0WeT6hUIhydzHhZWVlS21drZmNTU1qaioSFVVVaqrq5u7OSVJHzS/mpqaJMmG3ZZNRSv9qljva8umurq61X6GHAfNTx8sWu1+qc0vWLqWJA+UAwINIQcEGkoe+NWRAy5d/t3XMuiH5tfa88C2kAM6DpqfPlg0OeBXqyXngdXV1SkrKyup46WmpibLLLOMmNuwUos3af05YNL4PLBU+7mUYi61eJO5MZeVlS3V3/1EDvhVack5INA2lGIOCCyehuaBzVpUUVZWlo4dO9aZVlFRkVmzZjWoqKL2S/Gtt95aKu1rS958883mbkLJ0wfN7+BvJPlG5+ZuxmIq5NVXX23uRiwxx0Hz0weLVptfsHQtSR4oBwQaQw4INJQ8cOmTA341/LuvZdAPza/15oFtJwd0HDQ/fbBocsCvRmvIA0vxeBFz21dq8SatOQdMFjcPLMV+LrWYSy3eZOn/7ssBvxqtIQcE2oZSzAGBxbOoPLBZiyq6dOmS9957r860GTNmpLy8vEHrd+jQIRtvvHHat2+fdu3aLY0mAgAlolAopKamJh06NGt6VDKWJA+UAwIATUke+NWRAwIALYUc8KslDwQAWgI54FdLDggAtBQNzQObNUvceOONM2zYsOLrcePGpbKyskFPqUiS9u3bz1fRCgBAy7ckeaAcEACgdZIDAgCUJnkgAEDpkQMCAK1N++Z88759+2batGkZMWJEkuT666/PNttsk7KysuZsFgAAS5k8EACg9MgBAQBKkzwQAKD0yAEBgNamXaFQKDRnA0aOHJmBAwdm2WWXTXV1de64445885vfbM4mAQDwFZAHAgCUHjkgAEBpkgcCAJQeOSAA0Jo0e1FFknz88ccZNWpU+vTpk65duzZ3cwAA+IrIAwEASo8cEACgNMkDAQBKjxwQAGgtWkRRBQAAAAAAAAAAAAAAwFetfXM3AAAAAJbUrFmzUlNTs9D5VVVVqaysnG/67Nmz612vsrIyc+bMaZI2AgAAAAAAAADQ8nhSBQAAAC3KBx98kLXXXrv4+sADD8w+++yTH/3oR0mSiRMn5mtf+1ratWtXXOaEE07IRx99lPbt2xe30bVr1yy33HJJkjlz5uS73/1ujj766OI6n3/+efr27bvI9vzqV7/KoYce2iSxAQAAAAAAAADQsnhSRSszYsSI7Ljjjtlss81y+OGHZ9y4cUmS4cOHZ6+99srmm2+ek08+OZMmTWrUdk866aScf/75S6PJbU5T98GNN96YbbbZJn369MkJJ5yQyZMnL83mAwBAi/b5559n//33z4033licVlFRkfLy8uLr4447LhdeeGGd9a666qoMGzYs9913X+67777suOOOOeecc4qvH3jggToFFUmy/PLL58UXX8xrr72W119/Pa+//nrWX3/93HTTTXn99dfz2muv5YUXXsgPfvCDpRs0ANRj8uTJ2XnnnYtjUF921FFH5YEHHmjUNo0FNk5T9oGxQFqrBR0H559/fnr27Fn822WXXRq0rXvvvTfbbbddevXqlSOPPDITJ05cWs1uU5qyD2pVVVXle9/7Xv7xj380dXOhxZo8eXJefvnlRp9Lbc3E3PaVWrx8NXyuAIDWqLq6OtXV1fUuU1lZmdmzZ39FLQJaE0UVrcgHH3yQIUOG5He/+10effTRrLHGGhk0aFD+/ve/54ILLsigQYPy4IMPZvr06Tn++OMbvN2nn346zz//fE488cSl2Pq2oan74MUXX8yIESNyxx135Pe//31mz56dwYMHfwWRtG4LK2AZPXp09t9///Tt2zeDBw9OQx/E88ILL+S73/1uttxyy9xyyy1Ls+ltRlP3gROpi6ep+6GWk6kANKcVVlghp556aq688sq88sor882///77M2bMmBx22GHFaTvssEN222237LXXXsW/v/zlLxk0aFCdaVtuuWXuvPPO4nrt2rXLCiuskGWWWSYVFRWpqKhIu3btUl5enoqKiiyzzDLp0qVLlllmma8kdgD4skmTJmXAgAH58MMPFzj/oYceyjPPPNOobRoLbJym7ANjgYuvKS8mNxbYeAs7Dt58881cf/31efHFF/Piiy/m97///SK39dJLL+U3v/lNLr300vzlL39xHDRQU/bBvG688caMHj26KZsKTaYh49yXX355BgwY0OBtPvroo9l1113z61//OjvttFMeffTRRr3fwiysAHPkyJHp169fNtpooxxwwAEZM2ZMvdtpCzE39ve5LcS8sBvyLUhriXdRn91FFR3Pa2FteOCBB+p8Vmr/GlKsvKi4GtO+hmyzsfuxLcRc3+eqrcZcqyHHYFuIt7E3DW0tMde3XmN/lwH4avz73//OzjvvnGTutZnbbbddkrnFES+//HLx9+H9999Pz549s9FGGy3y75FHHqn3PV988cX07t07n3/+eYYOHZp333136QYJtBqKKlqRt956K5tsskl69eqVNdZYI/vtt1/ef//9jBgxIgcccEC23XbbrLnmmjn11FPzz3/+s0F3OZs1a1bOO++8DBw4MCussMJXEEXr1tR98Prrr+c73/lO1ltvvayzzjrZc88985///OerCaaVWlgBS2VlZQYMGJBevXpl+PDhGTNmTIP+oT5p0qT8z//8T/bcc8/ce++9efjhh/P8889/BZG0Xk3dB06kLp6m7od5OZkKQHM74IAD0q9fv7z11lt1ptfU1OSOO+7IL3/5y6y11lrF6RtuuGEuvPDCbL/99tl+++1zwQUXpF+/frn44ouz++67Z/vtt8/hhx+e448/PiuvvHJxvVmzZjXoZHJlZWUqKyubLkAAaKCTTz45e+yxxwLnTZkyJYMHD866667b4O0ZC2y8puwDY4GLpykvJjcWuHgWdBzMmTMno0ePzuabb54VVlghK6ywQpZbbrlFbuv999/Pueeem2222SbdunXLfvvtlzfeeGNpNb3NaMo+qPWf//wnN998c9Zcc82mbi4ssYaMc48ePTp33XVXzjjjjAZt8/PPP8/555+fO++8MyNGjMh5552Xyy+/vMHvtzAL+5364IMPcsYZZ2TgwIF56qmnssYaa+TMM89s0zEnjft9bgsxL+yGfK053kV9dhdVdNzQmPfaa6/i5+TFF1/M3/72t6y00krp27fvYm+zse1ryDYbux/bQsz1fa7aasy1GnIMtoV4G3vT0NYSc33rNfZ3GYCl66STTsoee+yR73//+zn++ONTVlaWJOnUqVNmzJiRo446Kvvvv39uvvnmjB8/Pkmy7LLLJpk7xvrWW28V/5555pk60955553stdde9b5/7bbKy8vzn//8J//zP/+TKVOmLL2AgdajQKvx3nvvFbbYYovCm2++Wfj8888LJ510UuHUU08t/PSnPy3ccsstxeXGjBlT6NGjR+Hzzz9f5DavuOKKwrbbblv4/e9/X/j73/9eqKmpWYoRtH5N3Qd/+9vfCv379y/897//LXz66aeFQw89tPCb3/xmKUfRup1yyimFCy+8sPj6vffeK/To0aPwxz/+sdC3b9/CF198USgUCoW333678MMf/nCR27vlllsKu+22W/Gz//jjjxcGDhy4dBrfRjR1H9x3332FP/3pT8XXw4YNK+y6665N3/A2pqn7odb7779f2HzzzQs77bRT4fnnn2/ydgPAosyePbtQVVVVqK6uLk479NBDC/fdd1+hUCgUvvjii0JVVVXhiy++qLPM+++/XzjggAMKBxxwQOHPf/5zYeDAgYXnnnuucOihhxb23HPPwuWXXz7fe2244YaFHj16NOjvggsuWPrBA8CXfPDBB4VCoVDo0aNHYezYsXXmnX766YWzzz67cNpppxWGDx/eoO0ZC2y8puwDY4GL57DDDivceuutdfqgqqqqsNlmmxWmT5/eqG0ZC1w8CzoO3nzzzcKmm25a6N+/f2HjjTcuHHnkkYUPP/yw0du+7LLLCkcffXSTtrctWhp98OMf/7hw3XXXFQ499FDjgLQ4jz/+eL3j3DU1NYWDDjqoMGTIkAZvc/z48YUHH3yw+Prtt98ubLbZZg16v/os6HeqUCgU/vrXvxbuuuuu4uvnnnuu0KtXr4Vupy3E3Njf57YQ82OPPVb4+c9/Xnz94osvFrbddtsFbqO1xLuoz+7C9sWCNKYN11xzTeFXv/rVItu3qG02pn0N2WZj92NbiLm+z9XitG9eLTXmQqHhx2BbiHdh55knTZq0WO2bV3PGXN96jf1dBuCr88EHHxT69+9fKBQKhYkTJxa23XbbOr9J06ZNKxQKhcLUqVMLPXr0KFRVVdVZv1evXoX33ntvgdueOXNmYfr06YVZs2bV+XvzzTcLPXr0KHz22WeFadOmFS6//PLCRx99VJg9e/ZSihJoLTypohVZf/31s9tuu2XffffN5ptvntdeey2nnXZaNtxww/zlL3+p83i93r17Z/nll693e+PHj88tt9ySddZZJ+PHj89ll12W448/vlGPOS01Td0H3/nOd7LOOutkl112yTbbbJOZM2fmmGOO+SpCabUmT56cNdZYo/i6ffu5X2PvvfdeNtlkk3Tq1ClJ0rNnzwY9rvHdd9/NVlttlXbt2iVJevfuPd8dkamrqfvggAMOyK677lp8/f7772edddZp4la3PU3dD7XOPvvsHH300e5QB0CzueKKK9K3b99stdVW2XLLLbPlllvm5ZdfzkUXXZQtt9wyO+64Y7baaqtsvfXW+fe//51k7t2nxo0bl2OOOSbHHHNMVl999Vx++eUZOnRoDjvssDzyyCMZOHDgfO/1wgsv5NVXX83rr7+e119/PSNGjEgy9+5atdNef/31vPrqqwtcHwCWtnmfzDSv559/Ps8991xOOeWUBm/LWODiaco+MBa4eM4///wcdthhdaaNHj06hUIh++yzT3r37p2jjjqqeNe6+hgLXDwLOg7+9a9/5Zvf/GauuOKKPProoykvL8/ZZ5/dqO1Onjw59957b370ox81VVPbrKbug+HDh2f69Ok58sgjm7qp0CTeeeedese577vvvrzzzjvp3r17nnjiiVRVVS1ym6uvvnr23nvvJElVVVVuvvnm4rmJRb1ffRb0O5UkO+20Uw4++ODi60Wd+2gLMTf297ktxLz++uvn+eefz1tvvZVp06blrrvuyrbbbtuq413UZ3dh+2JBGtqG2bNnZ+jQoQ3KjRe1zca0ryHbbOx+bAsx1/e5Wpz21WrJMScNPwbbQrwLO8/coUOHxWpfreaOub71Gvu7DMDSM2bMmJx44ok59NBDc9BBB+WXv/xlqqurkyQVFRWZMWNGxowZk7fffjtPP/10dt9990ybNm2h2ysvL88yyyyzwHnXXXddttpqq2yxxRbZaqutin+HHHJIkmTnnXfO9ttvn9tvvz0777xzRo4c2fQBA63KgjNiWqRXX301TzzxRO6///584xvfyPXXX5+jjz46N954Y1544YXst99+qaioyCuvvJLBgwcvcnsPPPBAVlllldxyyy3p2LFjfvKTn2TnnXfOs88+m+222+4riKj1aeo++MMf/pDx48fnscceS9euXTN48OCccsopueqqq76CaFqn2gKWww47LO3atSsWsEyfPj3du3cvLteuXbu0b98+U6dOTZcuXRa6venTp+cb3/hG8fVyyy2Xjz/+eKnG0No1dR/Mq/ZE6mWXXba0mt9mLI1+mPdk6tNPP720QwCABRo0aFAGDRpUZ9qPf/zj7L333jnggAMWuM7LL7+cq6++Ot/+9rczceLEdOjQIfvtt1/+8pe/5N///neuvvrq/Pe//82hhx6ak046qbjecsstV2c7jz76aHbZZZc88cQTmThx4kIvogSA5jR79uycc845Offcc+f7LauPscCms7h9YCxw8dR3MflZZ52VlVZaKRdeeGHOPvvs3HjjjfVuy1hg09l7772LF9slya9+9av0798/06dPb/Bxcd5552WzzTbLjjvuuJRa2bYtbh9MmjQp//u//5sbb7xxoRfOQXOrb5y7Q4cOGTJkSNZZZ51MmDAhDz74YK699toMHTo0J510Ul544YX5tveLX/wihx56aJK5F3H+5Cc/SXl5eR577LFFvt+ixtUbMnZQWVmZm2++OYcffnibjrmxv89tIeZ5b8iXJN27d8/999/f6uOttaDPbmPGyxrahocffjibbLJJcdnjjjtuoTEvapuLM55X3zYbux/bQsy17VzQ52pxt9XSY67vGKyoqGhz8S7sPPPCbhraWmJOmu53GYClZ6211sqPfvSjbLjhhllhhRXy+eef5957702SrLDCCrngggvyzDPPpFAopF27drnwwguz/PLL5/PPP0+SFAqFzJ49Ox07dizeOGVeVVVVKS8vT5KceOKJOfHEE+vMLxQKqampyXe+85389re/zWabbbaUIwZaE6Olrcgf/vCH7Lnnnundu3eSuf/QuOeeezJhwoTcc889+e9//5ubbropU6dOzfe+971Fbu/jjz/OVlttlY4dOyaZewJpnXXWybhx45ZqHK1ZU/fBo48+moMPPjjrrbdekuTMM8/Mt7/97Xz++edZYYUVlmosrdWRRx6ZAQMGzFfA8t577xU/y7UqKioya9asegcGy8rK6qxXuw4L19R9MC8nUhuuqfvByVQAWoKqqqq0a9cuZWVlCxwEm1d1dXXmzJlT598za665ZgqFQj755JNcccUVOeecczJy5MjsuOOOee655/Kzn/1sodsbP3587rzzztx9991ZZ511cuaZZ+aWW25JWVlZk8YIAEvq6quvzre+9a1G/9vZWGDTWdw+MBbYdBb3YnJjgUvPCiuskJqamkycOLFBRRXDhg3LSy+9VHxaHEuuoX1w4YUX5gc/+EE23HDDr7B10Dhf/r5O/v939nPPPZeZM2fmtttuy4orrphjjz023/ve9zJixIj8+te/XuD3+oorrlj8/549e+bWW2/N4MGDM2jQoPzud7+r9/0aen6jPkOGDEnnzp1z4IEHLnSZthBzY3+f20LMC7sh37Bhw+Yb22qN8Tbks1ufhrbhnnvuyQknnFB8XV/M11xzTZP3Y33tbOx+bAsx125zQZ+rxd1W0rJjru8YPOigg9pcvAs7z7w422pJMTfUkn63AbBkOnbsmC233DJjxoyp8/TSBx98cL5lzzzzzGy99dZ1pn388cfp169fnWnzvu7Tp0/uvvvu4usjjjgib7zxRvEpVDU1NTn44IOz0UYb5fXXX1dUAdThqslWpLq6OpMmTSq+njFjRr744ovi449WXXXVPP744zn//PMbdOFPt27d6jw+r6amJhMmTKjzmD/qauo+qK6uzqefflp8PXHixOJ0FmzFFVdcYAHLTTfdlPfee6/OsjNmzChWni5Mly5d5uvTRa1T6pq6D2o5kdo4Td0PTqYC0BJcf/31ueGGG+a7s8j06dPzxhtv5PLLLy9Oq66uzuzZs/PEE09k0003TVlZWe66665sttlmOfDAA1NVVZU33ngjkydPzsiRI9OhQ4f89re/zTe/+c35CqCnTZuWn//859l9992zwQYbZK211sp+++2Xiy++OGeccUbx8ecA0BI8/PDDmTx5cjbffPMkyaxZs/LYY4/l9ddfz7nnnrvQ9YwFNp3F7QNjgUtPQy8mNxbYdC6++OJssskm2WOPPZIko0aNSvv27bP66qsvct3XX389F110Ua699tqsssoqS7upbdbi9sEjjzySZZddNnfeeWeS5IsvvsiAAQPyP//zPznmmGOWeruhIbp06bLQce4JEyakd+/exQvKO3TokJ49e2bcuHEN+k5p165dNtpoo1xyySXZaaedinfEXpLzG/V59tlnc8899+S+++6rd3ttKeZai/p9bgsxL+yGfO+8885851taW7wN/ezWpyFt+O9//5sPPvgg22yzTXFafTEvjX6sb5uNfb+2EHOthX2uFmdbLT3m+o7BxWlbS493YeeZl6R9LSHmhmiK7zYAmkZNTU2++OKL/PWvf13g/B//+Md1ivOqq6tTVlaW1VZbLX/9619TXl6edu3aZZdddsnQoUOz+uqrp1AozLedW265JcncYr+VVlqpWAB466235tlnn81hhx22FKIDWitFFa1Inz59csYZZ+TWW2/NyiuvnPvvvz+rrLJKevbsmSS5/fbbs95666V///511ps+fXoqKirm+wfBd7/73ey///7505/+lE022SS33357Kisr06dPn68sptamqfugT58+ueWWW9KtW7css8wyue2227LZZptlpZVW+spiaq2+XMCy8cYbZ9iwYcX548aNS2Vl5SLvYrDxxhvn0UcfLb5+++23s9pqqy21drclTdUHiROpS6Kp+sHJVABagp/97GcLfJrEj3/84+y999454IADFrje008/nVGjRmX11VfPnXfemXHjxqVQKOSZZ57JbrvtltVXXz2ffPJJxo4dm29961t11n311Vdz+umnZ8UVVyxeBLnsssvmmmuuyU9+8pP8+9//zoUXXtigi8MA4Ktw1113Zc6cOcXXl156aTbZZJPsu+++SYwFfhUWtw+MBTadxb2Y3Fhg09lwww0zZMiQfO1rX8ucOXNy/vnnZ999902nTp2SLPw4+PTTTzNgwIAcffTR6dWrV2bMmJFkbg5O4yxuH/zlL3+p8/rkk0/OYYcdlu233/4razssSn3j3N26dcvs2bPrLD9+/PhsueWW9W7zueeey1NPPZXTTjstSYo3R2vfvv0Snd+oz9ixY/PLX/4y5557btZff/16l20LMTf297ktxLyoG/LNqzXF25jPbn0a0obHHnssO+64Y4Mvbl4a/VjfNhv7fm0h5vo+V4vbvpYec2OOwbYQb62G3jS0tcS8KE313QZA02jfvn0mTpyY/fbbb4Hz33///Tq/T1OmTMmyyy6b8vLyrLnmmsXp7dq1S9euXTN48ODsv//+8z3ZYmF23333XHbZZfn444+NDwJFbrfZiuyxxx45+uijc9ttt2XQoEGZNm1arrrqqpSXl+fzzz/PTTfdVPyH7bz23nvv/O1vf5tv+nrrrZcrr7wy11xzTXbdddf87W9/y9VXX92gR3OXqqbug8MOOyx77rlnrr766vzqV7/K8ssvn0svvfSrCKXV+3IBS9++fTNt2rTiUw6uv/76bLPNNsXkavr06cXHeM1r5513zj//+c88//zzmTNnTm6++eZst912X1kcrVlT9cGCTqTWnkxl0ZqqH/7yl7/koYceyogRIzJixIh861vfygUXXJAf/vCHX1ksALC4Zs+enZkzZyZJfvrTn2aXXXbJhRdemJVXXjnbb799vv3tb2fVVVfNSiutlF133TXJ3AvoTjvttPzoRz9K3759M3To0FRUVBS3ud566+X3v/99ampq0q9fvxx//PHznVgDgObQrVu3dO/evfjXuXPnrLTSSunatWsSY4FfhcXtA2OBTaf2YvIXX3wxzz333AIvJjcWuHTts88+2W233XLcccdl0KBB2XbbbXPWWWcV5y/sOHjkkUfy2WefZciQIenTp0/xj8Zb3D6Y9/ure/fuqaioyCqrrJIVVljhq2w+1Ku+ce4dd9wxY8aMyd13350JEyZk6NChefvttxdZGLTeeuvl3nvvzb333puPPvooV1xxRbbddtssv/zyixxXXxyzZs3Ksccem/79+6dfv37Fcx8LunNqW4l5Ub/PbTHmPn365PHHH8+tt96ahx9+OMcdd1ydG/K1xngb+9mtT0Pa8PTTTy+yeKSx22zKdjb2/dpCzPV9rha3fS095sYcg20h3loLu2no4myrJcRcn6b8bgOg6ay88sq57rrrFvj35Zz6v//9b51iii9be+21c+aZZ9Z5usXCfPDBB+natWv69euXm2++Ocncgsrp06cvWUBA61cAaGWmTp1a2GKLLQqvvfZanemPP/54oXfv3oWtt966sMUWWxRGjx5dnLfTTjsVHn/88QVu74477ij06tWrsOWWWxZ22mmnwieffLJU298WNGUf3HLLLYUePXrM98eiNfWxMK9DDz208Pzzzzd5mwFgceyzzz6FO+64Y6HzjznmmMJhhx1WOO+88wq333574cknnywUCoXCXnvtVdh3330LBxxwQGGvvfYqXHLJJcV13nnnncKRRx5ZePnllxf5/k899VRh5MiRSx4IAACLrUePHoWxY8cWX19++eWFzTffvLDDDjsUzj///MKMGTOK84wFArR+9Y1zv/LKK4WDDjqo0Lt378LOO+/coDHvQmHuv++/+93vFjbbbLPCCSecUPjss88a9H4N8eXfqccff3yB5z7mXaatxVwo1P/7vCCtPeaamprCVVddVdhxxx0LvXr1Kuyzzz6FUaNGtep4G/rZXdTnuSFtmDlzZqFXr16Ff/3rXw2KtTFxNbR9DdlmY/djW4i5vs9VY7fVWmJuzDHYFuJd2HnmxdlWS4p5Yestzu8yAEvXv/71r0KvXr0Ke+655wL/Ntlkk8Lf/va34vJXXHFF4fTTT59vO5tuumlh7NixhWnTphVOPPHEwqefflpnfmVlZeHtt98uHHXUUYVdd921sPPOOxe+973vFSZNmlT497//Xdh4440Lzz//fOH+++8vbL311oWampqlHjvQcrUrFJTdAm3Hxx9/nFGjRqVPnz7FuwM2xH//+9+MGTMmW2yxhTs0LqHF7QOaln4AAAAAWDBjgQCtw1c9zt0SxtXF3PZjLrV4l1YbvuptNvb92kLMba19Tb3Nlty2pbXNlt4+AFqX9957L8cee2z++te/zjevuro6BxxwQE455ZRsvfXWqa6uzi677JJTTjkl22yzTSoqKtKuXbskyVZbbZXhw4cXn2JRXV2dJOncuXMmTJiQXXbZJcsuu2x23XXX9OvXL3379k3nzp2L73Xrrbfmt7/9bdZee+107tw5d9xxx1cQPdBSKaoAAAAAAAAAAAAAAJa6t99+Oz/72c/mK6p44403MmDAgGy99dY577zz0rlz59xzzz254oor8re//S2bb755sXBiYQ455JCcffbZSZIXXnghm266aTp27LjQ5R988MGMGDEixxxzTLbeeuslDw5otRRVAAAAAAAAAAAAAAAtyr///e+8+uqr2W+//VJZWZkOHTqkffv2C1y2uro6NTU1KS8v/4pbCbQFiioAAAAAAAAAAAAAAICStOByLQAAAAAAAAAAAAAAgDZOUQUAAAAAAAAAAAAAAFCSFFUAAAAAAAAAAAAAAAAlSVEFAAAAAAAAAAAAAABQkhRVAAAAAAAAAAAAAAAAJUlRBQAAAAAAAAAAAAAAUJIUVQAAAAAAAAAAAAAAACVJUQUAAAAAAAAAAAAAAFCSFFUAAAAAAAAAAAAAAAAlSVEFAAAAAAAAAAAAAABQkhRVAAAAAAAAAAAAAAAAJUlRBbRhVVVVdV4XCoUGr/vcc8/l8MMPz+zZsxu8zoQJE/LUU0/N974NNXPmzMVetzkUCoVUVlampqam3uWqq6vzwx/+ML///e8X+72mTJmSysrKRq83YcKE/O1vf5tv+tixYxdrewAALU1jclwAAPiqVFdXN3cTAIA2wPnepvHaa6/lnHPOyZQpUxq8ziuvvJKXXnppvulz5szJFVdckXHjxtW7/syZM/PUU0/l008/bWxz65j3nG51dXUeffTRfPzxx8Vpr7/+epOc933uuedy5513LvF2AIClT464dLkmEEqXogpoQ1588cWMGTOm+PqKK67IkUcemSQZPXp0DjjggEyaNKlB25o6dWqee+65dOjQocHv/8wzz+Too49O+/b//6tl6tSpmTBhQp2/adOmLXD9YcOGZeedd87EiROL0yorKzNjxowF/i0qcVkcd911V3r27Nmgvw022CAbb7xx3nzzzXq3WVZWltdffz2ffPLJYrWpuro6P//5z3PYYYelqqpqkYnPhAkTcuCBB+bjjz/OP//5z5xxxhlJkl//+te5+eabkyTnnntufvnLXy5WewCAxWeAa/FNmzYtP/zhD+vku0nyyCOP5JBDDsn48ePrXf+1115bZN7WGDU1NXnmmWeabHtNbcqUKUul4KQxJ54BgK+WXHPx3HffffnrX//apNscOXJkvv3tb8+Xuy5MoVDInDlzGvS3oH6dOnVqPvzww+LrL774Iv/9738VdgBAK+R875K75ppr8tOf/rROMcNDDz2UV199NV26dKmzbKFQyOzZszNnzpz5tnP33Xfn+uuvn2/63//+91x//fUZOXJkve349NNPc/TRR+e9994rTps5c+Z8+/Kzzz5b6DbGjBmTXXbZJa+88kqSueedBw4cWNzmxx9/nJ/+9Ke55JJL5lv3pZdeym9/+9tcd911uf766+v8XXXVVRk7dmxmzZqVmTNnJplbnPHII4/UGxMA0DzkiEvONYFAQzT8mxFo8W688cbMmTMnN910U5Lkvffey2qrrZYkWWuttVIoFDJgwIAMHTo0yyyzTL3bKisrq/PfhqioqEh5eXmddS699NIMGzasznJHHnlkTjvttPnWf/jhh7PDDjtk1VVXLU773//939xyyy0LfL/HHnss6623Xp1p1dXVOfzww7Pvvvtmv/32a3Dbay233HJJkj/84Q+LXLZQKKSqqirrrLPOIpctKytLp06dGt2e6urqnHbaafnoo49y7bXXpn379jnggAPyrW99K2ecccYC+7Fbt27p3bt3zjjjjBx00EEpLy/PpEmTMmLEiNx7771Jkrfffjunnnpqo9sDADTOiy++mK5du+Yb3/hGkrkDXKNHj87NN9+c0aNH54wzzsj111+frl27LnJbizvAdeaZZ+att96qs53aE2W1ll122Sy//PLzrT9s2LBcf/31GT58eDFHq6ysXOjFb506daozmNaUll9++ay66qo566yzcvfddxen33vvvZk5c2a6detW7/qXXnpp1lhjjVx22WXFaRMmTJhvuZVXXjnl5eWLbM/IkSNzwgknZMiQIfnud7/boBhOPPHEvP322/XmhTNmzMg222yTX//61w3a5oJ8+OGHOeKII3LKKadkl112WeztLMgpp5yStdZaK7/61a/Srl27Jt02ANA4cs2mMXLkyPTs2TM777xzcdrpp58+3x3mbrjhhnznO9+Zb/2qqqoUCoV07NixOK1Xr16ZOXNmXnjhhWL/JHPvalxZWZnOnTvX2cZLL72UQw89tEHtPfnkk3PsscfWmXbXXXfloYceymOPPZYk+cc//pEBAwbkH//4R1ZcccVcd9118xVYfOtb31pgPABA8yr1872PPfZYhgwZkrFjx2aFFVbIsccemyOOOKLB7U+S7bffPvfff38OPPDA3HDDDVlrrbXyyCOPZMqUKdlggw0WuE5trjd9+vRMmzYtHTt2zD/+8Y8cf/zxmTRpUqqrq1NWVpauXbvmrrvuSpcuXXLHHXfkBz/4QfH88pfV5ofz9tOf//zn+c7Rfutb38rw4cMXuI311lsv/fv3z5FHHpkbbrghm2++edq3b5/y8vJ88cUXOf7449OjR48FnvedNGlS3nrrrYwZMybV1dXZeOONM378+Lz77rvZfvvt88UXX+TSSy/N5MmTc+WVV6Zjx451cloAoOWQIy55juiaQKAhFFVAG1FdXZ2XX345l19+eZK5P+5vvPFGzjnnnCRzTzpeddVV2XffffOHP/yhTsHBWWedlfvvv3+B2+3Zs+d80x544IH06tWr+HrGjBlp165dqqur065du8yePTtVVVWpqKhIRUVFdt999/zmN79Jknz/+99f4GDMBx98kNGjR+d3v/tdpkyZks6dO6djx45Zdtlls8UWW+T2228vLjthwoTssMMO822nUCjkoosuygsvvJB99923obuujmWXXTZJ6pzsTObeBeT888/Pueeem69//esLXb+qqirV1dUpLy9P+/bt61xo1phkNJl7Z5HTTz89M2fOzL333puuXbumpqYmZ5xxRk444YS88sor+d3vfpe11167znovv/xyNthgg3Tv3j2vv/56Zs+enSeeeCI777xz3nzzzVRXV2fSpEl1Tpou6OQvALDkDHAt+QDXvAYOHJirr74606dPz3LLLZcxY8bkpZdeyh133LHIC+wqKirmG9Daeeed57u47JFHHsk3v/nNRbZl1113zb777pvp06c3uP2zZs3KPvvsk+OOO26hy1x44YULvYtLQ0yaNCmHHnpo9ttvvzoFFbV5/fPPP5+VVlopkydPzlZbbZVk7oWE/fv3z/XXX5/tt98+vXv3zo9+9KOcccYZOeqoo9KhQ4dcd911SZKLL744xxxzTC688MKcddZZi91OAGDJyTWbJtf8cgzJ3HHGHXbYIVdddVWS5Dvf+c5Cx80efvjhDBo0aIHzzj333Jx77rnzTX/33XfrvK7NZa+55pr5xiXnteuuu86X986ePTvl5eV1+ri2SLh9+/apqanJNddck+233z4bbrhhkrmFydOmTVNUAQAtTKmf7/3HP/6Rk08+ObvvvnuOPfbY/PWvf80ll1ySr3/969lpp50avB+/9a1v5e67787xxx+fioqKDB8+PGVlZXnuuedSUVFRZ9mamppUVVUVL7J7+OGHc95556WsrCxz5szJr3/965x33nmpqqrKvvvum7333jtPPvlkbrjhhtx333055ZRT8tvf/rZOPjlr1qxUV1cXn34xZ86czJgxI2VlZamoqEjXrl3z3HPPJZk7FvjGG2/MF8MXX3yRzz77LOXl5Tn22GPzn//8JxMnTizeBXnq1KkZNWpUvvjii1x88cX5/PPP8+mnn2bZZZfNSiutlGRu7rjrrrvmvPPOS5Kcc845efDBB/Ob3/ymmOfOW0jRrl07N1EBgBZIjtg0OaJrAl0TCA2hqALaiNoEaI011siYMWMyYcKETJkyJV27dq3z+K8hQ4Zk1VVXzdtvv5111103yyyzTMrLy9OtW7dixWKSPP300znrrLPyt7/9rTht3LhxOeSQQ+b7kR0wYEBeeOGF4uvevXsnmXtHjy8nEUkWeMe7oUOH5oc//GG+9rWv5brrrssDDzyQBx54oFFJxymnnJLXXnstK664YoPX+bKFXYxXVVWV5557bpEX6/3hD39YaLXneeedVxy0+rJRo0bV2a/V1dX5wQ9+kIkTJ6Zz587ZcccdM2fOnFRUVGSZZZZJRUVFPvrooxxwwAF54IEHsuaaaxbXfemll/LUU0/liy++yJtvvpmKior84Q9/SE1NTe6///7suOOOKRQK2Xrrreu04cQTT6z3Aj8AoHEMcDXNAFeSHHDAAXn99deLr0eMGFFn/iGHHFL8/3kvUKupqcmMGTOKF5XV1NRk1qxZmTNnTpZbbrlUVFRkyJAh2WGHHfL2229nn332WeC+GDhwYB5//PEF3mH56aefzpAhQ+pMmzx5cs4666z86Ec/qjO9Xbt2GTp0aB566KGFxjpp0qT0799/ofPrUygUctppp6V///454YQTFrjMu+++m6222irvvPNOcVq3bt3Svn37fPrpp5k4cWKqqqoyfvz4JMlnn32WzTbbrLjsKquskptuuin77rtv+vbtm912222x2goALBm5ZtPlmu3atZtvzG/y5MlZeeWV61x0t7ALzHbddddsscUWKS8vz4svvpiVV14566+/fp1l7rvvvmy66aZZb731Mnv27Pm2UTsGuvrqqy/yDnhfHls9+OCD8+abbyZJNtpooyRzPw9J0rdv3wwbNiwdOnTITjvtVPwcPPnkkw16OhsA8NUq9fO9Q4YMycEHH5yzzz47ydxccpdddskf//jHRud4q622Wu67777MmDEj1113XY4++uhMnz69zlhhMrfgoTYXTZKDDjooBx98cC6//PKMHj06119/fZK5+dWECRPygx/8IPvss0/xxiQ/+MEPMmDAgFx88cVZZZVVivvst7/9bfE9ap9IdvTRR6d3794N2pe1Tx6rLcRIkn/+85/Fp8L98pe/LO7XAw44IDU1NamsrMxxxx0337hgVVVV8SLCL1NIAQAtnxyxaXJE1wS6JhAaQlEFtBG33HJLPv/88+y7774pLy9PVVVVOnTokOOPP36+ZQuFQmbPnp3f//73+eY3v5n27dunrKws3bp1Ky5TeweLeafVnvD7chIxZMiQVFRUZNCgQXnyySfzz3/+M5WVlamoqMjTTz+9yKTj3//+dx5++OE8+uijqampybBhw7LDDjsUB3eqq6szY8aM4vK1g0Vf9sknn+Tuu+/OgQceWO/7LY7aGBYVS79+/TJy5MiUl5cXT8hOnTo1e+65Z84555w6dwtOkuuuuy7Dhw8vJk/Tp0/PnDlz0qFDh+LFecsss0xOOOGEfO9738sxxxxTXHfKlCl55pln0qVLl0yaNCldu3ZNkhxzzDE5+OCDc/TRR2fdddfN7Nmzs8UWW6Rfv35Zf/318/3vfz9HHnlk8bOx33775ac//Wn23HPPJtlXAMBcBria7iRoRUVFjjzyyBx55JFJ5uZ9++67b+6///6svvrqSZK///3v8w1kjR8/Pv369asz7f77788qq6ySZ599doEnDBcUX3l5efbYY49ccsklSZKJEyfWuaPylClTMnv27OKdoXfZZZcFXqRWVVWVvn371hv/I488kqqqqoXOr8+TTz6ZDz/8ML/73e8WukxtUcW8xSfl5eX52te+ls8++ywffvhhkhT/++mnn2aNNdaos42VVlopl1xySU477bT069dvgZ8fAGDpkmsuea656667ZsqUKfniiy/y9NNP55ZbbsmRRx6Zo48+Oq+//noGDhxYXLZdu3YZO3Zs1llnnZSXl2fllVcuzltuueWy3HLLpbKyMoMHD87aa6+dO++8szi/pqYmt99+e55++uncc889C2xLY24s8+Xxyfvvvz+333577rnnnvzxj39MMjc3PuKII/Laa6+loqJigdt38RwAtDylfr7317/+dZ22lpWVZfnll2/UWNmbb76Zhx56KD/5yU+y5ppr5tprr82cOXNy8MEHZ6+99sonn3xSZ9yuuro6Rx11VHEft2/fPpWVlRkxYkR+9atf5cknn0ynTp3SuXPnnHDCCVl++eVz5plnJkm6dOmSW2+9NUcccUT23HPP/OIXv8jBBx+cww47LIceemgeeuihXHTRRbnzzjuz0UYbpX379nnmmWcWuS+TZLvttsurr75afPJuTU1NBg0alLfeeiv/+te/csMNN+Tpp59OVVVVTjzxxHTu3DnJ/y+uffPNN3PTTTelvLw8r776ajp27JgzzzwzH3zwQSZPnpzTTjttvkJgAKBlkiMueY5YH9cEAvNy5QO0Ebfeemu6dOlSHDA54IADsu222+YXv/jFItdt165dCoVCnSSlNllqSDHDyiuvnDlz5uT5559PMjfJqH1Eak1NzSJPCj711FOZNWtWfvjDH+aLL75IMrdCstY///nP9OnTZ5Fx3HLLLQ0ahGqoadOmpby8PB06dEhNTU2SufHUPqq1dtq8J5ZrT6LO67PPPksy905/X/va1+Z7ny5duhT//4Ybbsi11167wPZce+21C5xXe/K49sK41157Laeffnp69OiRww47LBdddFGWW265HHHEETnnnHPyzjvvZMsttywmqJ9++mnWXHPN4mcHAGgaBriaboCrXbt26dy5czGXqq6uTpJ07dq1OG2FFVaYb71u3brl6aefTrt27bLDDjtk//33z1lnnVVsQ/v27Rt8ErOsrCxffPFFrr/++tx2220ZMWJEKioqssoqq2TEiBG58sorc+CBB2bAgAE56qijincJTubun4qKihx99NHF3HBh9t9//6y++uqpqakp3vG5oe66664FXvhYa7PNNis+oeLdd9/NJptsktdeey3J3AsyP/3003z44YfZdttt8+abb6ZQKGTy5MnzFVUkyVZbbZWVVlopTzzxxHyDhADA0ifXXPJc8+KLL06S/OY3v0n37t3z/e9/P6uuumrOO++8VFRUZK+99iou26tXr5x33nmprKzMgAEDctJJJ823vY4dO+YXv/hFzjjjjDz55JPZcccdkyTPP/98Jk+eXG/ha2MKHL68bO3Y6/vvvz/fkyrmvfPwmWeembPOOivJ3H385TvWAQDNr9TP937zm9+s8/rjjz/O6NGjc8ABB9S73rzmzJmT8ePHZ7fddsuPf/zjnHrqqfnRj36UDh06ZOTIkQ3axgMPPJB27dpl5513zi9+8Yusvvrq2X777TNnzpz06tUr//d//1csrFhzzTVzzz335NRTT83EiROT/P9xyr///e9J5hYZ1xa6VldXN6igtry8vFj88eGHH+b000/PJ598kptvvjn9+vVLTU1Ntttuu5x55pn585//nPPOOy/f+c53irlfRUVFVltttXTs2DFTpkzJpptumm7dumXq1KkpKyvLaqutlhVXXDEff/xx8dw3ANAyyRGXPEf8MtcEAgujqALaiNo79CZzf0DfeOONXHLJJXUSoFplZWVZZpll6kwbP378ApOUhhQzJMkTTzyRzz//PB07dsyhhx6an/70p+nfv3+qqqoWelFXrb322iurrbZavv3tb+ewww7LUUcdleWXX744f4sttsjtt99efD1hwoTssMMO822nKQsqkuQ73/lOMaGr9eULxhryeKzRo0cnSdZdd9355s2YMaPOBYA/+9nPcuyxx6a8vDyFQiHnn39+nnjiidx8883p0aNH3njjjdTU1OTII4/MOeeck+9973upqanJrFmzksy9+/HQoUOz55575mc/+1nuuuuubLfddsWL6+67776ssMIKefvtt5PMTYqnT5+e7t27N34HAQD1MsDVdANcZWVl+e1vf5vf/va3daZ/+SkUX9ahQ4esuuqq+eMf/5jq6uq0a9cuZWVlxUKF6urqBj1lYcstt8zdd9+dX//619l0000zbNiwrLrqqjnooIOyxRZb5KyzzspWW22VK6+8Mv3798/xxx+fXr16JUkqKyvTt2/flJeXZ9lll82yyy67yIvmZs2alc8//zybbLJJbrnllkW2r9brr7+ec845Z6Hza/PJJHnnnXfSq1evYlHFmmuumc8++yzjx4/PxhtvnFdffTXjxo3LnDlzFlhUkSQ77LBDXnvtNUUVANAM5JpLnmt++9vfTpKsuOKKWX311bPllltmxowZWWmllXLllVcW7wqcJDfddNNCtzNz5szivtpuu+2y1157ZdVVV82kSZOSJPfcc0969+6dddddN5MmTUp1dXU6depU5yRsbX742WefZcKECfW2e2G55Lrrrlt8UsVLL72UQw45pM78Cy+8MPvtt1+SLJUn/QIAS8753rr+7//+LyussEL22WefBrU/STbZZJNcddVVxQvP2rVrlxtvvLHOk8Tm9eV2ffzxxxkyZEiOPPLIlJeXF5/0tvXWW+fRRx/Nb3/720yZMqW4fKFQyLhx43LDDTcUC1uTuRewPfvss0mSK664IhtuuGHOOOOMBu3LWu+++26GDRuWe++9N7vttlt+97vfZdlll01NTU0qKyuzww475OGHH87FF1+co48+Oj/4wQ9y1llnpVOnTll//fVz2mmn5fXXX891112XX/ziF9lwww0zYsSIvPnmmzn55JOTzL1Qr7KyshiLp5kBQMsjR6xrcXLEL3NNILAwiiqgjSkUChk8eHBqamqyxx57LHCZ448/PieccELxdbt27bLmmmvmr3/9a3HayJEj87Of/aw44JQk//3vf7PrrrsucJtDhw4t3t12p512yplnnpnevXtn+vTpWXnllett8yqrrJLvfve7uffee7P88stn//33b0zITaqmpqZ414/7778/HTp0SLt27fKf//wnxxxzTG6//fasttpqSebe6WTeitKFeemll7L22msXH8U1rxkzZtTZRseOHdOxY8c888wzueiii7Liiivm/vvvT5IMGjQoDzzwQH7zm9/kN7/5TU444YQ89dRT+eUvf1lsU3l5ec4777y0b98+H3zwQX7961/nlltuyZw5c/L9738/Tz75ZH71q1/lrLPOSmVlZd5///106tQpa6655hLvOwCgLgNcdS3JAFehUMixxx6bY489NkkyceLE7L777nn00UeL+/npp5+uczHevB588MEkydtvv53vf//7ueeee4p3Mq7N/epTUVGR2bNn59Zbb03Pnj0zZcqUHH300ZkxY0ZeffXVvPfee9lggw1y3XXX5ZlnnqlTqNGxY8diIcPDDz+c6dOnL/L9VllllUYXKnzxxReZMmVKVl111YUu06NHj4wYMSKVlZUZM2ZM9t133+K81VdfPaNGjUrnzp3Tu3fvdO/ePa+//nqSLLSoYtVVV83LL7/cqHYCAE1DrlnXkp5Mfemll/LTn/40u+yySx555JGFFlGce+65Ofjgg+tMu+mmm3LVVVfVmfbII4/Mt+68T4a44IIL6hSA1F68dtRRRy2yrYtzoVvt3fUAgNbB+d65T3kYPnx4zj333PnuCNwQPXv2LP7/ySefnBNOOGG+PHXw4MHFp0vUmjlzZiZPnpwrrrgiV1xxRfGmfjfffHOuvfbalJWVFYuIP/3005x11ll59tlnc++999Z5cu0999yTr33taxk/fnx22mmnXHbZZdl+++0zffr0Bt0p+IsvvsjPf/7zrLLKKrnpppvSt2/fJHNvEtOjR4/iRYCdO3fO+eefn0022STPPfdc8WYyhUIhTzzxRH71q1+lX79+2XDDDZPMvRivtqA6mfsEuOrq6tx6663505/+VO/YIgDQvOSIS5YjuiYQaAhFFdDG3HXXXXn11VfTuXPnXHHFFdl5552L85555pmccsopOeKII+qsM+9dMxqiurq6zut//OMfeeGFF3LCCSfkuuuuyxFHHJGxY8emQ4cOGT9+fDbYYINFbnPUqFG5/PLLc9NNN+Wjjz7K+PHji3f3raqqyieffFJctvYub0vD1KlTi0nX+uuvX5xeO7i0xhprZPz48Rk9enQOPfTQRW5v1qxZ+dOf/lS8C9yXff7553WqUv/0pz/l2muvzfjx43PggQdmvfXWywUXXJCnn34622yzTe67774UCoW89tprue+++3LWWWelX79+2XXXXXPSSSdlrbXWyiGHHJJ33nmnuM15+/uSSy7J3nvvnSFDhuSZZ57JRx99lN69ezfoMbMAwOIxwLXkJ0Fr73hce1Kw9gRox44di9MWVhwxduzYPPnkk1ljjTWy/vrr54033si5556biy++OFVVVcXHn9ZnhRVWyCmnnJIkefzxx3PxxRdnzz33zG233ZY///nPOeKII7L77rvn6KOPznbbbbfQ7fzud7/LxhtvXLygbvLkybn00ktz3nnnFWMaOXJkpk2b1uiiitqBvy+++GKhFzKuu+66qampyV//+tfU1NRkvfXWK85bY4018uSTT6ZDhw7ZY489ikUV5eXlC3xcbTJ3MLAhRSkAwNIj11y8XHPy5MkZPnx4XnjhhTz//PPFgoytt946O++8c0499dRstdVW+f73v58keeWVVzJw4MDstNNO822rQ4cOWW+99RZ69+Mvq66unu9CutpCiREjRhQveFuQeS8O/LL333+/zoV886qqqmpQ2wCAlqHUz/dOmjQpgwYNyne+850cdNBBjYqr1rRp03LEEUfkwgsvXGgO1bFjx2LRRK2vf/3r+f3vf5811lgjXbp0yaBBg7LSSivl1FNPTaFQyAsvvJAZM2bk2muvzY033piePXvm6quvrpOHTZ06NUOHDs1PfvKTXHXVVenTp0+OOeaYrLzyynnppZcWOtY2r1mzZuXyyy/PKqusknbt2tV5mtnEiRPz73//u860bbfdNltssUU+/PDDrLXWWpk+fXqGDBmSddddN4MHDy4u9+1vfzu77LJL7r777mKxcFlZWZ599tnMmjVrvs8VANByyBGXLEd0TSDQEIoqoA156aWXcvHFF+e4447L6quvnrPPPjubbrppunbtmhkzZuTss8/O8ccfP9/JxUKhkA8//HCBA0oLmjbvSbjZs2fnggsuyE477VR8lFXHjh1zwQUXJEnGjRuXtddeu952V1VVFe/0+6Mf/SjJ3Lve1p6IfOWVV+q9OK0pTZgwIausskq9y7z11lu5/PLL06dPn4WeqKx1ww03ZPr06fPdwa7W5MmT69z5d8stt8zYsWPzwx/+MC+99FKuvPLK7LHHHjnjjDPSsWPHXHvttbn77ruzzTbbZK+99sqtt96a4cOHFwfIkuT2229PTU1N9tlnn5x66qnp169fXn311RxzzDHp169fkmTvvffO0KFDM2fOnK9s3wJAqTLAteQnQauqqnL11Vfn6quvrjO9IYUHv/vd77LJJptk2WWXTXl5ec4444y8/fbbGT9+fJI0+CTms88+mxtuuCHV1dW58sors8kmmyRJvvvd76Zv37655ZZbsvfee+db3/pWdt5552yyySbp2bNnnaKD8vLyPP3003n11VeT/P9+u/HGG4sX0k2dOnWROeaCdOzYMWussUZGjx6dLbbYYoHLdOjQIeuuu24efPDBrLvuunXatuaaa+aTTz7JnDlz0r1796y11lp57bXX0q1bt/lOLtcaPXp0vvnNbza6rQBA05FrLl6u2blz5wwdOjS77rprpk2blm222aZO4cnOO++cJ598sviktJEjR2a33XZLt27d5tvW559/npVWWmmBd6RrqMb0ybzLzpkzJ59//nmqqqry9a9/PQ899FCS5OWXX87hhx+eGTNmpF27dpk1a1buuuuuPPnkk0nmFszM++QMAKDlKPXzvdXV1Rk4cGCSuReGLc5TupLk+uuvz9ixY+s977v88ssv8KmyCxqbmzlzZmbNmpUkefLJJ1NRUZGbbrqpOEY4r8suuyzl5eXZe++9i080O+mkk5LMfcrZovZlMjfPv/7669OhQ4c6Y3Nz5szJzJkzc/XVV+eWW24pTi8UCqmsrMy6666bhx56KMsvv3xuvfXWlJWVpbKyMtOnT0+7du2y2mqrZdVVV83dd9+dvffeu06b58yZs8jz5ABA85AjLnmO6JpAoCEUVUAb8eqrr2bAgAHp379/jjvuuLRv3z7PPPNMjj322Fx//fX5xS9+kb59++aQQw6Zb93q6up069Ytw4YNK057+umnM2jQoDzzzDPzLb/iiisW/79Dhw7ZdNNNc/jhh9ephEySMWPG5JNPPslmm21Wb9vLy8tz9tlnp6KiIhtssEHWWGONOsnPFltskdtvv734esKECdlhhx0WuU8WxzvvvFPvHd+S5Mc//nHuvvvuXHLJJRk6dOhCl3v22WdzzTXX5Cc/+clCk8hPP/20zoV8K664Yn76058mSXbYYYf06NEjL7/8cgYPHpwnn3wyW2+9de6666706tUrgwcPzvPPP5/bbrutzh0AV1hhhdxxxx359NNPM2HChPzrX//Kddddlx/96EfFCthDDjkkN910U5JkyJAhDdo3AEDjGeBqmpOgQ4cOrXPx2Mcff5xddtkljz32WL2PLH3ppZcyYsSI/OY3v8l9992XJNl6662z9dZb55lnnsmyyy67yIvfrrzyytx6663p1KlT+vbtmyeffHKhdyepqanJOuusk9tuuy2VlZV56KGH6hQuVFZWZvvtt5/vSRU//elP53tSxeLYcccdM2zYsIUWVSRJjx498sgjj2SvvfaqM3311VfPlClTMn369Ky++urp3r17br311my55ZYL3M7UqVMzcuTIYu4KAHz15JqLn2tWVFTkz3/+c5ZZZpn8/Oc/n29+//79c9lll+Wdd97J5MmTM3LkyDzyyCML3NakSZMW+XSORampqWnwsvPmxR988EH23nvv4l2Wt9122+K8Tp06Zfvtt88ll1ySQqGQs846K5tuummS5MADD1yi9gIAS4fzvcl5552XF198MXfcccdiF62OHj06t9xyS84999x687TVV189H3zwQZ1pr7/+eoYNG5bJkydn8uTJGT16dGbPnp2RI0fmxz/+cZJkzz33zCWXXLLQ7fbu3TubbbZZOnXqVGd6TU1NXnjhhZx66qmLjOH444/P8ccfP9/0n//85xk9enQ+/vjj3HDDDfX2S9euXXPqqafmwQcfXOD8Pn361HnduXPnvPLKK4tsGwDw1ZIjNk2O6JpAoCEUVUArV1NTk7vvvjuDBw/OPvvsk1/96lfFu1VcfPHFOeSQQ9K/f//06tWreHLzy7bbbrusvfbadX7Ia39oF3bn3hEjRmSPPfZIx44dc/755ydJ3n777TrL3Hbbbdliiy2y2mqrzbd+VVVVLr/88hx11FFZddVVs8ceeySZ+yjW1157Lf/617+y//77N3JvLJnZs2fnueeeW+CJ1HmVlZXl/PPPr/cE8ciRIzNw4MD07t07J5988gKXGTt2bD777LN07959vnkzZ87MPvvsk3HjxmXDDTfMzjvvnNNPPz2rr756Hn/88ZxxxhmZNGlSjjjiiFRUVMy3/j777JNu3brl+eefz6GHHpovvvginTt3zltvvZWNNtoos2fPznLLLZeamprMmDHDXUcAYCkwwLXkA1xjx47NzJkz53ss6WeffZZkbnHFl+/qW1NTk5qamvTs2TOrrbZavve972W33XYrFlXUev7557Ppppsu9CkMtfbcc8907do1BxxwQJ5//vm8+eab+etf/zrfcjNmzEifPn1y5JFH5uyzz84nn3xS55GuSXLiiSdmxowZxbs9z/vf2v/faaedFnsw8Mc//nH23XffHHLIIQu8S14y90LJRx55ZL5Bw9o7pXTr1i0dOnQo5qjz3kFlXv/7v/+bTTfdtEF3ogYAmp5cc8lzzWWWWWah81ZfffUceuih+eUvf5lPP/00J510UvGOcF/21ltvZc8992z0+89rcZ9Usd566+WNN97Iv/71r7zzzjvFwtlhw4alX79+WWmllfLII4+kQ4cOWX/99ZeojQDA0uN871wPPfRQ7r333hxyyCEpKyvLqFGjkswt4l3UBXC1Zs2alYEDB6Znz56LfO+NN944H330UT7++OP88Y9/zOabb56vfe1rWWmlldKnT5+svfbaufnmm9O9e/ecfvrpSZLBgwfPt51PP/00zz77bPbYY4+Ul5cXC1gnTpxYZ7nHHnssX3zxRXbaaacFtuf666/P1ltvnY033niB82+99dY88cQTefjhh/Pss8/mf/7nf3LRRRfVeVrdl51xxhk5/fTTU15eXvxM3X777fnTn/6UO+64o7hcVVVV5syZU8/eAgC+anLEuZoiR3RNINBQiiqglZszZ07eeOONnHzyyTn88MOL0ydMmJDbb789//rXv7LCCivk3//+d+6///7svffe892drn///gvdfmVlZfGuubWqq6tz7rnn5vXXX8/ZZ59dZ3rtxWB/+9vfcv/99+fmm2+us25ZWVk+/PDDjBkzJrfeemv23XffjB49OldddVU+/PDDzJ49O+uvv3569OiRXr16ZdKkSZk5c2bGjBlT3EbtRXT/+c9/UllZmfXWW69xO20h/vCHP+Tzzz9P//798+abb6aioqJ4QnfcuHFJ5iY9s2fPzsorr5wZM2bk3XffTdeuXYuJ5pQpUzJkyJDcfffd6du3b6655po6+2/y5Mm55JJLMn369Lz00kspKysr3ql4Xp06dcrQoUOz3HLLpXPnznn33Xfz8MMP54EHHsjMmTNz5JFH5qCDDprvDie1lltuuWy22WZ58skns9xyy+Wyyy7L888/n3/84x+ZMGFCzjzzzOy5554ZO3ZsDjnkkFx33XXp1atXk+xHACh1BrjmaooBrmuuuSaPPfbYfEUVtReS/exnP6tTFFEoFFJVVZWVV145TzzxRNZaa61cdtll8213+vTpGT58+ELvCvfss88WH7/ao0eP9OjRo0HtnbdtX+6nJ598Mpdddlk6duxYzDFrT1QOHTq0OK2mpiazZ89Or1690q1btwa/b5Ksu+66+elPf5qTTjopd9111wLXr43lyzEtt9xy6dKlS3Fwr/aiwQUVVQwbNiwPP/xwhg8f3qj2AQBLTq45V1PkmovSrVu3vPfee6moqFjouNno0aPz7rvv5rzzzlui96p9UsU+++zT4GXnfX3mmWemoqIiO++8c5ZZZpk89thjueuuuzJ06NAMGzYsffv2nW9MGABoOZzvnXu+97HHHkuS3HnnncWnmCXJmmuuucCbnHxZTU1NTjrppLz33nu56667Fvkksw033DA9evTIzTffnCeffDJTp07Nz3/+85x00knFZe666646+Ve7du3y3//+N9OmTUvHjh1TKBTyhz/8IRdddFF69OiRDTfcsE57krn9++GHH+aiiy7KT37ykzp916FDh0ycODFTp07NnXfemWWWWWa+ooqXXnopN954Y1566aVcd911+frXv56vf/3rWXHFFTNw4MBsvfXW+fGPf5ytttqqGPOMGTPyn//8p/hEs3lNmzYtVVVVmTBhwnz75NNPP03nzp0X+fQ5AGDpkyM2TY6YuCbQNYHQcIoqoJXr2LFjLr744iRzB1T++c9/5plnnsnLL7+cLbfcMjfddFM222yz3Hnnnbnmmmty0UUXZdNNN81GG22Ugw46KN/4xjcWuN3ak5+33npr+vXrV5xeKBTy5JNPZubMmfnOd75TZ53KyspUV1enqqoqDz74YH7yk5/Mlxx85zvfyY033pjf//736dOnTzbYYIN89tln2XLLLbPjjjvWuVvwdtttlxkzZqSsrCwHHXRQne0sv/zyOeGEE9K7d+/cdtttdeYtKGFa1J01qqqqMmTIkGy99dZZffXVs+OOOy5wuXmT1FoDBw7MMccckyT5zW9+k3vuuSeHH354fvnLX6a8vLzOsiuttFL+85//5IMPPkjv3r1z6KGHzleVWl1dnWuuuSb//e9/M3bs2PzrX/9KRUVFttlmm5xxxhnZbrvt5ruw8MvxjxgxIk8//XT23nvvPPzww1lxxRXTs2fPXHDBBRkyZEgGDhyYn/zkJ5k5c2YGDBiQgw46KBdeeGG+//3v17ufAIBFM8DVdANcF110US666KL5pn/00UfZcccd89BDDy3wDh8LUrsvampqcs4552S55ZYr3sm3dj8kyQcffJC///3v+fvf/54f/vCHdbbx5QvYFvY+C7Lllltm+PDh6dKlS/G9xo0bl379+uWBBx7IsssuW3yP2bNnL/DOIw3xs5/9LOPGjcuBBx6Ym2++eb47Es9bVDF27Ng689ZYY43i/qz97+qrr15nmZtvvjn/93//l9/97ndZd911F6uNAMDik2s2Xa750UcfZeLEiXn//feLOdKUKVPy7LPP5o477sh7772Xs88+Ox9++GGOOuqorL/++tl+++2zwQYbZKuttspKK62UwYMHZ6ONNlrk0zkWpXbs8qabbqr3iRI77LDDfOOcF110UaZMmZL7778/nTt3TjL3qWL7779//vd//zfPPfdcfve739VZp6qqapEXGQIAXx3ne+ee773mmmvq3U+LOt/boUOHHHDAAfnmN7+ZPn361LtsrbPPPjtHHXVUCoXCAot858yZU2e8b9ttt83999+fzTffvDitvLw8Rx11VJ2CimTuHZGTublX7Q1gjjvuuDrLbLnllrnvvvuyxRZbZOWVV85uu+2WJHnxxRdz77335pVXXslHH32U3XffPb///e/rPD1tzz33zMYbb5zLLrsshx9+eL72ta/lsMMOy9FHH5133nknP/nJT9KxY8eFnlf+cn8kc/t/l112yRVXXLGoXQcALGVyxKbJEV0T6JpAaIx2hcY8Vxpo0W699dY89NBD2X333bP77rvPdweJqqqqPPfcc3nmmWfy7rvv5oYbbpjvJOm8Tj/99Dz55JPzJR9lZWXZdtttc/nll893Z4t5VVdX1/tD/1WpvVitPs8++2weeOCBbLTRRtluu+0ya9aslJeX19v+QqGQOXPmpFAo1NmP7777br13xJszZ046dKi/pu2JJ57Iyy+/nG984xv51re+Ve/J1C8bPXp0Ro4cmf3337/OnQHnzJmTG2+8MXvvvXedOw7X1NRk+PDh2WeffeZL+ACAJbOgAa7jjjuuOMB1ww03ZPLkyQ0a4Bo1alR+8IMfZODAgQsc4Lrsssty3XXX1RkIuv/++3PWWWfljTfeyGmnnZavfe1rGTRoUJ3tDhkyJDfeeGOqqqrSp0+f3H333fnss89y22231TvAtSDV1dULLHpdkIacBF2YsWPHpn///hk5cmSdE4n1Ofjgg9O9e/f8z//8TwYMGJDLL788vXv3Ls6fOXNmDjzwwIwePTodOnTImWeemR/96Ed1tvH444/n+OOPrzf+hx56aL5c8Iwzzsjf/va3LLfccnUuXqupqcmkSZOy8sor15leKBTy+eefZ999913o0zTqUygUcsstt2Tvvfdu8ke6PvbYY1lzzTXr7DsAoHnINReuIbnmX/7ylxx33HGpqKjIjTfemA022CB77rlnpk6dmn322ScnnHBC8U50EyZMyF133ZXHHnss7du3z8MPP5zHH388v/zlL3PDDTdku+22W2Sb6vPiiy/m0EMPzYgRI+a7GG9ePXv2zEknnZQBAwYkmXuX4TPPPDMnnnjifH378ccfZ5999kmPHj2K+6yysjL77bdf3nvvvVx++eX53ve+t0TtBgCanvO9C9aQ873PPfdcunbt2uhtT5w4MdOnT896660337zjjjsuq6yySn796183ertf1pBzxLU+/vjjnHXWWdl2223z3e9+d4FPg5vX6NGjM2zYsOy3337ZYIMNlritAEDLIkdcMNcE/v/3dU0gNA1FFUCbV1lZWefudgvSo0ePFpHsAQBtiwGuBVvSk6Bvv/129tlnn/zhD39Y6IWB9WnMCcx5/eEPf8jll1/e4LsfAwAsTXLNBWtorllRUZFx48Zl3XXXLe6X0aNHZ7XVVkuXLl0Wuu6UKVOy4oorpqamJk899dRC727XErz99ttZeeWVs+qqqxanPfLII1lhhRXmu+MgAEBL5nwvAABfJkcEmpqiCgAAAL5SBrgAAFha5JoAAAAAAEBjKaoAAAAAAAAAAAAAAABK0sKf1Q0AAAAAAAAAAAAAANCGKaoAAAAAAAAAAAAAAABKkqIKAAAAAAAAAAAAAACgJHVo7gYsiZqamsyZMyft27dPu3btmrs5AEArVigUUlNTkw4dOqR9e3WnLZkcEABoSvLA1kEOCAA0JTlg6yEPBACaihyw9ZADAgBNqaF5YKsuqpgzZ05GjRrV3M0AANqQjTfeOB07dmzuZlAPOSAAsDTIA1s2OSAAsDTIAVs+eSAA0NTkgC2fHBAAWBoWlQe26qKK2mqRjTfeOGVlZc3cGqClqq6uzqhRo3xXAPWq/a5wV5KWTw64aH77mp8+aH76oGXQD81PHyyaPLB1+CpywFI8Xkot5lKLNxFzKcRcavEmYhZz025fDtjyGQsEGqIUfyuBxpMDth5yQKAh5IBAQzU0D2zVRRW1j/cqKyvzpQgsku8KoCE8PrTlkwM2nH3U/PRB89MHLYN+aH76YNHkgS3bV5kDluLxUmoxl1q8iZhLQanFm4i5VCztmOWALZ+xQKAxfFcADSEHbPnkgEBj+K4AGmpReaDSWwAAAAAAAAAAAAAAoCQpqgAAAAAAAAAAAAAAAEqSogoAAAAAAAAAAAAAAKAkKaoAAAAAAAAAAAAAAABKkqIKAAAAAAAAAAAAAACgJCmqAAAAAAAAAAAAAAAASpKiCgAAAAAAAAAAAAAAoCQpqgAAAAAAAAAAAAAAAEqSogoAAAAAAAAAAAAAAKAkKaoAAAAAAAAAAAAAAABKkqIKoCSUl5c3dxMAAPiKyQEBAEqTPBAAoPTIAQEASo8cEGhKiiqAkrDhRr1SVlbW3M1YItU1heZuAgBAqyIHBAAoTa09D5QDAgA0XmvPARN5IABAY8kBgabUobkbAPBVKO9QlhPveSX/mji9uZuyWNZfdbn85oebNXczAABaFTkgAEBpas15oBwQAGDxtOYcMJEHAgAsDjkg0JQUVQAl418Tp+fN8Z83dzMAAPgKyQEBAEqTPBAAoPTIAQEASo8cEGgq7Zu7AQAAAAAAAAAAAAAAAM1BUQUAAAAAAAAAAAAAAFCSFFUAAAAAAAAAAAAAAAAlSVEFAAAAAAAAAAAAAABQkhRVAAAAAAAAAAAAAAAAJUlRBQAAAAAAAAAAAAAAUJIUVQAAAAAAAAAAAAAAACVJUQUAAAAAAAAAAAAAAFCSFFUAAAAAAAAAAAAAAAAlSVEFAAAAAAAAAAAAAABQkhRVAAAAAAAAAAAAAAAAJUlRBQAAAAAAAAAAAAAAUJIUVQAAAAAAAAAAAAAAACVJUQUAAAAAAAAAAAAAAFCSFFUAAAAAAAAAAAAAAAAlSVEFAAAAAAAAAAAAAABQkhRVAAAAAAAAAAAAAAAAJUlRBQAAAAAAAAAAAAAAUJIUVQAAAAAAAAAAAAAAACWp0UUVkydPzs4775xx48YVp40ePTr7779/+vbtm8GDB6dQKCzxPAAAWhZ5IABA6ZEDAgCUHjkgAEBpkgcCAKWsUUUVkyZNyoABA/Lhhx8Wp1VWVmbAgAHp1atXhg8fnjFjxuSBBx5YonkAALQs8kAAgNIjBwQAKD1yQACA0iQPBABKXaOKKk4++eTssccedaY99dRTmT59egYNGpS11147J598coYNG7ZE8wAAaFnkgQAApUcOCABQeuSAAAClSR4IAJS6Do1Z+Pzzz89aa62Viy66qDjtnXfeySabbJJOnTolSXr27JkxY8Ys0bzGqq6uXqz1gNJQU1OTsrKy5m5Gk/B9B0uP46t+LTEP1GcLV7tv7KPmow+anxywZXAsND99sGj2zcKVWg5YisdLqcVcavEmpRlzW8kDG9pnpdjHYi4NSzvmUtqXjdUSc8BEnwH1ays5YOL7DpYmx1f9WmIeqM+A+sgBgYZq6DHWqKKKtdZaa75p06dPT/fu3Yuv27Vrl/bt22fq1KmLPa9Lly6NaVZGjRrVqOWB0tKpU6dstNFGzd2MJvHuu+9m5syZzd0MoAS1xDzw/7F352Fa1fX/gF+zIi4ghIFmmpiiEqIkZaTlgua+a5nmlpqppWlqqLnhhktq5fIl9xUVFdOsxH0vzQ1TxBAXxF1kh4GZ+f3BxfNzhIEZHByYc9/XxZXPWT+fc57zzKtzzvscGXDBbKPWZx+0Hhlw8eJYaH32AQujqBmwiMdL0fpctP4mxepzW8mBzc2ARdrHc+hzMRSxz61tccyAie8CMH9tJQMmbeNcILBkWhxzoAwIzI8MCLS0ZhVVzEtFRUWqq6sbDGvXrl2mT5++0OOaexKtV69ebabiDGh5dXV1rd2EFtOjR4/WbgK0WbW1tU7KNFNr50AZsHFzvs+2UeuxD1qfDLh4cCy0PvtgweTA5mnLGbCIx0vR+ly0/ibF7HNbyYFNzYBF3Mf6rM8tuXyaprUzYOJcIDB/bSUDJkv2uUBY3MmAzdfaOVAGBOZHBgSaqqk58AsXVXTs2DGvvfZag2FTpkxJVVXVQo9rroqKCgEKKAS/dcDipLVzoAy4YLZR67MPaAlt4TvkWGh99gEtpQgZsIjHS9H6XLT+JsXs85KuufuriPtYn4uhiH1eHLV2Bkx8F4Di8FsHLE5aOwfKgEBR+K2DxUP5F11Ar1698sILL5Q+jx07NjU1NenYseNCjwMAYPEnBwIAFI8MCABQPDIgAEAxyYEAQJF84aKKvn37ZtKkSRk2bFiSZPDgwenXr18qKioWehwAAIs/ORAAoHhkQACA4pEBAQCKSQ4EAIqk8gsvoLIyAwcOzNFHH51zzjkntbW1uf7667/QOAAAFn9yIABA8ciAAADFIwMCABSTHAgAFMlCFVW8+uqrDT73798/9957b0aMGJE+ffqkc+fOX3gcAACLHzkQAKB4ZEAAgOKRAQEAikkOBACK6gu/qWKOrl27pmvXri06DgCAxZ8cCABQPDIgAEDxyIAAAMUkBwIARVDe2g0AAAAAAAAAAAAAAABoDYoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACikFiuqGDZsWDbZZJOsv/762W+//TJ27NgkyahRo7Lrrrumb9++GTRoUOrr60vzzG8cAABLBjkQAKB4ZEAAgGKSAwEAikcGBACKoEWKKt56661ceOGFufjii/O3v/0tK620UgYMGJCampoccsgh6dmzZ2677baMHj06t99+e5LMdxwAAEsGORAAoHhkQACAYpIDAQCKRwYEAIqiRYoqXn755fTu3Ts9e/bMSiutlF122SVjxozJI488ksmTJ2fAgAFZZZVVctRRR2Xo0KFJMt9xAAAsGeRAAIDikQEBAIpJDgQAKB4ZEAAoisqWWMg3v/nNPPXUU3n55Zfz9a9/PTfeeGO+//3vZ+TIkendu3fat2+fJOnRo0dGjx6dJPMd11y1tbUt0Q2gjaqrq0tFRUVrN6NF+L2DRcfxtXBaMwfaZ42bs21so9ZjH7Q+GXDx4FhoffbBgtk2zddWM2ARj5ei9blo/U2K2ee2kgObus+KuI/1uRgWdZ+LtC1bUlvNgcCSr61kwMTvHSxKjq+FIwMCiysZEGiqph5jLVZU8aMf/Sg777xzkmTllVfOrbfemsGDB2fllVcuTVdWVpby8vJMmDAhkydPbnRcx44dm7X+ESNGtEQ3gDaqffv2WWeddVq7GS3i1VdfzbRp01q7GQAlrZkDZcAFs41an33QemTAxYtjofXZB7Sktp4Bi3i8FK3PRetvUqw+t5Uc2NwMWKR9PIc+F0MR+7w4a+s5EFhytZUMmLSNc4FA2yIDAosrGRBoaS1SVPH888/nwQcfzK233prVV189gwcPzkEHHZQNN9ww1dXVDaZt165dpk+fnoqKikbHNbeoolevXm2m4gxoeXV1da3dhBbTo0eP1m4CtFm1tbVOyiyE1syBMmDj5nyfbaPWYx+0Phlw8eBYaH32wYLJgc3XVjNgEY+XovW5aP1NitnntpIDm5oBi7iP9VmfW3L5NE9bzYHAkq+tZMBkyT4XCIs7GXDhyIDA4koGBJqqqTmwRYoq7rnnnmy77bZZd911kyRHHnlkhgwZko4dO+a1115rMO2UKVNSVVU133HNVVFRIUABheC3DljctGYOlAEXzDZqffYBLaEtfIccC63PPqAltfUMWMTjpWh9Llp/k2L2eUnX3P1VxH2sz8VQxD4vztp6DgRYHPitAxY3MiDAoue3DhYP5S2xkNra2nz00Uelz1OmTMnUqVNTWVmZF154oTR87NixqampSceOHdOrV69GxwEAsGSQAwEAikcGBAAoJjkQAKB4ZEAAoChapKiiT58+GT58eK6++urcddddOfTQQ9OlS5f87Gc/y6RJkzJs2LAkyeDBg9OvX79UVFSkb9++jY4DAGDJIAcCABSPDAgAUExyIABA8ciAAEBRVLbEQrbZZpuMGTMm11xzTT788MOsscYa+dOf/pSqqqoMHDgwRx99dM4555zU1tbm+uuvn73iyspGxwEAsGSQAwEAikcGBAAoJjkQAKB4ZEAAoChapKiirKwshx9+eA4//PC5xvXv3z/33ntvRowYkT59+qRz585NGgcAwOJPDgQAKB4ZEACgmORAAIDikQEBgKJokaKKBenatWu6du3a7HEAACzZ5EAAgOKRAQEAikkOBAAoHhkQAGgrylu7AQAAAAAAAAAAAAAAAK1BUQUAAAAAAAAAAAAAAFBIiioAAAAAAAAAAAAAAIBCUlQBAAAAAAAAAAAAAAAUkqIKAAAAAAAAAAAAAACgkBRVAAAAAAAAAAAAAAAAhaSoAgAAAAAAAAAAAAAAKCRFFQAAAAAAAAAAAAAAQCEpqgAAAAAAAAAAAAAAAApJUQUAAAAAAAAAAAAAAFBIiioAAAAAAAAAAAAAAIBCUlQBAAAAAAAAAAAAAAAUkqIKAAAAAAAAAAAAAACgkBRVAAAAAAAAAAAAAAAAhaSoAgAAAAAAAAAAAAAAKCRFFQAAAAAAAAAAAAAAQCEpqgAAAAAAAAAAAAAAAApJUQUAAAAAAAAAAAAAAFBIiioAAAAAAAAAAAAAAIBCUlQBAAAAAAAAAAAAAAAUkqIKAAAAAAAAAAAAAACgkBRVAAAAAAAAAAAAAAAAhaSoAgAAAAAAAAAAAAAAKCRFFQAAAAAAAAAAAAAAQCEpqgAAAAAAAAAAAAAAAApJUQUAAAAAAAAAAAAAAFBIiioAAAAAAAAAAAAAAIBCUlQBAAAAAAAAAAAAAAAUkqIKAAAAAAAAAAAAAACgkBRVAAAAAAAAAAAAAAAAhaSoAgAAAAAAAAAAAAAAKCRFFQAAAAAAAAAAAAAAQCEpqgAAAAAAAAAAAAAAAApJUQUAAAAAAAAAAAAAAFBIiioAAAAAAAAAAAAAAIBCUlQBAAAAAAAAAAAAAAAUkqIKAAAAAAAAAAAAAACgkBRVAAAAAAAAAAAAAAAAhbRIiirOO++8HHLIIaXPo0aNyq677pq+fftm0KBBqa+vb9I4AACWHDIgAEDxyIAAAMUkBwIAFI8MCAC0ZS1eVDFq1KjceOONOf7445MkNTU1OeSQQ9KzZ8/cdtttGT16dG6//fYFjgMAYMkhAwIAFI8MCABQTHIgAEDxyIAAQFvXokUV9fX1Oemkk7LvvvtmlVVWSZI88sgjmTx5cgYMGJBVVlklRx11VIYOHbrAcQAALBlkQACA4pEBAQCKSQ4EACgeGRAAKILKllzYLbfckpEjR2b33XfPgw8+mI022igjR45M79690759+yRJjx49Mnr06CSZ77jmqK2tbblOAG1OXV1dKioqWrsZLcLvHSw6jq+FJwMufuZsG9uo9dgHrU8GXDw4FlqffbBgts3CaYsZsIjHS9H6XLT+JsXsc1vJgU3dZ0Xcx/pcDIu6z0Xali2tLeZAYMnXVjJg4vcOFiXH18KTAYHFkQwINFVTj7EWK6qYMmVKLrzwwqy66qp57733cuedd+ayyy7L+uuvn5VXXrk0XVlZWcrLyzNhwoRMnjy50XEdO3Zs8rpHjBjRUt0A2qD27dtnnXXWae1mtIhXX30106ZNa+1mAJTIgIs326j12QetRwZcvDgWWp99QEtq6xmwiMdL0fpctP4mxepzW8mBzc2ARdrHc+hzMRSxz4uztp4DgSVXW8mASds4Fwi0LTIgsLiSAYGW1mJFFcOHD8+0adNyzTXXZPnll88vfvGLbL/99rntttuyyy67NJi2Xbt2mT59eioqKlJdXT3Pcc0JUL169WozFWdAy6urq2vtJrSYHj16tHYToM2qra11UmYhyICLpznfZ9uo9dgHrU8GXDw4FlqffbBgcmDztdUMWMTjpWh9Llp/k2L2ua3kwKZmwCLuY33W55ZcPs3TVnMgsORrKxkwWbLPBcLiTgZcODIgsLiSAYGmamoObLGiivfeey/rrrtull9++dkLrqxMjx498s477+STTz5pMO2UKVNSVVWVjh075rXXXpvnuOaoqKgQoIBC8FsHLG5kwMWbbdT67ANaQlv4DjkWWp99QEtq6xmwiMdL0fpctP4mxezzkq65+6uI+1ifi6GIfV6ctfUcCLA48FsHLG5kQIBFz28dLB7KW2pB3bp1y4wZMxoMGzduXI477ri88MILpWFjx45NTU1NOnbsmF69ejU6DgCAxZ8MCABQPDIgAEAxyYEAAMUjAwIARdFiRRWbbLJJRo8enZtuuinvvfderr322rzyyivZaKONMmnSpAwbNixJMnjw4PTr1y8VFRXp27dvo+MAAFj8yYAAAMUjAwIAFJMcCABQPDIgAFAUlS21oOWXXz6XX355zj777Jx99tnp0qVLLrjggqy66qoZOHBgjj766Jxzzjmpra3N9ddfP3vllZWNjgMAYPEnAwIAFI8MCABQTHIgAEDxyIAAQFG0WFFFkqy33noZMmTIXMP79++fe++9NyNGjEifPn3SuXPnJo0DAGDxJwMCABSPDAgAUExyIABA8ciAAEARtGhRxfx07do1Xbt2bfY4AACWXDIgAEDxyIAAAMUkBwIAFI8MCAC0FeWt3QAAAAAAAAAAAAAAAIDWoKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJaJEUVP//5z3P77bcnSUaNGpVdd901ffv2zaBBg1JfX1+abn7jAABY8siBAADFIwMCABSPDAgAUExyIADQVrV4UcVf//rXPPbYY0mSmpqaHHLIIenZs2duu+22jB49uhSq5jcOAIAljxwIAFA8MiAAQPHIgAAAxSQHAgBtWYsWVXz66acZNGhQVltttSTJI488ksmTJ2fAgAFZZZVVctRRR2Xo0KELHAcAwJJFDgQAKB4ZEACgeGRAAIBikgMBgLausiUXNmjQoPTv3z8zZsxIkowcOTK9e/dO+/btkyQ9evTI6NGjFziuuWpra1ug9UBbVVdXl4qKitZuRovweweLjuPri2mNHGifNW7OtrGNWo990PpkwMWDY6H12QcLZtssvLaWAYt4vBStz0Xrb1LMPreVHNjUfVbEfazPxbCo+1ykbdnSXA8GFkdtJQMmfu9gUXJ8fTFt7VwgsOSTAYGmauox1mJFFU899VSefPLJ3H333Tn99NOTJJMnT87KK69cmqasrCzl5eWZMGHCfMd17NixWeseMWJEy3QCaJPat2+fddZZp7Wb0SJeffXVTJs2rbWbAdBAa+VAGXDBbKPWZx+0Hhlw8eJYaH32AS2tLWfAIh4vRetz0fqbFKvPbSUHNjcDFmkfz6HPxVDEPi/OXA8GFldtJQMmbeNcIND2tOVzgcCSSwYEWlqLFFXMmDEjJ598ck455ZQsu+yypeEVFRWprq5uMG27du0yffr0+Y5r7km0Xr16tZmKM6Dl1dXVtXYTWkyPHj1auwnQZtXW1jopsxBaMwfKgI2b8322jVqPfdD6ZMDFg2Oh9dkHCyYHNl9bzYBFPF6K1uei9TcpZp/bSg5sagYs4j7WZ31uyeXTdK4HA4uztpIBkyX7XCAs7mTAhdNWzwUCSz4ZEGiqpubAFimquOSSS/Ktb30rm2yySYPhHTt2zGuvvdZg2JQpU1JVVTXfcc1VUVEhQAGF4LcOWNy0Zg6UARfMNmp99gEtoS18hxwLrc8+oCW19QxYxOOlaH0uWn+TYvZ5Sdfc/VXEfazPxVDEPi+uXA8G+HL4rQMWN239XCDA4sBvHSweWqSo4q677sr48eOzwQYbJEmmT5+ev//97/na176WWbNmlaYbO3Zsampq0rFjx/Tq1StDhw6d5zgAAJYMciAAQPHIgAAAxSMDAgAUkxwIABRFixRV3HjjjQ1C0jnnnJPevXtn5513zrbbbpthw4Zlp512yuDBg9OvX79UVFSkb9++mTRp0jzHAQCwZJADAQCKRwYEACgeGRAAoJjkQACgKFqkqKJbt24NPi+99NLp1KlTOnfunIEDB+boo4/OOeeck9ra2lx//fWzV1xZ2eg4AACWDHIgAEDxyIAAAMUjAwIAFJMcCAAURYsUVXze2WefXfrv/v375957782IESPSp0+fdO7cuUnjAABY8siBAADFIwMCABSPDAgAUExyIADQVi2SoorP69q1a7p27drscQAALNnkQACA4pEBAQCKRwYEACgmORAAaCvKW7sBAAAAAAAAAAAAAAAArUFRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACF1GJFFffdd18233zzrLPOOtl9990zevToJMmoUaOy6667pm/fvhk0aFDq6+tL88xvHAAASwY5EACgeGRAAIBikgMBAIpHBgQAiqBFiireeuutHH/88Tn66KPzyCOPZKWVVsoJJ5yQmpqaHHLIIenZs2duu+22jB49OrfffnuSzHccAABLBjkQAKB4ZEAAgGKSAwEAikcGBACKokWKKkaPHp3f/OY32WabbdKlS5fsueeeeemll/LII49k8uTJGTBgQFZZZZUcddRRGTp0aJLMdxwAAEsGORAAoHhkQACAYpIDAQCKRwYEAIqisiUWsummmzb4PGbMmKy66qoZOXJkevfunfbt2ydJevToUXr91/zGNVdtbe0XaD3Q1tXV1aWioqK1m9Ei/N7BouP4WjitmQPts8bN2Ta2UeuxD1qfDLh4cCy0PvtgwWyb5murGbCIx0vR+ly0/ibF7HNbyYFN3WdF3Mf6XAyLus9F2pYtqa3mQGDJ11YyYOL3DhYlx9fCkQGBxZUMCDRVU4+xFimq+KyamppceeWV2W+//fL2229n5ZVXLo0rKytLeXl5JkyYkMmTJzc6rmPHjs1a54gRI1qs/UDb0759+6yzzjqt3YwW8eqrr2batGmt3QyAefqyc6AMuGC2UeuzD1qPDLh4cSy0PvuARaUtZsAiHi9F63PR+psUq89tJQc2NwMWaR/Poc/FUMQ+LynaYg4EllxtJQMmbeNcINB2yYDA4kQGBFpaixdVXHjhhVl66aWzxx575MILL0x1dXWD8e3atcv06dNTUVHR6LjmFlX06tWrzVScAS2vrq6utZvQYnr06NHaTYA2q7a21kmZL+jLzoEyYOPmfJ9to9ZjH7Q+GXDx4FhoffbBgsmBX0xbyoBFPF6K1uei9TcpZp/bSg5sagYs4j7WZ31uyeWz8NpSDgSWfG0lAyZL9rlAWNzJgF+cDAgsTmRAoKmamgNbtKji8ccfz5AhQ3LLLbekqqoqHTt2zGuvvdZgmilTpixwXHNVVFQIUEAh+K0DFletkQNlwAWzjVqffUBLaAvfIcdC67MPWBTaagYs4vFStD4Xrb9JMfu8pGvu/iriPtbnYihin5cEbTUHAiwO/NYBiysZEGDR8VsHi4fyllrQ22+/nd/+9rc55ZRT8s1vfjPJ7GrRF154oTTN2LFjU1NTk44dO853HAAASw45EACgeGRAAIBikgMBAIpHBgQAiqBFiiqmT5+eX/ziF+nfv38233zzTJkyJVOmTMkGG2yQSZMmZdiwYUmSwYMHp1+/fqmoqEjfvn0bHQcAwJJBDgQAKB4ZEACgmORAAIDikQEBgKKobImFPPbYYxk9enRGjx6dW265pTT8/vvvz8CBA3P00UfnnHPOSW1tba6//vrZK66sbHQcAABLBjkQAKB4ZEAAgGKSAwEAikcGBACKokWKKvr3759XX311nuNWXnnl3HvvvRkxYkT69OmTzp07N5ivsXEAACz+5EAAgOKRAQEAikkOBAAoHhkQACiKFimqWJCuXbuma9euzR4HAMCSTQ4EACgeGRAAoJjkQACA4pEBAYC2ory1GwAAAAAAAAAAAAAAANAaFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEiKKgAAAAAAAAAAAAAAgEJSVAEAAAAAAAAAAAAAABSSogoAAAAAAAAAAAAAAKCQFFUAAAAAAAAAAAAAAACFpKgCAAAAAAAAAAAAAAAoJEUVAAAAAAAAAAAAAABAISmqAAAAAAAAAAAAAAAACklRBQAAAAAAAAAAAAAAUEitXlQxatSo7Lrrrunbt28GDRqU+vr61m4SAABfAjkQAKB4ZEAAgGKSAwEAikcGBACWJK1aVFFTU5NDDjkkPXv2zG233ZbRo0fn9ttvb80mAQDwJZADAQCKRwYEACgmORAAoHhkQABgSdOqRRWPPPJIJk+enAEDBmSVVVbJUUcdlaFDh7ZmkwAA+BLIgQAAxSMDAgAUkxwIAFA8MiAAsKSpbM2Vjxw5Mr1790779u2TJD169Mjo0aObPP+cV4LV1NSkoqJikbQRWPLV1dUlSdbutkzaLaE/Fd1XWCa1tbWpra1t7aZAmzXn+PLK0S/HF8mBMuCC1dXVpV27dpk5c6a/Ha3EPmh9MuDiwbHQ+uyDBZMDvzyLewasra1NRUVFoY6Xurq6LLXUUoXpc9H6mxS3z8mSmwObmwGLuo/1ue2rq6tLRUXFIvvbLwN+uRb3HAgs+Zb0DJi0jXOBsLiTAb9cMiCwqMmAQFM1NQe2alHF5MmTs/LKK5c+l5WVpby8PBMmTEjHjh0XOP+cH8WXX355kbURaDv2XD3J6ku3djMWUn2ef/751m4EFMKcfMGi9UVyoAzYdP/9739buwmFZx+0Phlw8eBYaH32wYLJgYvekpIBi3i8FK3PRetvUsw+L7k5cOEyYBH3sT4Xw6L+2y8DfjmWlBwILPmW3AyYtKVzgbC4kwG/HDIg8GWRAYGmWlAObNWiioqKilRXVzcY1q5du0yfPr1JRRWVlZXp1atXysvLU1ZWtqiaCQAUQH19ferq6lJZ2arxqDC+SA6UAQGAliQHfnlkQABgcSEDfrnkQABgcSADfrlkQABgcdHUHNiqKbFjx4557bXXGgybMmVKqqqqmjR/eXn5XOELAIDF3xfJgTIgAMCSSQYEACgmORAAoHhkQABgSVPemivv1atXXnjhhdLnsWPHpqampklvqQAAYMklBwIAFI8MCABQTHIgAEDxyIAAwJKmVYsq+vbtm0mTJmXYsGFJksGDB6dfv36pqKhozWYBALCIyYEAAMUjAwIAFJMcCABQPDIgALCkKauvr69vzQbcd999Ofroo7PMMsuktrY2119/fdZYY43WbBIAAF8CORAAoHhkQACAYpIDAQCKRwYEAJYkrV5UkSTvv/9+RowYkT59+qRz586t3RwAAL4kciAAQPHIgAAAxSQHAgAUjwwIACwpFouiCgAAAAAAAAAAAAAAgC9beWs3AAAAAAAAAACA4pk1a1amTJnSKuuuqanJjBkzWmXdAAAALF4UVQBtxhtvvJFPPvnkCy+ntrY2tbW1LdAiAAAAAAAAABrz/PPP58ADD5xr+DPPPJPtt99+vvM++uij+dnPfpYkefLJJ/OTn/wkyexiiRdeeGGB63766aez7rrrZuLEibn22mvz6quvLkQPAABY1NwXCHwZFFUAbcavf/3rXH/99Y2OHzNmTHr06JF11llngf/uvvvuL7HlALBg48ePz2abbZaxY8fOc/zPf/7z3H777c1a5m9+85sMHDiwJZpXCC25Dy6//PL069cvffr0ya9+9auMHz++JZsKi9S8joWBAwemR48epX9bbLFFk5Z18803Z6ONNkrPnj1zwAEH5IMPPlhUzW5TWnIfzDFz5sxsv/32+de//tXSzYXF1vjx4/Pss8+2yIWYJUXR+ly0/ibF7DOLlu8UALCoVVZWpqqqaq7h1dXV8xy+5557ZrvttsuOO+6Y0047LRUVFUmS9u3b5+23384+++yTH//4x7n66qszefLk+a57mWWWSZJUVVXljTfeyC9/+ct8+umnX7xTAAC0KPcFAl8GRRXAEmfq1KnZYIMNsvnmm2eLLbYo/fv4448zZMiQBsM222yz9O3bN8n/Pyn24osv5uWXXy79e+yxxxoMGzlyZLbbbrvW7CIANPDJJ5/kkEMOyTvvvDPP8X/961/z2GOPNWuZjz76aJ566qkcccQRLdHENq8l98HTTz+dYcOG5frrr88dd9yRGTNmZNCgQS3Z3DatJW8m//e//52tt9463/3ud3PVVVctqia3KY0dC//9738zePDgPP3003n66adzxx13LHBZzzzzTC666KKcc845uf/++x0LTdSS++CzLr/88owaNaolmwotZtSoUdl1113Tt2/fDBo0KPX19UmS22+/vcHv/5x/TSly/Nvf/pYtt9wyp512WjbddNP87W9/azB+QcWUjWlsvvvuuy+bb7551llnney+++4ZPXp0m+9zc/4+t4X+Dhs2LJtssknWX3/97Lfffgtc7pLS5wV9d5uzzMb6nDR/+zVlmc1tX1OWuaD1tbX+Lug71Rb7PMd5552XQw455Asta0np82233ZbtttsuG2ywQY466qgFFtAsKX2e33zN/bsMwKJVWVmZ8vK5b12prKwsFUx81k033ZS77747d955Z0477bQG47p165ZLLrkkd9xxR84777xUVlYmSaZPn54pU6ZkxowZDf5VV1cnSaZNm5ajjjoq2267baZPn56amppF0FMAABbEfYFAa1JUASxxll566TzzzDO5//77c/TRR+fwww/P4YcfnmOPPTbHHXdc6fPAgQPzwAMP5Omnn06SLLXUUvNc3g9+8IO88cYbpc9lZWXzPEEHAK3lqKOOyjbbbDPPcZ9++mkGDRqU1VZbrcnLmz59ek499dQcffTR6dChQ0s1s01ryX3w4osv5gc/+EG6d++eVVddNdtuu22DLELjWvJm8k8++SS//OUvs+222+bmm2/OXXfdlaeeempRNb3NmNexMGvWrIwaNSobbLBBOnTokA4dOmTZZZdd4LLGjBmTU045Jf369Uu3bt2yyy675KWXXlpUTW8zWnIfzPHGG2/kyiuvzNe+9rWWbi58YTU1NTnkkEPSs2fP3HbbbRk9enTp5vLtttuu9Nv/9NNP5+GHH06nTp1KF1EaM3HixAwcODA33HBDhg0bllNPPTXnnXdeafyCiikb09h8b731Vo4//vgcffTReeSRR7LSSivlhBNOaNN9Tpr+97kt9Pett97KhRdemIsvvjh/+9vfstJKK2XAgAGNLmdJ6fOCvrvNWeb8+tzc7deUZS5sn+e3zAWtr631d0HfqbbY5zlGjRqVG2+8Mccff/xCL2tJ6fMTTzyR008/PQMGDMidd96ZyZMn5/DDD1/i+zy/+Zr7dxmAReftt9/OhhtumF/84hf5z3/+kw033DD//ve/861vfStbbLFFDj300IwcOTJbbLFFNt544+y444555pln8qtf/So//elP85Of/CSDBg1KbW1tktnXgsePH5/XX389r7zySu68887svvvuqa2tzf/93/9lww03zHe+851suOGGpX977bVXkmSzzTbLxhtvnOuuuy6bbbZZ7rvvvtbcNAAAheW+QKA1KaoAlmhnnnlmPvnkk1RWVjb4N3LkyFx33XVNWkZVVVWjwQoAFgcDBw7MvvvuO89xgwYNSv/+/bPeeus1eXmXXHJJpk+fnsrKyjz55JPzfboqs7XkPlhjjTUyfPjwvPXWW/n4448zdOjQ9OvXrwVb23a15M3kf/3rX7PCCivksMMOyze+8Y0ceuihGTp06KJqepsxr2Nh1KhRqa+vz0477ZR11103P//5zzNu3LgFLmv33XfPlltuWfo8ZsyYrLrqqi3e5ramJffBHCeddFIOOuggRRUslh555JFMnjw5AwYMyCqrrJKjjjqq9HtdXV1d+u3v0KFDhg0bli233DJf//rX57vMKVOm5Pjjj8+aa66ZJFlrrbUyYcKE0vj5FVPOT2PzjR49Or/5zW+yzTbbpEuXLtlzzz3nW0TWFvrcnL/PbaG/L7/8cnr37p2ePXtmpZVWyi677JIxY8Y0upwlpc8L+u42Z5nz63Nzt19TlrmwfZ7fMhe0vrbW3wV9p9pin5Okvr4+J510Uvbdd9+sssoqC72sJaXPw4YNy+67757vf//7+drXvpZjjz02//nPfzJ+/Pglus/zm6+5f5cBWHS+/vWv56mnnsrll1+eb3/723nqqafyzW9+MyuuuGKGDx+eSy+9NGuvvXaGDx9eeuvEGmuskQMOOCB/+ctfMmTIkPzpT3/K9ttvn2R2Xjn44INz//335x//+EfefvvtnHbaaamoqMgRRxyRESNG5IUXXshzzz2X5557Ls8++2yeeeaZdOnSJVdddVWee+65PP/883n55ZcX6m8PAAAty32BwJdNUQWwRKurq8uQIUNy6aWXNvj3j3/8o/RUks+rr6/PjBkzGr2BdObMmYuyyQDQbI3dQPXUU0/lySefzDHHHNPkZY0bNy5XXXVVVl111YwbNy7nnntuDj/8cIUVC9CS++AHP/hBVl111WyxxRbp169fpk2bloMPPrilmtqmteTN5K+++mo23HDDlJWVJUnWXXfdvPzyy4uk3W3JvI6F//3vf1ljjTVy/vnn529/+1uqqqpy0kknNWu548ePz80335yf/vSnLdXUNqul98Ftt92WyZMn54ADDmjppkKLGDlyZHr37p327dsnSXr06JHRo0fPNd2MGTNy7bXXNulv6oorrpgddtghyexzAFdeeWWDIq/5FVPOT2Pzbbrpptlzzz1LnxdURNYW+tycv89tob/f/OY389RTT+Xll1/OpEmTcuONN+b73/9+o8tZUvq8oO9uc5Y5vz43d/s1ZZnNbV9TltnU/dZW+rug71Rb7HOS3HLLLRk5cmRWXnnlPPjgg/M9V9wW+jx+/PistNJKpWnLy2dfNqysrFyi+zy/+Zr7dxmAL0dNTU3uu++++RZxVlRUpGPHjll//fXz4osvZrvttssvf/nLXHvttdluu+2y3Xbb5frrr8/999+f+++/P9ttt13WX3/90vz7779/+vbtm/XWWy/rrbdeevfunXPOOSfrrLNOXnzxxS+jmwAANIP7AoEv27zPigIsIR577LFmz/P+++9n8803bzDss5/79OmTm2666Qu3DQAWpRkzZuTkk0/OKaec0qSn8s9x++23l568VV1dnX322SebbbZZHn/88Wy00UaLsMVtz8Lug3vuuSfjxo3L3//+93Tu3DmDBg3KMccckz/96U+LsLVtw/xuJj/xxBPTqVOnnHHGGTnppJNy+eWXz3dZkydPzuqrr176vOyyy+b9999v8TYXwQ477FC64S5Jfv/736d///6ZPHlyk4+NU089Neuvv3422WSTRdTKtm1h98Enn3ySP/zhD7n88ssbvXEOWtvkyZOz8sorlz6XlZWlvLw8EyZMSMeOHUvD77rrrvTu3bs07aGHHpp///vfcy3vyCOPzN57751k9k2c++yzT6qqqvL3v/+9NM2C3gjQmKbMV1NTkyuvvDL77bdfo9O0hT435+9zW+jvN7/5zfzoRz/KzjvvnCRZeeWVc+uttza6nCWpz3PM67vbnGXOr8/z237z6/OCtuPC9Hl+y2zqfmsr/Z3Tp8a+U81Z1pLS58rKylx44YVZddVV89577+XOO+/MZZddlmuvvTbt2rVrk31ee+21c//992ffffdNWVlZbr/99qy77rpZbrnlmr2sxanPScv9XQZg0ZkwYULuvffe3H333Xn55Zfz4IMPpnv37nn33XezxRZbZObMmfn444+zxRZbZPr06VlxxRVL886YMSOdOnVq9AnFm2222Vw32l111VVJktNOOy2dOnXKr371qyTJ1Vdfnccff3yhivgAAFh03BcIfNlcMQeWSEcffXTuu+++VFVVzXe6WbNmpW/fvvnLX/6S2traVFRUpGvXrnnggQdSVVWVsrKybLHFFrn22muz4ooreko3AEuMSy65JN/61reafQPy+++/nw033DDV1dVJZt9Ivuqqq2bs2LGLoJVt28Lug7/97W/Zc88907179yTJCSeckG9/+9uZOHFiOnTosAha2rYt7M3kFRUVpeMgSdq1a5fp06cv0rYWRYcOHVJXV5cPPvigSUUVQ4cOzTPPPJNhw4Yt+sYVRFP3wRlnnJHddtsta6+99pfYOmiez/9eJ///N/uzNzEPGTKkdENMMvsmmXn9ri+//PKl/+7Ro0euvvrqDBo0KAMGDMjFF1/c8h34nAsvvDBLL7109thjj0anaQt9bs7f57bQ3+effz4PPvhgbr311qy++uoZPHhwDjrooAwdOrT0VqzPWhL73JTv7vzMr89jxoxpdPvNr8+XXnppk7ZjS7WzqfutrfR3zjKb+p1qC31+8sknM23atFxzzTVZfvnl84tf/CLbb799hg0blh//+Mdtss8HHHBADjnkkOyyyy5p165dnnvuuQwaNGihlrU49bmpvuhvGwBfzIQJE3LPPffk+9//fsrKynLGGWdk4sSJWXHFFTN8+PC88sorOfnkk3PLLbfkX//6V84///zSvGVlZXnppZeyyy67zHPZH3zwQSoqKprUjq222irnnntu3n///XTt2rVF+gYAwMJzXyDQWhRVAEuk6urqHHPMMaWn8DXmzjvvzPDhw5Mkn376aZZZZplUVVXla1/7WmmasrKy0lOid91113zve99bpG0HgJZw1113Zfz48dlggw2SJNOnT8/f//73vPjiiznllFMana9bt24ZPXp06XNdXV3ee++9rLTSSou6yW3Owu6D2trafPTRR6XPH3zwQWk4X1xTbybv2LFjPvnkk9LnKVOmLPDEHPN21llnpXfv3tlmm22SJCNGjEh5eXmDpwc25sUXX8yZZ56Zyy67LF26dFnUTW2zFnYf3H333VlmmWVyww03JEmmTp2aQw45JL/85S9z8MEHL/J2Q1N07Ngxr732WoNhn//NfvPNN/PWW2+lX79+pWFN+U0pKyvLOuusk7PPPjubbrrpPJ8235Ief/zxDBkyJLfccst8/+a0pT7PMb+/z22hv/fcc0+23XbbrLvuuklmP3l9yJAhGTly5DwL15a0Pjf1uzs/8+tzc7dfU5a5sOa3zOasry30d46mfqfaQp/fe++9rLvuuqVCpcrKyvTo0aPRhxC0hT4vv/zyGTJkSN58881cccUVmTBhQrbffvuFWtbi1OemaInfNgC+mFVWWSVXXXVVXnnllTzxxBPNmresrCw9evRo9O2/u+22W5OW89Zbb6Vbt27ZfPPNc+WVV2bAgAEZN25cOnTo0Ky3EwMA0HLcFwi0FkUVwBKpvLy89N+HHHJIxowZk2WWWSbJ7BuBOnbsmJtvvrnBtG+++WaD0PR5q6yySk444YTcc889WWqppRZh6wHgi7vxxhsza9as0udzzjknvXv3zs4775wkmTx5ctq1azfXjQFbb711dt111/zzn/9M7969c91116WmpiZ9+vT5UtvfFizsPujTp0+uuuqqdOvWLUsttVSuueaarL/++unUqdOX2v62YmFvJu/Vq1f+9re/lT6/8sornkS3kNZee+1ceOGFWWGFFTJr1qwMHDgwO++8c9q3b5+k8WPho48+yiGHHJKDDjooPXv2zJQpU5KklOtpuoXdB/fff3+Dz0cddVT23XffbLzxxl9a22FBevXqlaFDh5Y+jx07NjU1NQ1u6P373/+eTTbZpMk3RD755JN55JFHctxxxyVJ6emlnz3X0NLefvvt/Pa3v80pp5ySb37zm/Odti30uTl/n9tCf2tra+cq1pw6dWqjRbNLUp+b892dn/n1ubnbrynLXBTtbM762kJ/m/udagt97tatW2bMmNFg+nHjxuW73/1us5e1pPR5jq9+9asZPnx4Bg4cON+nei8pfV6QlvptA6D11NfXZ+TIkdl///3nOf7jjz+ea9jMmTMzevTovPXWW3n88cczbNiwLLPMMrnmmmvym9/8JjvuuGM222yzvP322/nDH/6Qxx9/fJ5vngMAYNFyXyDQWhbdlUKAReizr+NaZpllctppp+X222/P7bffntNPPz2VlXPXjD377LPzfSLWAQcckHXXXbd0MxcALM66deuWlVdeufRv6aWXTqdOndK5c+ckyQ477JCHH354rvm6d++eCy64IJdeemm23HLLPPzww7nkkks8dWshLOw+2HfffbPtttvmkksuye9///sst9xyOeecc77s5rcZc24mf/rpp/Pkk0/O82bymTNnzjXfZpttlv/85z956qmnMmvWrFx55ZXZaKONvuzmtwk77bRTfvSjH+XQQw/NgAED8v3vfz8nnnhiaXxjx8Ldd9+djz/+OBdeeGH69OlT+kfzLew++Oxv2Morr5x27dqlS5cu6dChw5fZfJivvn37ZtKkSRk2bFiSZPDgwenXr1+DGz4fffTRRm94nZfu3bvn5ptvzs0335x33303559/fr7//e9nueWWa+nmJ5n9Nqtf/OIX6d+/fzbffPNMmTIlU6ZMafRV422hzwv6+/xZbaG/ffr0yfDhw3P11VfnrrvuyqGHHpouXbqkR48e85x+Selzc7+78zO/Pjd3+zVlmQtrfstszvraQn+b+51qC33eZJNNMnr06Nx000157733cu211+aVV15ptOC0LfR5juuuuy7du3dP//79F3pZi1Of56clf9sA+OLeeOONPPXUU2nXrl2SZNasWRk3blw222yzHHbYYfnoo4+y44475sQTT0xdXV1pvvr6+vTq1St33333XP/uuOOOLLfccqmuri5N/95776VPnz7Zb7/9stJKK+X444/PXXfdlb/+9a/p1KlTVltttRx11FE57LDDcuONN6Z79+4KKgAAWon7AoFWUw+wBPrd735Xf91119XX19fXn3HGGfU777xzg3+/+93v6uvr6+vvuOOO+l//+tf1s2bNqt90003r77nnnvpPP/20ftq0afXTp0+vnz59ev16661XP3r06NLnKVOm1E+ZMqU1uwcAwHysueaa9W+//Xbp83nnnVe/wQYb1P/whz+sHzhwYIMst+mmm9YPHz58nsu5/vrr63v27Fn/3e9+t37TTTet//DDDxd52wFovuHDh9evu+669d/73vfqv/Od79SPGjWqNG7atGn1PXv2rP/f//7XrGU+8sgj9VtvvXX9+uuvX/+rX/2q/uOPP55rms//vWmqz883fPjw+jXXXHOuf/Nb9pLe5/r6+f99/rwlvb91dXX1f/rTn+o32WST+p49e9bvtNNO9SNGjJjvMpaEPjf1u9vUZTbW54XZfgta5sK0rynLbMr62lJ/m/Kdamt9fu655+p//OMf16+77rr1m222WaP/X6It9XnChAn13/nOd+pfeOGFL7Ssxa3Pjc23MH+XAVh0Tj/99Podd9yx/qGHHqqvr6+vf/fdd+v79+8/13RPPfVU/Q477FD6PHz48Pq99957run++c9/1m+yySb1p556an1dXV2Dcf/617/qZ8yYMd/2DBs2rH6//farf+KJJxamOwAAtAD3BQKtpay+3qNXgCXP0UcfnfXXXz977713o9Pceeedueyyy7Lffvulvr4+559/fh5++OFssMEGC3zl+F577ZWTTjqppZsNAMBi5s0338zo0aPzne98xxtbABZj77//fkaMGJE+ffqU3grV1hWtz0Xrb6LPLdXnL3uZzVlfW+hvW2vfoljm4t6+RbHMxb19AAAAwJLLfYFAa1FUAbRZM2fOTHl5eSoqKvL666/n+eefzy677JKamppUVlamvLx8nvPV1tamrq4uVVVVX3KLAQAAAAAAAAAAgMa4LxBYFBRVAAAAAAAAAAAAAAAAhTTvciwAAAAAAAAAAAAAAIA2TlEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAAAAAAAAFJKiCgAAAAAAAAAAAAAAoJAUVQAAAAAAAAAAAAAAAIWkqAIAAAAAAAAAAAAAACgkRRUAAAAAAAAAAAAAAEAhKaoAAAAAAAAAAAAAAAAKSVEFAAAAAAAAAAAAAABQSIoqAAAAAAAAAAAAAACAQlJUAQAAAAAAAABAq6itrW3tJgAAAFBwiiqAL9WHH37Y4KTYxx9/nJqamtLnKVOmZOjQoZk4ceIia8Nn15ck9913X954443S51dffTWTJk36wuv573//m0suueQLLwcAYH4mTZqU0aNHL/T8kydPbnS5C2PWrFkNPtfX1y9wnltvvTWnn376XMOvvvrqvP766wvVjkXp008/be0mzNOkSZPm2v4AAHPMnDmzweem5LQ5nnzyyey3336ZMWNGSzerRUyZMmWuc34LMnXq1Dz88MM58sgjc+utty6iljXdsGHDcvHFF881vKamJlOnTm2FFgEAi6O33347zz333HynmV+Bwn333ZcPP/yw9Pmyyy7LqFGjGkxz22235ZFHHllgW+6999655l0Y9913X7797W83+Rzn53Ntkmy77bb585///IXbsih8+umnzcreSTJmzJgG16/nZfz48V+gVQBAETV2XbgpTjnllAwbNqzBsE8//TRXX311Pvnkky/YspbVnHOFN910U5588slmLf/tt99ukF3ff//9DB48OHV1dQucV4aDxVtlazcAKJa99tore+yxRw488MAkybnnnpuxY8fm+uuvT5JMmzYtJ5xwQr797W9nmWWWSUVFRYP5TznllMyYMSNnnXVWo+vYZ599stNOO2WXXXaZa9wnn3yS3XbbLQMGDMgWW2yRJDnzzDPzi1/8It/4xjcyderUHHbYYVl99dXzf//3fw3mffXVV3Pvvfemuro6ZWVlDcbV1NRk0003zRprrJGZM2dmmWWWyZgxYzJkyJAceuihzd9QAABN9NBDD+V3v/td7rvvvqy44opzjZ86dWqeffbZPP744/nNb36T6urqBuOPOeaY1NTU5NJLLy2Ne/LJJ3PooYfmtttuS/fu3ee7/jfeeCMffPBBNthgg5SXl+ehhx7KueeemyuvvDKdOnXK/vvvn+OOOy59+vRpdBkTJ07Mu+++O9fwO+64IzNnzlxgG/75z3/mjDPOSKdOnRqdpra2NuPHj8+DDz441zZoqrq6upxyyin58MMPc+mlly7UMprjoYceSq9evfKVr3ylSdOff/75+fDDD3PBBRcsdB8BgLbj6aefTufOnbP66qsnmZ0VRo0alSuvvDKjRo3K8ccfn8GDB6dz584LXNaECRPy5JNPprKy6ZcUzj777AwfPjzLLrtso9NMnz49q666agYPHtzk5c6rbQceeGC23Xbb7LfffqXhkydPzvvvv58JEybk008/zfvvv593330377zzTkaNGpXRo0dnqaWWyqqrrpp27dpll112aXAu8n//+19mzJiRdu3azXUucF5mzpyZmpqadO/efb59bsyLL76Y//73vznssMMaDL/mmmty//335y9/+UuWW265Zi8XAGhbhg8fnnvvvTdDhgxpMPy+++5Lp06d8vrrr2fo0KG5+eab5zn/r371q5x77rnp169fpkyZkksvvTSdO3dOhw4dStPcfPPNWXfddbPaaqula9eujZ5nOvvss7PffvtlzTXXbHL7Z86cmfr6+gbL7NmzZ6ZNm5Z///vfpeyazH54S01NTZZeeukGy7jhhhtyxx135KKLLso3vvGNJLNvnGvO2y6OOOKIvPLKK2nfvn2j00yZMiX9+vXLaaed1uTlft4777yT/fffP8ccc0zp2nRT/PnPf067du1y5plnznN8fX199tlnn+ywww456KCDFrp9AEBxvPbaa/nxj3+c008/Pdtss03eeOONnHPOObnwwgtTXV2d66+/PhMmTJjr3NQc7777blZbbbUGw8rLy3PWWWelT58+CzzH2NrnChszZMiQbLLJJvne977X5HX85S9/ybBhwzJ8+PB07do1U6dOzWWXXZYPPvggJ554YqPzvffee9lxxx1z4YUXNmt9wJdHUQXwpSorK8vyyy9f+vziiy82KH6oqqpKMvvE3zPPPJPLLrssb7zxRm655ZYce+yxqaysLFWSXnTRRfnJT36SV199NV/96lez1lprJZld/Tl9+vR5rr9z58756U9/miOPPDLnnXdett5661RUVKSqqiq1tbU5+uijU11dPc+ijUmTJuXll1/OuHHj8tFHH+U73/lOxo8fnyeffDI/+tGP0qdPn1x33XX55z//mVtuuSXV1dVuZgMAFrlHHnkkP/zhD7PiiivmvPPOy4wZM/Lpp5/mww8/zNixY/POO+9kqaWWyiqrrJKNNtoo3//+90vzTp8+PU888US23XbbBrllgw02yFe/+tWcccYZueKKK+a7/vvvvz+DBw/Ogw8+mKWXXjqjR4/OzJkz87WvfS1Jsvbaa+eXv/xlbr755tJFzs+uv6qqKhUVFamoqMisWbNSV1dXehpvXV1d6urq8tprr2Xq1Knp3r37PG8kq6+vT7t27XLnnXc22s5XXnklO+20UylvLoxTTz01r7zyylzFtzU1NTn//PMzbNiw1NXVZfvtt8+AAQPmu64ePXpkwIABjZ7MmzJlSv70pz/lxhtvbHL7jjnmmPz617/OkUcemYsvvrhJN/8BAG3X5ZdfnlmzZpXy3GuvvZauXbsmSb7+9a+nvr4+hxxySK699tostdRS813WnGKDzz8AZX5qamqy4YYb5owzzmh0mquvvjr3339/k5f5eTNmzMh+++2Xnj17Zu+9924wbuzYsdlpp51SUVGRrl27plu3bllppZUyfPjw7Lvvvhk8ePA8i5LnOO200/L8889nqaWWSn19fSZOnJgOHTqkvHzeLwCvq6vL9OnTc8UVV+Q73/lOkmSttdaa66nEF154Ybbeeuu55q+srJxn0cp+++2X119/Pfvvv39uvPFG5xsBoIBmzJiRSy65JPvtt1+qq6tL55xOPfXU7LLLLunVq1f+8pe/5Nvf/na23HLLjBo1KnV1dfPMLRUVFVluueXyj3/8I3/9618zc+bMXHfddbnrrrtK07z11lv56KOP8tJLL+Wss84q3Tz3wgsvZKmllkplZWVmzpyZcePGpUuXLo2+YaKmpibt27dvcE7wrrvuyoABA+Y5/SmnnJJTTjllruGvvvpqg88vvPBCamtr8/Wvf700rLy8vNGcNi/Tp0/PTjvtNN+H451xxhkL/TbfZPbD/vbee+/ssssuDQoqXnrppfz2t79tMO15552XNddcs5T1qqqqGtxwOHPmzMyaNatUBFJWVpY//vGPOeigg1JZWZn9999/odsJABTDAw88kJqamnz7299OMjsP3X///aVs+dxzz2XChAkN5qmvr8+MGTNSXV1dyls1NTUpLy/P5MmTS2+omDJlSkaOHJlp06Zl/fXXn+f6W/NcYU1NTerq6uZ5/q2iomKe5+TmFPi2b9++wTXXsWPH5o477sh2222XyZMnl97+MSeXfTYbz5o1K8svv3zpnGy3bt1y5pln5sgjj8yll14634cSAq1DUQXwpSorK0t5eXnq6+vzwQcf5PXXX88f/vCHnHfeeTn44INLT9LYYost8ve//z0PPPBA1l9//QwdOjTdu3dPWVlZysrK8vDDD+fGG2/M3nvvneeffz7XXXdd/vKXv2S99dYrTfNZNTU1ee+991JdXZ0dd9wx//vf//L+++/nww8/TG1tbSZNmpTXXnstb775Zs4444zMmjUr77zzTtq1a5cuXbokmX1z4QYbbJDLL788//73v3PBBRfkmWeeyZNPPpk//vGPSZLRo0eXTnaVl5e7kQ0AWKQmT56c++67L6effnqS5Prrr88OO+yQ9dZbLx06dMi5556bM844Y55v8EpmX8ScPn169thjj3z00Uf56KOPSifOdt9990yZMiX/+9//Splm5syZWWONNRrcTPf0009n1113LT0xbsSIEdl4441L40888cRSIcLnC1d32mmnjBkzJmVlZamvr0/Pnj2z1157ZdKkSfnPf/6TDz/8MDfccEPuueeejBw5Mvfcc888iyrKy8vz7rvvZquttmp0W805wbew+eyee+7Jo48+mmHDhjV4cl+SnHPOORk2bFhOOeWUlJeX5+STT06nTp3yq1/9aqHWlSRXXHFFfvazn6Vdu3alYa+88kr+9a9/NVqIscwyy+TSSy/Nj3/841x11VU54IADFnr9AMCSrba2Ns8++2zOO++8JLMvgL700ks5+eSTkyTt27fPn/70p+y888655557GuTFE088Mbfeeus8l9ujR4+5ht1+++3p2bPnXMPLy8vzz3/+M//5z38abefEiROzxhprNKtvn3XGGWdkxRVXLOXhz1prrbXy6KOPpnPnzg3y63e/+92sttpq8y2oSJJrr7229N9PPfVU9t1339x1113p1q1bk9tXWVmZ3/72t9lqq61SU1OTLbbYIpWVlXnzzTdLF3HnnMucMWNGamtr8+6776a+vj4rrbRSktk31M150+6gQYPy+9//vsnrBwDahrKystx9991JkhVWWCHJ7MKHIUOGZIcddsinn36aESNG5LTTTiu96eFf//rXPJ9+W1FRkXbt2mXPPffMT3/602ywwQY56qijsummm5am+fWvf5011lhjrnNbe+65Z6qrq0tFFUly0kknzbPN9fX1qampyWabbZaLLrqoNHzLLbfMd77znVRVVeXpp5/OV77ylXzzm99sMO8tt9yS9dZbL927d8+MGTMajKupqcnjjz+eI488cr4Fv/X19Zk5c2bq6urmWUBcVlaWa6+9Nn/9618bXcYnn3yS/v37Nzp+furr63Pcccelf//+c23HWbNm5a233sptt92WZPY50oceeii77rrrXMu55pprSv+92mqr5R//+EeDz1dccUX22GOP9OnTJ717916otgIAbV9dXV2GDRuWLbfcsnSD/5yC1DnXTquqquZ6Q9hHH32UjTbaqPT5wQcfzOmnn56LLroo5513XulhIqeddlpmzZqVKVOm5IknnphnG1rzXOHFF1+cyy67rNH5/vvf/+bPf/7zPMc99thjpQyeJIMGDUpdXV2GDx+e4cOHJ5m9fadMmZKll166wcP5Zs6cmQMOOCBHHHFEadjmm2+ek08+OUcffXSGDRuWjh07LlRfgUVDUQXwpZgwYUI6duyY8vLyjB49Ovvss0822mij9OzZM7fddlv23XffdOrUKVOnTk0yO1Scf/75+epXv5plllkmhx56aG688cZssMEGmT59ek4++eQMGDAgX/nKV/LrX/86M2bMyIEHHpirrrpqnut/4403sv3226e8vLx04uyf//xn6ca+8847r1R1esABB5RO9O2www45++yzGyxr5syZjT4Rbl4FHQAAi8qdd96ZqVOnlk4uVVZWZocddsgGG2yQJBk8ePB835Zw7bXXpkuXLllvvfVyzTXX5LzzzmtwE3+SXHfddUn+/4XIxx57rFRUMHLkyDz22GPZbbfdSk/deP7557PPPvs0eArHb3/723Ts2DEjR47MCiuskK985Sul9ldWVua6667Ls88+m4suuiizZs0qtXm77bbLkUcemR49eqR///4NTlh91syZM9OhQ4ccfPDBjfZ13Lhx+dOf/pTa2tpmPWF5zvLPPPPMXHjhhXMVVHz88ccZMmRIfv3rX2e77bZLMrvQ9vrrr8/hhx++UNnwww8/zBNPPJHDDz+8wfBXXnkl11577XxfVVtdXZ0LLrggu+66a3bddVcn4gCgoOYURay00koZPXp03nvvvXz66afp3Llzg5x24YUX5qtf/WpeeeWVrLbaallqqaVSVVWVbt265eabby5N9+ijj+bEE0/Mww8/XBo2duzY7LXXXo2eJ6upqclaa63VaIFvkjz++ON59913F6qPo0aNyvDhwxvcWPZ5jeXH5nrrrbey9NJLN6ugIpmdzzt06JBu3bqVbggsKyvLlltumcrKypSXl5ey6axZs1JbW5stttgiq622WoOnRZeVlWXQoEHZaqut8tOf/rR0syQAUAzV1dU58MADc9FFF+WQQw5JklxyySXZcssts/766+emm25Kjx49SgWw/fv3z2233VYqqqivr89WW22VAQMGlJ42vM8++5RuNjv00EMbnMOqq6ub581sL7/8cum/TzrppHz00Ue55JJLmtWXZZddNssuu2xqamoyaNCgrLLKKrnhhhsarPu6667Lo48+miFDhsw1/4MPPpgJEybk1FNPzamnntpg3J///Oe5bobbZJNN5nrrbDL7fF/fvn0bFJN83t13310qHmmuhx56KO+8804uvvjiucbNyc9rr712adgPfvCD7LvvvqmqqkpZWVlOPPHEdOrUKUcffXSS2dl6Xm1ZddVVc+yxx+bMM89skN8BAD7rH//4R15//fUcffTRmTx5cj799NN8/PHHSZL33nsvSTJt2rRMnz497733XmbMmJEVV1wxXbp0yYsvvpjq6uocdthh6devX/bcc88kyVZbbZVPPvkk3/ve93LzzTdn+PDhDR5S8nmtea7woIMOyr777tvgrW9z7Lnnntl4443neoNZTU1NZsyYkc6dO5eG3XLLLbn33nuz+eabN8jBY8eOzeabb57LLrss3/3udxdY4LvNNtvk4YcfzuWXX17Ke8DiQVEF8KXYcsstc+KJJ6asrCxXXnll9txzz1x//fXZY4898tprr2XkyJH55JNPSgUMc25IO/roo7Pvvvtmhx12yM4775w///nPadeuXS644ILSU0smTZqUY445JiussEK+9rWvzXP9q6++ep577rkGFbUXXHBBbr/99sycOTPHHntspk2blhdffDHHHXdcKRDNqah99913c+6556aqqiqjRo3KhAkTcsIJJ5QC5u9+97t06tSp0fUDALS0mpqaXHHFFfOdpn379pk+ffo8x913330ZNWpUVllllSTJvvvum3333bdZbbjxxhszc+bMHHHEEamurk59fX2mTZuWwYMHZ/DgwXNNPyd37bXXXknSoIBjypQpue+++1JVVZVZs2alR48e+eijj9KtW7dSJltmmWUaLG/GjBmpqKhI7969c8IJJ8y3rauttlr+8Ic/lOarrq5ucsHD8OHD061bt1Kxymc98cQTmTlzZr7//e+Xhq299tr59NNP88EHH5Se9tIcf/7zn3PYYYeVnhDTXN/4xjfy3e9+N3fcccd8CzAAgLbrqquuysSJE7PzzjunqqoqM2fOTGVl5VxFm0lKN9bdcccdWWONNUo3+n+2gKBTp05J0mDYnCKBz2eWadOmpV27dtltt93y9ttvz7edm222WZZffvlSG+Z1kbExN954Y3beeecvpYj0rbfeytSpU+f5po5k9oXp1VZbba7h88qbVVVVGTly5FzjBg0alJdeeinXXXddKf9+VqdOnbLDDjvkpptuyoknnriQPQEAllTbbrttevfunWeffTbJ7IfEtW/fvlSE8NlzQPvss0/22GOP/PSnP02fPn0yfvz4vPHGG1l66aVTX1+fE088MSussEJqa2uTzC7Q+PybKuaVR+aora3NAw88kOOPP7407Pbbb88555yTu+++O126dFlgf6qrq3PkkUfm+OOPz0MPPZRNNtkkyew3hI0fP36exQhJcuWVV2aHHXbIscce22D4brvtlm222ab05tY5D9D7/E1zc7LqQQcdVLrO25hdd901K664Yurq6jJz5sy5HkYzPzfeeGOjBcjzyojt2rXLc889l9deey0///nPU1FRUXqryEsvvZTnn38+e++99zzXtcMOO+T888/Pyy+/nHXWWafJbQQAimHq1Kmla6TLLbdcHnvssQZvTvjhD3/YYPo5n++5556svvrqDTLQe++9l2HDhuVb3/pWXnjhhay55ppZZpll0qFDh9TV1c11LTdZPM4VLrvssvOdt7Kycq6s165duyy33HKlz0899VTOOOOMdOjQIffff/88zxPus88+DT5/73vfy9VXXz3Pde6///7Zb7/98utf/3q+D0kEvlyKKoBFbtasWZkwYUK+/vWvp6amJscee2zWW2+9PProo+ncuXN22mmnVFVV5eabb87TTz+dgw8+OIccckgOO+ywJMnVV1+d888/v8Eyb7vttiy//PK54YYb8rOf/Sznn3/+fG8Yq6ioKBVUjB8/PieffHKeffbZXH755Tn88MNTV1eXPn365NZbb83WW2+d448/PjvuuGPppFZlZWW6du2aqqqqPPvss+natWu6deuWurq6JEnXrl3ToUOHzJo1K7NmzVoEWxEAoKGbb74506ZNm2v4+PHjS08UKS8vz/vvv5/33nsvtbW1qampSbdu3VJeXp5zzz13rpNKDz/8cEaPHl26+Jgkzz33XI466qgcc8wx2WabbRpMf+SRR+bII48sFaSee+65ee6553LjjTcusP3Tpk3LVVddldGjR+eZZ57JRx99lGnTpmX//ffP448/nqOPPjqzZs3KmmuumfHjxyfJXG+ZOOGEEzJ8+PC0b98+yy233ALfQFFbW5vTTjstU6dOzT/+8Y8mF8S++OKLc51QnGPOk54/u6x+/frlrrvuKt182BxjxozJ2LFjs/HGG5eG/e53v8sdd9xR+jznJN3hhx+eX/3qV/NcziabbJInn3yy2esHANqGq6++Oh07diydD9t9993z/e9/P0ceeeQC5y0rK0t9fX2mTJlSGjangOKzw+aVRZNk6623zoQJE7L00ktn2WWXXWAha01NTSZOnJivfOUr+ec//7nA9s0x5+EojS2zvr6+WYW0s2bNSk1NTdq3bz/XPG+99VZ+8IMfZODAgQ2Gjxo1KgcddFCjhR1lZWUZMGBABgwYMNfwcePGpUuXLk2+0S6ZnfEuuuiiJvUHAGg73n777Rx44IGprq7OhAkTMmnSpBx11FFZf/31s+666+aTTz7JRhttlA8//DDJ7ELY733vezn22GNz3XXXlc6trbTSSqWHg5x22mmprq5ObW1tZs2aVcp7yey3RTSW9ZLkgQceyNSpU7P++uvnhRdeyLrrrpva2trU19eXCipefPHFrLzyyg2e7JvMzpBzlr3RRhtlu+22y1e/+tV88sknSZIhQ4Zk3XXXzWqrrZZPPvkktbW1ad++fZZddtncf//9ef755/Ob3/xmrjeSzbkWPL83ldXU1KRv376pqqrKMsssk2WWWWaBWXH69OmZOHFievfunauuumq+037Wiy++mJNPPrnJ05eVleWFF17IAw88kJ///OcNxr3yyiu58sorGy2qqKqqyve+97288MILiioAgLmcffbZmTBhQunzFltskZdffjmjR4/O9ttvn1dffTXJ7OuRU6dOzR//+MfMmjUrFRUVef3113PnnXfm1Vdfzb///e889dRT+e53v5vVV189t956a1599dX06tUrSbLUUkuV7qP7rMXhXGGSTJ48OR988EGqqqoaFDHMmjUrkydPLl1fT2bn4VmzZpUeTjhu3Lgccsgh2X777fPJJ5+krq6uwb2M7777brbddtsMHjw4G2ywQanAd34P0FtrrbVSVVWVt956y1tpYTGiqAJY5D7++OPU19fna1/7WmbMmJFu3bpl/fXXz9ChQ/Puu+9mn332ydixY7P00kvnpZdeygorrJDHH388v/nNb5IkP/vZz7L77rtnxowZ+dGPfpRtttkmRxxxRNq1a5fll18+O+20Uw4++OD84Q9/yJZbbtloO95+++3ccccdufbaa7PeeuvltttuS9euXTNz5szU1NRk7bXXztChQ3PxxRfnuOOOy9///veceeaZ6dy5c1ZYYYUcd9xxGTduXK699tocd9xx6d+/f5555pncfvvtOfLII1NWVpbBgweXTjrW1dU1+aItAEBzvPPOO7ngggvy61//OmeddVaDcccee2ypuGD69Ol56aWXcvXVV5eKKq699trce++9+fjjj3PwwQfn1ltvLc37+uuv549//GN+8pOflG7Ae/nllzNu3Lh5XpD77EXRadOmZejQoTnmmGMa3Gz3WZ99Okn79u3zwgsvZLXVVku/fv0yZcqU/PGPf0wy+2TetGnTMmzYsJxwwgk58cQTU15envHjx6dTp06lG8/OO++8JMlLL72UESNGNGnbbbvttunQoUOTpp1j3Lhx2WijjeY5bs4F388+4WTppZfOmmuu2ax1zHHBBReUcvAchx9+ePbaa6889NBDufnmm3PppZcmSb761a82upyuXbsu9OtxAYAl34orrlj67xdeeCEvvfRSzj777HnmtIqKirme+jZu3Lj06dNnrmnnNezzHnrooSSzb7Z7//33Fzh9+/bts9NOOy1wus8bN25co28FO/fcc3Pttdc2Ou+8Ch3mePLJJ+e6+e/NN9/MD3/4wyy//PIZP358afu++eabKSsra7Soory8PAMGDMhWW22VmpqabLHFFikrK8vEiROz7bbb5thjj82ee+7ZlO4mmZ3xxo0b1+TpAYC24Stf+UpOPvnktGvXLmeccUa+8pWv5IQTTsi4ceMycODAfO1rX2vwpok5VlhhhRx88MH55S9/maqqqnTo0CH19fXZb7/9SufXampq5vk2sx//+MeNtueqq67KTjvtlH/9618ZOHBgHnvssUybNq3Bub8BAwZklVVWKZ3HmuOKK67In/70pwbD7r777rnW8b3vfa/036effnp23333PPfcc+nZs2e++93vNtq2+amurs5LL72UJLnrrrsyefLkBc7TpUuXbLHFFs1az9SpU/Ppp5/O99zdvFRUVMzz6c5z3loxP84FAgDz8tZbb+WBBx7IqaeeWrr+uKBckcx++HAy+5rnM888k4022ijjx4/P9ttvXyr0vOmmm7LVVlvl+eefz5VXXpm11lqrVMxbU1NTypuLw7nCJHnkkUdy7LHHpqqqaq6HnAwbNizDhg0rfa6trc1SSy2Vxx57LMns4uRTTz01W2+9dY488si88847Da6xzylaefjhhzNmzJgkycyZM9O1a9fssMMOjbZpToZTVAGLD0UVwCL3zjvvpKqqKl26dMnEiRNLN7H961//ygknnJDa2tpccsklqa2tzbBhw3LkkUfm/PPPz4svvph111037du3T/v27XP55Zdn+vTpmTFjRnbbbbecddZZ2XjjjXPcccelrq4uJ5xwQjbccMN5tqGuri6/+93vMnny5Jx99tnp379/adxqq62WmTNnJpkdCo844oj07t07N9xwQ+lmwiR55plncsIJJ6R79+6lE5Nz5pvzyrGDDz44Bx98cG655Zbcf//9C3x9GADAwlh++eXz85//PDvttNNcRRV/+ctfssEGGyRJ/vSnP+W1114rFSvMUVNTkzXXXHOuAtDtt98+5557bh544IFst912SWYXLKyxxhr5xje+Md82XXbZZfn0009zwgkn5IQTTphr/He+851cd911DYb93//9X5LZT1J+9tlnS8M/+uijPPTQQznppJNy66235je/+U26d++e//znP3nzzTfz1ltvNej3E088kSFDhjS4ADx48OD06tWrdAF2/PjxOeecc7Lxxhs3u6iiqqqq0UKROW8pKy8vz4cfftig+OL+++/Pyiuv3OT1PP/886mqqsq3vvWtBsNXXnnlrLzyynnttddSXV1deuLL/EyePNmrYgGA1NfXZ9CgQamrq5vrrWNzfP7tV2VlZfna176WBx54oDTsvvvuy2GHHVZ6cl0yu6Bgfg84ueGGG1JWVtZgvQMGDMiRRx5ZusD5n//8J08++eRCXSidX0b75S9/mX322SfV1dVzPRFuu+22y6GHHjrX9pjzpop5FUjMeWLcFVdckaFDh+baa6/N17/+9UyaNCnt27dv9GJ0XV1dOnTokG7dujV4+nOHDh2y00475S9/+Ut22223Jue2yZMnz/PNFgBA27b00kunX79++fDDDzNq1Kisv/76efTRR7PVVlvliCOOyN57753bbrstt956a4YMGZKXXnopu+66a6666qp8+OGHGTt2bPr06ZOPP/44SdKxY8fU1NSktrY2I0aMSHl5ee68885cdNFFpQxYX1+fGTNmpLy8vEFWeeSRR/Liiy/mD3/4Q0455ZRsvfXWad++fT799NNMnTo1yexrqv/73/9y9tlnz9WXysrKdO/ePTfccEOT+l5bW1u6Xvvb3/42dXV1mTFjRkaPHp127dqVzm/OnDkz48ePL71Vtra2NtXV1Y2e07z44ovnee7w1FNPLeWt++67L5MmTWp2UUVlZWXKysoyderUZmW3L/LAvsmTJ8/3LR0AQDGtssoqeeCBBzJ9+vTSsJkzZ5aKJhpTV1eX2tradOvWrZTbRowY0SCr/Otf/8onn3ySs88+O6effnp22GGHvPnmm/noo49y/PHHZ4sttsjuu+9emr41zxUmyTbbbNPo+dGm2HHHHUv/PWnSpIwcObL0eU4OfvPNN0v/XVNT0+B84Ly4nguLH0UVwCL3rW99K3//+98zffr0TJs2LZ06dUqS9OvXL126dMmaa66ZDTfcMDfccEOmTZuWHXbYIf/73/9y5pln5vrrr09lZWUmTpyYyy+/PN/4xjfSvn37HHjggfntb3+bYcOGZcUVV8xxxx2XXXbZpXSD3OjRo/OXv/wlHTp0yI9//ONMmTIlv/vd79K5c+dUVFQ0eGXXnBNsnx3Wo0eP/P73v8+4cePSvXv3zJw5MxdffHGqqqpy6aWXli6Udu/ePfvtt1+uuOKKHHbYYaX5//vf/+aNN97Iscce+2VsYgCgYJZZZpkcdthhmThx4nyn+8Y3vpF77713ruFzLhbefvvtDYZ36dIl/fr1yz/+8Y9SUcWLL76YH/zgB/NdzyuvvJIrrrgiyy23XHbbbbf87ne/K4376KOPsu222+boo4+ea77p06fn2WefzQsvvJD27dsnmV2seuSRR6ZXr17Za6+9st1222X06NF57LHH8sc//jH19fX5yU9+0mA5VVVV+fDDDxs8+e7999/Pp59+mueffz7J7AupSRZ4knBeVltttYwaNWqe4+Zc1J06dWo6deqUYcOG5YMPPsjBBx9cmua8887Lpptumm9/+9sN5v38RdILL7wwAwcObHb75mXUqFFZbbXVWmRZAMCS68Ybb8zzzz+fpZdeOueff34222yz0rjHHnssxxxzTPbff/8G89TX1zdrHXNy1udVVVWVimI/6+abby5dLJwyZco8n8bbFN/4xjcyatSo9OzZc65xnTt3nuttE5+13HLLNfmms48++ihTp07N6quvnq233jrPP/98DjzwwAwZMiSTJ0+e70NV6urq5ho2Z/v+7Gc/y4033pg777wzu+22W5Pa8tprr8l4AFBgn30T1wcffJBzzz03V155ZZLZN23NySVzbuZfY401ssYaayRJ9thjjzzyyCNJko8//jj33HNPzjnnnLnW0aNHjwafL7roomy11ValdZx11lml7PLwww+X2vTqq69m/Pjxeeedd3LxxRdno402mueDQSZOnJhOnTrNN6vNT3l5ed5+++3sscceadeuXamAdvLkybn11lvz17/+NcnsjNq3b98MHjx4nsupqqrKo48+Ote5w8svv7x0zm7ChAnzfHvvglRXV2ellVbKqFGj8p3vfKfR6T57k119fX3q6ury1ltvZeDAgXnuueeSJGPGjMk777yzwIz+2muvzXddAEBxVVdXNyiq2GuvvfLCCy+UPn8+/835vPPOO+fss8/O+++/n//973958803s/nmmydJ3n777Rx33HE55JBDsv322+eb3/xmOnfunFdeeSXHHntsnnnmmRxxxBENltua5wrnuPHGG3PqqacucFmdOnXKU089Nc9x9fX1WWeddRoUEI8dOzb//Oc/c/DBB5feqjanGHjatGml6+CfNW3atIwdO3aBDzYEvlyKKoBFrrq6Ol//+tfz3//+N8nsk2UTJkzIAQcckMrKypxxxhl57rnnSpWr1dXVOfjgg/OjH/0oxx57bAYNGpRTTjklK620Uvr06ZNp06Zln332yZtvvpkxY8bkiSeeyJgxY/LGG29kzJgxeeutt3LXXXdl/fXXL71C67777stJJ52UysrKBk+Oq62tzdSpUzNq1Kjcc889peH19fWZOXNmKdBVVVXloosuSm1tberq6jJp0qSUl5dn2WWXzVprrZUzzjgj++23X2n+o446KjNnzlzoE4IAAC1hnXXWyeuvv56pU6c2eAPX/GyyySb5wx/+kJkzZ2by5MkZPXp0jj/++Ean//jjj3PYYYfl29/+dk488cTsscce2XzzzdO3b98kyWmnnZYNN9ww66233lzztmvXLgMHDkx1dXVpHQMGDMh7772XW265JcnsJ+f16dMn66yzTsaPH5/33nsvP/7xjxssp6amJiussEJ++ctfloY19qaKOW+WaI4f/vCH2WeffXLCCSfMddPcKquskmT2ybK11lora6+99lxPQ77qqqvSqVOnUlHFnAumSy21VGmaBx54IGuuuWa+/vWvN7t9nzdr1qwMGzYsv//977/wsgCAJdczzzyTs846K4ceemhWXHHFnHTSSVlvvfXSuXPnTJkyJSeddFIOP/zwufJNfX193nnnnbkuqCZzX2RN/v+bXOc1vHfv3nM9fe7HP/7xXE+fWxibbLJJhg4dmp133nmh5m+qN998M2VlZenevXuqq6tz4YUX5he/+EXefffdJhVVTJw4Me+9915qamqS/P+iiu7du+fEE08svRG3KYYOHfqFnqgHACy5xo0bl+uuuy7bbbdd3nnnnfzud7/Lj370owwZMiQ/+clP8t5772WllVZKMvtmtHlllBdffDFVVVU56KCD8n//93/597//nerq6px44om5//77U11dnZkzZ+aaa67JGmuskVmzZqVdu3al+c8777x88sknOeyww7LCCivkhhtuyPrrr5/JkyfniSeeSGVlZW677bacffbZmTZt2jz78cknn+QrX/nKF9oWa6yxRum68xybbbZZdt555wZvYJufmpqabLzxxnOdOzzwwAPnelPFwpiTVRsrdKitrc26665b+lxfX5/VVlstG264YWpra1NZWZmOHTtmgw02yDLLLNPgLb+fN3r06IwYMSL9+vVbqLYCAMVy9tlnl95EMX369Aa5cfz48enUqVNmzpxZKm6ora3NYYcdlvXWWy8bb7xxpkyZkgMPPDC9e/fOgQcemCRZe+21kyRnnXVWzjzzzPzsZz+bq7hhcThX2K5du6y00kr5xz/+0eg0d999d/74xz82Or62tjYPP/zwPM+T7rPPPnMN23777XPeeefNNfzOO+/MN7/5zVLfgcWDogrgS/P888+nqqoqv/jFL3LGGWfk17/+db71rW9lmWWWyVVXXZUdd9yx9Kqszp0756yzzsqECRPyt7/9LX//+98zZMiQ3H333UlmP4Vk1VVXzf7775+uXbtmnXXWydprr53tt9++dMJrzz33LK175513nmdoGjRoUP75z39m/PjxOfPMM7Pllls22v4OHTrkoosuyiWXXDLP8X369Jlr2JNPPqmwAgD40r344ot59tlns++++6Zjx455/PHHm/ya+n79+mXgwIH5z3/+k4kTJ6a6ujobbLDBPKf96KOPsv/++5duLuvUqVOOOeaYHH744bnpppty5513ZsyYMbnpppvmOX9ZWVlOOeWUfPvb3y69QeKkk07KxIkT07lz54wePTqrr756ktmvlK2urm7wNoo5Nt5443Tu3LnBU5LnPN1tzrAOHTrk9NNPL73ZrDl69eqVnj175sILL8yJJ5441/ZKZhdFrLXWWknS4HWvSbLiiis2eOrKmDFjkvz/goza2toMHjx4nn37rHbt2jV4kkxjrrzyyiy11FLNukEPAGhbnn/++RxyyCHp379/Dj300JSXl+exxx7LL37xiwwePDhHHnlk+vbtm7322muueWtra9OtW7cMHTq0NOzRRx/NgAED8thjj801/fLLLz/PNuyzzz754IMP5nqTRW1tbWnYeuutV3p6W3Ptuuuu+b//+7/ce++98z2n90W99dZbWWmllUpFyssss0xOPfXUrL766nnkkUcaXHj+6KOP0qVLl9Lnurq6nHXWWTnrrLNKwz5b5Puzn/2sye2455578sYbb2SXXXb5It0BAJZA9fX1Ofnkk7POOuvke9/7XoYOHZqOHTvmxBNPTLdu3ZIkjz/+eHbdddckjRdVPProo9lrr73yzjvv5LDDDstNN92U0aNH529/+1v23nvvPPDAA/nBD36QU089NTfccEOWW2650rzXXHNNrrnmmlxwwQWlN37NuTb6xz/+MV26dMlBBx1Uut465zzZ57388svZdtttW3T7LIwjjjgiU6ZMKeXSz/7vnP/edNNNF/o6789+9rPsvPPO2WuvvdK7d+8G4+rq6lJRUVF6+nHfvn1TW1ub7bffPttvv32S5He/+106deqUAw88MG+88UZefPHFea6nvr4+gwYNyo477uiaNADQJN27d0+SDBw4MA8++GD++te/Ztlll81zzz2X/fffP7///e+zxx57lKZfccUVc8kll5SuidbV1eWSSy7JSiutlLKysowZM6b0ZtVHHnkkm2+++Tzfyro4nCusrKxMWVlZg8LheU3z2Qc2f16HDh2y22675aSTTppve2pra/Pxxx/P8y0V48ePz6WXXpqjjjpqvssAvnyKKoAvzX333Zftt98+ffv2zRlnnJEDDzwwyy67bGbMmJFTTjkldXV1uemmm/KTn/wkP//5z3PEEUekf//+ueeee/LLX/4yvXv3LhVVJMlOO+2UH/3oR1lxxRUbrOfCCy9sUnv+8Y9/5LrrrsuVV16ZyZMn57e//W0mTpw4z2A3xwEHHJC99947VVVVpQB133335cwzz8wD/4+9+4+vs67vxv9KTtIuwIhUMIOVgghEW0Kld3M7C0yQAArau1h04nSyqbNj/hiN4l1AoQSFVh11U9wqQ3SFVWxrxw+ZFZ1WFLxxOoy4Nm3EG+oP0IGlCS2hJ+f7B9/mNtKmTXvSk5M8n49HH4+e63Od63qf9+e6Tt45Oe/r+vrXB9bbvn17+vr6dvlHZQCAkfIf//EfWbp0aS688MLU1NSkra0tN998c84888x0d3fniSee2GmTxNNPP50JEybkmGOOGbjK3BVXXJGTTjpp4IOlHU0K9fX1uffee7NgwYI0NTXlU5/6VA455JAkyZve9KZs2LAhr3/969PQ0JAvfvGLu7x6769+9au84x3vyBVXXJG5c+fmPe95T2bMmJELL7wwv/71r/Pa1742n/vc59La2pqmpqbcfPPNecUrXvGcq65dfPHFKZVKg+4Q8ctf/jI9PT0DV63bcSeyLVu25C/+4i+Gndcrr7wyr3/963PCCSdkzpw5A8uPPfbYvOY1r8n111+fgw8+OIcffng+8YlPDHru//pf/ys33HBDWlpacsQRR+RTn/pUpkyZMnA3j1WrVuX0008fyOGuTJs2Lb/5zW/yhS98IUcffXQeeOCBvP3tbx/0uu+555588pOfzI033jjkB34AwNi04/O1RYsWZc6cOfngBz84UCtcc801+dM//dO0tbVl2rRpufrqq3e6jVNOOSVTpkwZ+LJckoHG1N9e9ttWr16dc845Z+CqvuvWrcsVV1yRiRMnpqamZtC6X/rSl1JfX5/k2Rrt6aefzpFHHpmTTjppWK/1ec97Xi699NJceumlOfroo3P88ccP6/l76pvf/GYmT56cb37zm/na176Wb37zmykWi7nnnnuyZcuWQbXuDTfckO9973sDDSnFYjHXXHNNXve616Wvry+vetWrBl77cKxbty6XX355rrrqqkFfbgQAxocf/vCH+d73vpd/+Zd/yfr16weWv+Y1r0mS/Pu//3vWrVuXV77ylUmSp5566jmfx/3Xf/1X/vM//zOXXXZZJk+enD/90z/N9773vSxcuDB/8id/kpaWlnz961/Pe97znrz61a/Oe9/73lx33XU54IAD0t/fnyeeeCLz5s17zl2zPv/5z2fZsmX59Kc/nVNPPTVf/vKX8+d//uf51Kc+9ZwL0nV1dWX9+vVZuHDhSKRpj33jG9/IRz/60UyYMGGgVt3R+Pr5z39+YFl/f3+efvrpTJs2baB5ZU+98IUvzNvf/vZcfPHFueWWWwY9f8cdzHbU2Mcdd9yQn+MdffTROfroo3PHHXfkj//4jwddNObv/u7vsm7dulx77bXDig8AGN9WrVqVZcuW5UMf+tBA3fjSl740r371q3PFFVfksMMOG7h429e+9rW85z3vyV133ZVDDz00r33ta/PJT34yDQ0N+bd/+7dcfvnl+cY3vpGDDjooBx10UK6++uq88pWvHNTwOVY+K7ztttty/PHH5y//8i9TLBbzj//4jzn++OPT1taWn/70p1mwYEEWLlyY448/Pt/97nfT3t6e2267bdA2nn766bzvfe/Lsccem9mzZ5c9RmDfaKoA9ouf/vSnue+++/KZz3wmp5xySk466aScd955ueaaa/KP//iPeelLX5q5c+fm6quvTmtra17+8pfn/e9/f/71X/910IdzpVJp4P/Pe97zdtq08Nvr7My6devyuc99LnfccUc+8pGPDNx29VOf+lTmz5+f1atX58ILL8zpp58+8AFWX19furq6MnHixEFfWkuSzZs3p7+/P7/85S+fs6///u//Tn19/cAVlgEAyqm/vz/J//uA6amnnsqSJUvyl3/5lwN/XLvwwgvz2te+Nl/96lcHrnrx7//+70me/ZLXjuf+9u3mf9dv37503rx5ufjii/PQQw9l5syZ+chHPjLw5bne3t6sXr06d999dw488MD85je/yS233JILLrggRxxxxHO2++lPfzpTpkwZaFI48cQT8y//8i+58MILc+ihh+bUU0/NP/3TP6W1tTVTpkzJm970pnz4wx/ObbfdNugPjZ///OfT2NiY3/u93xtY9pa3vCVnn3123vzmNw8s6+vr222tuCvHHntslixZkve85z35zW9+kwsvvHBg7CMf+UgOPvjg/O3f/m2e97zn5fzzz8/f//3fD4z/1V/9VWpqanL99ddny5YtmTlzZj760Y+mrq4u27Zty6233pp//ud/3m0MRx99dK666qp88pOfzK9+9auBP87ucOeddw58WLeru4sAAGPb9u3b86Mf/Sjz588fVK/88pe/zD//8z9n48aNOfjgg/OTn/wkX/ziFzN79uznfOGura1tl9vv6+sbqP12KBaLufLKK/PDH/5w4AptxxxzzMAVlH+7iaC5uTmf/vSnB/6ouaMW3XHXsuGaM2dOHn744bzpTW/Kpz/96YGm1aHsuKPZnvjv//7v3H333XnmmWeyfv36nHLKKbn44ovz8pe/PMmzd17r6urKD3/4w/ze7/1evve97w2qe6dOnTrQODthwoRBF2XZYdu2bZkwYUJ+/vOfP+ePykny3e9+NxdddFHe/va3D3xxEgAYX6ZPn5677747z3/+8wc1VSTJgw8+mA984AN5xzvekaampiTP3mmrsbFxYJ3+/v585CMfyYknnpgTTzwxxWIx5557bi6//PKccMIJWbBgQf7t3/4tSTJp0qQsWbIk73jHO/KGN7whHR0dOemkk/I3f/M3g/b76KOP5uMf/3huv/32XHXq9r30AAEAAElEQVTVVXnFK16RJPnkJz+Zd7zjHXnzm9+cCy64IO985zvzghe8IEmyaNGiTJ06ddhfkNuhp6cn//f//t9MmDDhOX+vfeaZZ/LEE0+ku7t70PJisZja2toce+yxA8te9rKXZeXKlWlsbBz4jHHTpk0544wzsmrVqhx44IEDeXv66aeHvJLxUP76r/86mzZtyhve8IbceOONAzEccsghgy7y99sXFdyhUCjkxz/+cR555JHU19fn17/+dd7//vfnqquuyutf//okydVXX53bb789N910k7tUAABD2tFAWiwWc/PNN+fqq6/OO9/5zkF3sa2pqclHPvKR/OIXv0h7e3tuvfXWHHPMMfm7v/u7nH/++TnqqKOSPPs301tuuWWgeaJQKOSLX/xi/vzP/zyzZ8/OTTfdlCVLluSqq64a2PZo+qzwZz/72aC/fe/Mjrr6tz311FNZvHjxwJ3FCoVCli9fnj/6oz9KW1tbjjjiiPzkJz/JnXfemeOPPz4nnHBCSqVSOjo6ct111yV5tp59xzvekaeffjo33XTTTj8LBCpLUwWwX3z605/O0UcfPXBV4c9//vN5yUtekle/+tXp6+vL3/3d3+Wv/uqvcuqpp+aWW27JpZdemjvuuCP/8A//kIsvvnhgO799y69deeaZZ56zzvr16/O5z30uDzzwQDZu3JhTTz01X/ziFwfdevblL395brvttixZsiTvfve78/u///uZM2dOLr300jz++ON5wxvekAkTJuyycPuTP/mT5yzr6+vL1KlTs3z58j3OFQDAntpxVbNnnnkmjz76aA488MBcddVVOfLII/OWt7wlhUIhb37zm3PRRRflfe97X37/938/r3rVqwaev3379vT396e+vj4rVqxIQ0PDkB/eFIvFgSvjvulNb8qb3vSmPPTQQ/nOd76T++67L/fcc0+OOOKItLe3Z/bs2fnWt76VJUuW5DOf+UyOP/74vPSlL80ZZ5yRV7ziFXnkkUfyhS98IUuWLBn44+Xs2bOzZMmSdHd350UvelHe8IY35OMf/3i2bt2ahoaG/OVf/mXuuuuubNiwIS9+8Ytz77335r3vfW8OPvjg59RomzdvziOPPJJly5YNWr5169aUSqWsXbt22Pl+xStekZtuuim/+tWvBi2fOHFirrjiilxxxRUDyy666KKB/9fV1eVd73pX3vWudz1nmzU1NbnyyisHNYQM5fzzz9/lndUOPfTQ/P3f//3AH7EBgPFnwoQJueaaa5Ik3/ve9/If//Efueeee/L9738/L3vZy/JP//RPOemkk3LzzTfn05/+dD7ykY/kpS99aaZOnZo/+ZM/2eWFQXb8IfGmm27KGWecMbC8VCrlG9/4RrZu3Zo//uM/TvLsF+mWLVuWxsbG59SWv//7v5+//uu/HtQgWyqV0tvbm5kzZ+7xHWh/23ve854cfvjhe/xFsmeeeWbgD8m78/znPz/t7e055phjcvLJJz+n5nzNa16Tu+++O29729tSKpXy/Oc/P+94xzsGxleuXLnbfdx111353//7fyfJc76smDz7xcbLLrssr3vd6/YoZgBgbHr+85+f5P/dSTZJVqxYkauuuipnnnlm3v3ud+f222/Pxz72sTz66KN597vfPfDcz372s/k//+f/DFzUo6amJt/97ndzwgknZOnSpfm93/u99PX1DWz35S9/ef7xH/8xH/jAB57TUPvDH/4w//iP/5hvfvOb+cM//MMsW7Ys/+N//I+B8YMOOiif//zn87d/+7f53Oc+l29/+9u57bbb8tWvfjXf+c538pnPfGavc/DjH/84f/7nf54JEybs9M4Ot91226ArAe+4c+2xxx6bVatWJUkuvfTSfPOb38xBBx00qFbt7+/P7//+7+d1r3vdoOWlUilPPvlkzjvvvFxyySXDirempibXXHNNPvvZzw66UOCOC6cM5fTTT8/73//+gYbnQqGQadOmDboY4XHHHTdwR1sAgKHs+Jvyb37zm3znO9/JnDlzMn/+/OesV1dXl49//OP54Ac/mAkTJuT222/PT3/600E13P/6X/8rixcvTqlUyoQJE/K6170u69atS/Js/fOud70rH//4xwcuzjKaPivcvn17jjjiiJ02te7w5S9/OR/72Mees3zhwoV56qmn8s53vnNg2Utf+tL88Ic/TPLs57KvfOUrBx4feOCBede73pW77747PT09Oeigg9LQ0JBXvOIVectb3jLQyAuMLjWlvb1MJ8Ae2rp1a973vvflVa96VV772tdmy5YtefWrX51PfvKTeelLX5otW7bkb/7mb3LttdcOurPDf/zHf+RHP/pR3vrWtw5s67LLLstTTz010MG5M6eeemr+/M//PH/xF38xsKy3tzft7e058cQTc8455+z2w6VHHnkkK1euTGtra04++eR9zgEAwEjYcQW15cuX56STTspvfvObgT/Q3X777fnP//zPfPCDH0ypVMpNN92UdevW5X3ve18OO+ywJMnSpUvz+c9/Pvfcc89ex/DjH/8473rXu3LWWWfl7LPPzktf+tLnfCD2wx/+MGvXrs13vvOdXHHFFQNX/1i3bl2am5sHrb/jQ6Xk2Q/Nfndb27dv3+urkwAAjCc33XRTbrvttrzqVa/Kq171qkyZMmXQ+DPPPJN7770399xzT9avX5/PfOYzz/nS3G/73//7f+cb3/jGcxoSCoVCTj755HzsYx97zhWDR6MTTjghH/jAB/KWt7yl0qEkefaz069//euZOnVqXvjCF1Y6HABglFu+fHm++MUvZuXKlfn1r3+dL33pS3nb296W2traPPnkk7nllltywgknZNasWQO12dNPP50vfelLeeMb3ziwnUceeSRNTU0D9d9nPvOZ/NM//VPuu+++gXWeeuqpHHDAAYP239PTk8suuyyvetWrcuaZZw75Od26devS19eXE088Mf39/Vm7dm1OO+20MmYDAIC9USwWd9qk+rtKpVK6uroG3dmhr68vpVJp4G5ev/v33B13id2T7e9v//Iv/5LPfOYzO72b7O48/vjj+clPfpKZM2cOLPvpT3+aiRMn5vDDD0/y7B1pf/tCejvumuaOFFA9NFUAFbGjGxUAAAAAAAAAAAAAoFI0VQAAAAAAAAAAAAAAAOPS6L8XNwAAAAAAAAAAAAAAwAjQVAEAAAAAAAAAAAAAAIxLmioAAAAAAAAAAAAAAIBxqa7SAeyL/v7+bN++PbW1tampqal0OABAFSuVSunv709dXV1qa/WdjmZqQACgnNSB1UENCACUkxqweqgDAYByUQNWDzUgAFBOe1oHVnVTxfbt29PZ2VnpMACAMaSlpSUTJkyodBgMQQ0IAIwEdeDopgYEAEaCGnD0UwcCAOWmBhz91IAAwEjYXR1Y1U0VO7pFWlpaUigUKhwNMFoVi8V0dnZ6rwCGtOO9wlVJRr+RrgH93Kg8c1B55qDyzMHoYB4qb3/MgTqwOuyPzwGd8yNDXkeGvJafnI4MeR0Z8rrv1IDVw2eB1UU+y0s+y0s+y0s+y0s+y2eoXKoBq4fPAtkV81adzFt1Mm/Vybzt3J7WgVXdVLHj9l6FQsHkA7vlvQLYE24fOvrtrxrQz43KMweVZw4qzxyMDuah8vbHHKgDR7f9+Tmgc35kyOvIkNfyk9ORIa8jQ173nRpw9PNZYHWSz/KSz/KSz/KSz/KSz/IZKpdqwNHPZ4HsjnmrTuatOpm36mTedm53daDWWwAAAAAAAAAAAAAAYFzSVAEAAAAAAAAAAAAAAIxLmioAAAAAgGHp6OhIc3PzwL8zzzwzSdLV1ZW5c+emtbU1ixYtSqlUGnjOUGMAAAAAAAAAlaKpAgAAAAAYlgcffDBLly7N/fffn/vvvz9f+tKX0tfXl3nz5mXatGlZuXJluru7s2rVqiQZcgwAAAAAAACgkjRVAAAAAAB7bPv27enq6srMmTNz8MEH5+CDD85BBx2UtWvXpqenJwsWLMiUKVMyf/78rFixIkmGHAMAAAAAAACopLpKBwAAAAAAVI+urq6USqXMmTMnjz76aFpbW9PR0ZF169Zl+vTpaWhoSJI0Nzenu7s7SYYcG45isVi+F7KLbY/kPsYjeR0Z8lp+cjoy5HVkyOu+kzsAAAAA4LdpqgAAAAAA9tjGjRtz3HHH5fLLL88hhxySD3/4w/nQhz6UY489NpMnTx5Yr6amJrW1tdm8eXN6enp2OdbY2LjH++7s7Czra6nUPsYjeR0Z8lp+cjoy5HVkyCsAAAAAQHloqgAAAAAA9tjs2bMze/bsgccf/OAH09bWlmOOOSYTJkwYtO7EiROzbdu2FAqFXY4Np6mipaUlhUJh317ALhSLxXR2do7oPsYjeR0Z8lp+cjoy5HVkyOu+25FDAAAAAIBEUwUAAAAAsA8OPvjg9Pf359BDD82GDRsGjfX29qa+vj6NjY27HBuOQqEw4l8e3R/7GI/kdWTIa/nJ6ciQ15EhrwAAAAAA5VFb6QAAAAAAgOpxzTXX5Mtf/vLA487OztTW1qa5uTkPPPDAwPJNmzalr68vjY2NaWlp2eUYAAAAAAAAQCVpqgDGheFe+RIAACqtoaGh0iEA7NRLXvKSLFmyJPfff3/uvffedHR05LzzzsvJJ5+cLVu2ZPXq1UmSpUuXZtasWSkUCmltbd3lGABjm7oWYHzxvg8AwEhSbwIwUuoqHQDA/vCSqdOq/osaxf5SCrU1lQ4DAKBqVHP9VCgUMnXq1BT7S5UOBeA55syZk+7u7lx00UU58MAD09bWlvnz56euri4dHR1pb2/P4sWLUywWs2zZsiQZcgyAsWdHLb6jrq021fy7BDA+jZb3rb193x8t8QMAsH8Ntw4cbZ8zqGMBxhZNFcC4UF9XyHuX/yAbH+updCh75dgXHJRPvPGkSocBAFBVCrU1akCAEdLe3p729vbnLG9ra8uaNWvS2dmZGTNmZNKkSXs0BsDYUs21uDocqEbedwEAqEbqWABGE00VwLix8bGePPjzJysdBgAA+5EaEGD/a2pqSlNT07DHABhb1OIA+5f3XQAAqpE6FoDRorbSAQAAAAAAAAAAAAAAAFSCpgoAAAAAAAAAAAAAAGBc0lQBAAAAAAAAAAAAAACMS5oqAAAAAAAAANgjTzzxRL7//e/n8ccfr3QoAAAAAFAWmioAAAAAAAAA2K0777wzZ511Vq666qqcfvrpufPOO5MkXV1dmTt3blpbW7No0aKUSqWB5ww1BgAAAACjgaYKAAAAAAAAAIb05JNPpqOjIzfffHNWr16dhQsX5mMf+1j6+voyb968TJs2LStXrkx3d3dWrVqVJEOOAQAAAMBooakCAAAAAAAAgCH19vbm0ksvzfHHH58kefGLX5zNmzdn7dq16enpyYIFCzJlypTMnz8/K1asSJIhxwAAAABgtNBUAQAAAAAAAMCQDj/88MyePTtJ8swzz+TGG2/MWWedlXXr1mX69OlpaGhIkjQ3N6e7uztJhhwDAAAAgNGirtIBAAAAAAAAAFAd1q1blz/7sz9LfX197rrrrlx//fWZPHnywHhNTU1qa2uzefPm9PT07HKssbFxj/dZLBbL+hp+d7sjtf39pVAoVDqEfVbtczASxsrxOVrIZ3nJZ3nJZ/kMlUv5BQBgKJoqAAAAAAAAANgjzc3Nuemmm7Jo0aIsWLAgRx99dCZMmDBonYkTJ2bbtm0pFAq7HBtOU0VnZ2dZYq/U9kdSQ0NDpk6dWukw9tn69euzdevWSocxKlXz8TkayWd5yWd5yWf5yCUAAMOlqQIAAAAAAACAPVJTU5OpU6fm2muvzemnn5758+dnw4YNg9bp7e1NfX19Ghsbdzk2HC0tLSNyN4ZisZjOzs4R2z57rrm5udIhjDqOz/KSz/KSz/KSz/IZKpc7xgAAYGc0VQAAAAAAAAAwpHvvvTdr167NBz7wgSQZ+KLiMccckxUrVgyst2nTpvT19aWxsTEtLS27HBuOQqEwol8yHents3vyv2uOz/KSz/KSz/KSz/KRSwAAhqu20gEAAAAAAAAAMLodc8wx+cIXvpAvfOEL+cUvfpGPf/zjOfnkk3Paaadly5YtWb16dZJk6dKlmTVrVgqFQlpbW3c5BgBAdejo6Ehzc/PAvzPPPDNJ0tXVlblz56a1tTWLFi1KqVQaeM5QYwAAo5GmCgAAAAAAAACG1NTUlE984hP53Oc+l3PPPTdbt27NRz/60dTV1aWjoyNXXHFFZs2ala985Stpb29PkiHHAACoDg8++GCWLl2a+++/P/fff3++9KUvpa+vL/Pmzcu0adOycuXKdHd3Z9WqVUky5BgAwGhVV+kAAAAAAAAAABj9Tj311Jx66qnPWd7W1pY1a9aks7MzM2bMyKRJk/ZoDACA0W379u3p6urKzJkzc+CBBw4sv/vuu9PT05MFCxakoaEh8+fPz8KFCzN37tysXbt2l2MAAKOVpgoAAAAAAAAA9klTU1OampqGPQYAwOjV1dWVUqmUOXPm5NFHH01ra2s6Ojqybt26TJ8+PQ0NDUmS5ubmdHd3J8mQYwAAo5WmCgAAAAAAAAAAAGCQjRs35rjjjsvll1+eQw45JB/+8IfzoQ99KMcee2wmT548sF5NTU1qa2uzefPm9PT07HKssbFxj/ddLBbL+lp2tu2R3Ae7VygUKh3CPnMM7Z7zrTqZt+pk3nZuT/OhqQIAAAAAAAAAAAAYZPbs2Zk9e/bA4w9+8INpa2vLMccckwkTJgxad+LEidm2bVsKhcIux4bTVNHZ2blvwY+SfbBzDQ0NmTp1aqXD2Gfr16/P1q1bKx1GVXC+VSfzVp3M297RVAEAAAAAAAAAAAAM6eCDD05/f38OPfTQbNiwYdBYb29v6uvr09jYuMux4WhpaRmxOxkUi8V0dnaO6D4YH5qbmysdwqjnfKtO5q06mbed25GX3dFUAQAAAAAAAAAAAAxyzTXXZPr06TnnnHOSPHvl69ra2jQ3N2fFihUD623atCl9fX1pbGxMS0vLLseGo1AojPgXQvfHPhjbHD97zvlWncxbdTJve6d2uE944okn8spXvjKbNm0aWNbV1ZW5c+emtbU1ixYtSqlU2ucxAABGF3UgAAAAAAAAwPjxkpe8JEuWLMn999+fe++9Nx0dHTnvvPNy8sknZ8uWLVm9enWSZOnSpZk1a1YKhUJaW1t3OQYAMFoNq6ni8ccfz7x58/Kzn/1sYFlfX1/mzZuXadOmZeXKlenu7s6qVav2aQwAgNFFHQgAAAAAAAAwvsyZMydnn312LrrooixYsCAnn3xyLr/88tTV1aWjoyNXXHFFZs2ala985Stpb29PkiHHAABGq2E1VcyfP3/gVl47rF27Nj09PVmwYEGmTJmS+fPnD9y+a2/HAAAYXdSBAAAAAAAAAONPe3t77r///nzjG9/I5ZdfngMOOCBJ0tbWljVr1uSqq67KXXfdleOOO27gOUONAQCMRnXDWbmjoyNHHnlkPvKRjwwsW7duXaZPn56GhoYkSXNzc7q7u/dpbLiKxeJePQ8YH/r7+8fMLQS938HIcX4NbTTWgSM1Zzu265ioHHNQeWNlDtSA7Kuxci5Us/0xB+YXAAAAAGDvNDU1pampadhjAACjzbCaKo488sjnLOvp6cnkyZMHHtfU1KS2tjabN2/e67HGxsZhvYjOzs5hrQ+MLw0NDZk6dWqlwyiL9evXZ+vWrZUOAxiHRmMdONI1oBqz8sxB5VXzHKgBKadqPhfGCnMAAAAAAAAAwEgZVlPFzhQKhUyYMGHQsokTJ2bbtm17PTbcpoqWlpYxcwVSoPz6+/srHULZNDc3VzoEGLOKxaIv6w1TpevAkaoBdxwLaszKMQeVZw5GFzVg5TgXKm9/zIE6EAAAAACAalPsL6VQW1PpMABgzNjnporGxsZs2LBh0LLe3t7U19fv9dhwFQoFX24AxgXvdcBoUuk6cKRrQDVm5ZmDyjMHo4M5qDznQuWZAwAAAAAA+H8KtTV57/IfZONjPZUOZa+c1nxY3n/2iysdBgAM2OemipaWlqxYsWLg8aZNm9LX15fGxsa9HgMAYPRTBwIAAAAAAABAZWx8rCcP/vzJSoexV1502IGVDgEABqnd1w20trZmy5YtWb16dZJk6dKlmTVrVgqFwl6PAQAw+qkDAQAAAAAAAAAAqHb7fKeKurq6dHR0pL29PYsXL06xWMyyZcv2aQwAgNFPHQgAAAAAAAAAAEC126umivXr1w963NbWljVr1qSzszMzZszIpEmT9nkMAIDRRx0IAAAAAAAAAADAWLLPd6rYoampKU1NTWUdAwBg9FMHAgAAAAAAAAAAUK1qKx0AAAAAAAAAAAAAAABAJWiqAAAAAAAAAAAAAAAAxiVNFQAAAAAAAAAAAAAAwLikqQIAAAAAAAAAAAAAABiXNFUAAAAAAAAAAAAAAADjkqYKAAAAAAAAAAAAAABgXNJUAQAAAAAAAAAAAAAAjEuaKgAAAAAAAAAAAAAAgHFJUwUAAAAAAAAAAAAAADAuaaoAAAAAAAAAAAAAAADGJU0VAAAAAAAAAAAAAADAuKSpAgAAAAAAAAAAAAAAGJc0VQAAAAAAe+1tb3tbVq1alSTp6urK3Llz09ramkWLFqVUKg2sN9QYAAAAAAAAQKVoqgAAAAAA9sptt92We+65J0nS19eXefPmZdq0aVm5cmW6u7sHmi2GGgMAAAAAAACoJE0VAAAAAMCw/eY3v8miRYvywhe+MEmydu3a9PT0ZMGCBZkyZUrmz5+fFStW7HYMAAAAAAAAoJLqKh0AAAAAAFB9Fi1alLa2tjz99NNJknXr1mX69OlpaGhIkjQ3N6e7u3u3Y8NRLBbLFP2utz2S+xiP5HVkyGv5yWl5FQqFSoewz0bzseB43XdyBwAAAAD8Nk0VAAAAAMCw3Hfffbn33ntzxx135Oqrr06S9PT0ZPLkyQPr1NTUpLa2Nps3bx5yrLGxcY/329nZWb4XUcF9jEfyOjLktfzkdN81NDRk6tSplQ5jn61fvz5bt26tdBhDcrwCAAAAAJSHpgoAAAAAYI89/fTTueKKK3LllVfmoIMOGlheKBQyYcKEQetOnDgx27ZtG3JsOE0VLS0tI3b182KxmM7OzhHdx3gkryNDXstPTvldzc3NlQ5hlxyv+25HDhm+u+++O9dcc01+8YtfZNq0abn22mvzohe9KB0dHVm2bNnAelOmTMlXv/rVJElXV1cWLFiQhx9+OOeff34uueSS1NTUVOolAAAAAMBzaKoAAAAAAPbY9ddfnxNOOCGnnXbaoOWNjY3ZsGHDoGW9vb2pr68fcmw4CoXCiH95dH/sYzyS15Ehr+Unp+xQDceB45X97eGHH86ll16aK6+8Mv/zf/7PdHR05LLLLsvy5cvz4IMPZunSpTnppJOSJLW1tUmSvr6+zJs3L6ecckquu+66XH311Vm1alXmzp1byZcCAAAAAINoqgAAAAAA9tjtt9+eJ554IjNnzkySbNu2LXfddVf+8A//MNu3bx9Yb9OmTenr60tjY2NaWlqyYsWKnY4BAFAduru7c/HFF+ecc85JklxwwQV5+9vfnu3bt6erqyszZ87MgQceOOg5a9euTU9PTxYsWJCGhobMnz8/Cxcu1FQBAAAAwKiiqQIAAAAA2GO33HLLoOaJxYsXZ/r06TnvvPNy7rnnZvXq1ZkzZ06WLl2aWbNmpVAopLW1NVu2bNnpGAAA1eH0008f9Pihhx7KUUcdla6urpRKpcyZMyePPvpoWltb09HRkSOOOCLr1q3L9OnT09DQkCRpbm5Od3f3sPddLBbL8hp2td2R2v7+Mhbq6mqfg5EwVo7P0UI+y0s+y0s+y2eoXMovAABD0VQBAAAAAOyxP/iDPxj0+IADDsghhxySSZMmpaOjI+3t7Vm8eHGKxWKWLVuWJKmrq9vlGAAA1aevry833nhjLrzwwmzcuDHHHXdcLr/88hxyyCH58Ic/nA996EO54YYb0tPTk8mTJw88r6amJrW1tdm8efOw7lrW2dk5Ei9jv21/JDU0NGTq1KmVDmOfrV+/Plu3bq10GKNSNR+fo5F8lpd8lpd8lo9cAgAwXJoqAAAAAIC9du211w78v62tLWvWrElnZ2dmzJiRSZMm7dEYAADVZcmSJTnggAPyhje8IfX19Zk9e/bA2Ac/+MG0tbWlp6cnhUIhEyZMGPTciRMnZtu2bcNqqmhpaRmRuzEUi8V0dnaO2PbZc83NzZUOYdRxfJaXfJaXfJaXfJbPULncMQYAADujqQIAAAAAKJumpqY0NTUNewwAgOrw7W9/O8uXL8+tt96a+vr654wffPDB6e/vz2OPPZbGxsZs2LBh0Hhvb+9OnzeUQqEwol8yHents3vyv2uOz/KSz/KSz/KSz/KRSwAAhqu20gEAAAAAAAAAMPo98sgjed/73pcrr7wyxx57bJLkmmuuyZe//OWBdTo7O1NbW5vDDz88LS0teeCBBwbGNm3alL6+vmHdpQIAAAAARpo7VQAAAAAAAAAwpG3btuWd73xn2tracsYZZ6S3tzdJ8uIXvzhLlizJYYcdlu3bt6ejoyPnnXdeGhoa0trami1btmT16tWZM2dOli5dmlmzZrlyNAAAAACjiqYKAAAAAAAAAIZ0zz33pLu7O93d3bn11lsHln/ta1/LT37yk1x00UU58MAD09bWlvnz5ydJ6urq0tHRkfb29ixevDjFYjHLli2r1EsAAAAAgJ3SVAEAAAAAAADAkNra2rJ+/fqdjrW3t6e9vX2Xz1uzZk06OzszY8aMTJo0aSTDBAAAAIBh01QBAAAAAAAAwIhpampKU1NTpcMAAAAAgJ2qrXQAAAAAAAAAAAAAAAAAlaCpAgAAAAAAAAAAAAAAGJc0VQAAAAAAAAAAAAAAAOOSpgoAAAAAAAAAAABgSG9729uyatWqJElXV1fmzp2b1tbWLFq0KKVSaWC9ocYAAEYjTRUAAAAAAAAAAADALt1222255557kiR9fX2ZN29epk2blpUrV6a7u3ug2WKoMQCA0UpTBQAAAAAAAAAAALBTv/nNb7Jo0aK88IUvTJKsXbs2PT09WbBgQaZMmZL58+dnxYoVux0DABit6iodAAAAAAAAAAAAADA6LVq0KG1tbXn66aeTJOvWrcv06dPT0NCQJGlubk53d/dux4ajWCyWKfpdb3sk9zHSCoVCpUMg1X0M7S9j4Xwbj8xbdTJvO7en+dBUAQAAAAAAAAAAADzHfffdl3vvvTd33HFHrr766iRJT09PJk+ePLBOTU1Namtrs3nz5iHHGhsb93i/nZ2d5XsRFdzHSGhoaMjUqVMrHQZJ1q9fn61bt1Y6jKpQrefbeGfeqpN52zuaKgAAAAAAAAAAAIBBnn766VxxxRW58sorc9BBBw0sLxQKmTBhwqB1J06cmG3btg05NpymipaWlhG7G0OxWExnZ+eI7oPxobm5udIhjHrOt+pk3qqTedu5HXnZnbI1VaxevTpLlizJ5s2bM3369Fx99dWZPHlyurq6smDBgjz88MM5//zzc8kll6SmpiZJhhwDAKA6qAMBAAAAAAAAxp7rr78+J5xwQk477bRByxsbG7Nhw4ZBy3p7e1NfXz/k2HAUCoUR/0Lo/tgHY5vjZ88536qTeatO5m3v1JZjIw8//HCWLFmST33qU7nzzjtzxBFHZMGCBenr68u8efMybdq0rFy5Mt3d3Vm1alWSDDkGAEB1UAcCAAAAALC3DjtoYor9pUqHsc/GwmsAgJ25/fbb8/Wvfz0zZ87MzJkzc8cdd2ThwoVZvXp1HnjggYH1Nm3alL6+vjQ2NqalpWWXYwAAo1VZ7lTx4x//ONOnT8+0adOSJK973evyN3/zN1m7dm16enqyYMGCNDQ0ZP78+Vm4cGHmzp075BgAANVBHQgAAAAAwN46uKEuhdqavHf5D7LxsZ5Kh7NXjn3BQfnEG0+qdBgAMCJuueWWbN++feDx4sWLM3369Jx33nk599xzs3r16syZMydLly7NrFmzUigU0trami1btux0DABgtCpLU8Wxxx6b++67Lz/+8Y9z5JFH5pZbbsnJJ5+cdevWZfr06WloaEiSNDc3p7u7O0mGHBuuYrFYjpcBjFH9/f1j5hcz73cwcpxfe6eSdeBIzdmO7TomKsccVN5YmQM1IPtqrJwL1Wx/zIH5BQAAqLyNj/XkwZ8/WekwAIDf8Qd/8AeDHh9wwAE55JBDMmnSpHR0dKS9vT2LFy9OsVjMsmXLkiR1dXW7HAMAGK3K1lRx9tln57zzzkuSTJ48OV/84hezdOnSTJ48eWC9mpqa1NbWZvPmzenp6dnl2HBv9dXZ2VmOlwGMUQ0NDZk6dWqlwyiL9evXZ+vWrZUOA2BAJevAka4B1ZiVZw4qr5rnQA1IOVXzuTBWmAMAAGCk1NfXVzoEAICqce211w78v62tLWvWrElnZ2dmzJiRSZMm7dEYAMBoVJamiv/8z//Mv//7v+eLX/xiXvSiF2Xp0qV5xzvekT/6oz/KhAkTBq07ceLEbNu2LYVCYZdjw22qaGlpGTNXIAXKr7+/v9IhlE1zc3OlQ4Axq1gs+rLeXqhkHThSNeCOY0GNWTnmoPLMweiiBqwc50Ll7Y85UAcCAMD49pKp0/zOBwCwl5qamtLU1DTsMQCA0aYsTRVf/vKXc+655+bEE09MkvzN3/xNli9fnsbGxmzYsGHQur29vamvrx9ybLgKhYIPuoBxwXsdMNpUsg4c6RpQjVl55qDyzMHoYA4qz7lQeeYAAAAYKfV1hbx3+Q+y8bGeSoeyV05rPizvP/vFlQ4DAAAAoKqVpamiWCzm8ccfH3jc29ubp556KnV1dXnggQcGlm/atCl9fX1pbGxMS0tLVqxYsdMxAACqgzoQAAAAAKh2Gx/ryYM/f7LSYeyVFx12YKVDAAAAAKh6teXYyIwZM/LVr341N910U26//fZcdNFFOfTQQ/OWt7wlW7ZsyerVq5MkS5cuzaxZs1IoFNLa2rrLMQAAqoM6EAAAAAAAAAAAgGpWljtVnHPOOXnooYfyuc99Lr/61a9y3HHH5e///u9TX1+fjo6OtLe3Z/HixSkWi1m2bNmzO66r2+UYAADVQR0IAAAAAAAAAABANStLU0VNTU3e9a535V3vetdzxtra2rJmzZp0dnZmxowZmTRp0h6NAQAw+qkDAQAAAAAAAAAAqGZlaarYnaampjQ1NQ17DACA6qYOBAAAAAAAAAAAYDSrrXQAAAAAAAAAAAAAAAAAlaCpAgAAAAAAAAAAAAAAGJc0VQAAAAAAAAAAAAAAAOOSpgoAAAAAAAAAAAAAAGBc0lQBAAAAAAAAAAAAAACMS5oqAAAAAAAAAAAAAACAcUlTBQAAAAAAAAAAAAAAMC5pqgAAAAAAAAAAAAAAAMYlTRUAAAAAAAAAAAAAAMC4pKkCAAAAAAAAAAAAAAAYlzRVAAAAAAAAAAAAAAAA45KmCgAAAAAAAAB26+67784ZZ5yRqVOn5vWvf326u7uTJF1dXZk7d25aW1uzaNGilEqlgecMNQYAAAAAo4GmCgAAAAAAAACG9PDDD+fSSy9Ne3t71q5dmyOOOCKXXXZZ+vr6Mm/evEybNi0rV65Md3d3Vq1alSRDjgEAAADAaKGpAgAAAAAAAIAhdXd35+KLL84555yTQw89NBdccEF+9KMfZe3atenp6cmCBQsyZcqUzJ8/PytWrEiSIccAAAAAYLSoq3QAAAAAAAAAAIxup59++qDHDz30UI466qisW7cu06dPT0NDQ5Kkubk53d3dSTLk2HAUi8V9jH7n+vv7UygURmTbjD/lPk53bG+kjv/xRj7LSz7LSz7LZ6hcyi8AAEPRVAEAAAAAAADAHuvr68uNN96YCy+8MI888kgmT548MFZTU5Pa2tps3rw5PT09uxxrbGzc4/11dnaWNf4dGhoaMnXq1BHZNuPP+vXrs3Xr1rJvd6SO//FKPstLPstLPstHLgEAGC5NFQAAAAAAAADssSVLluSAAw7IG97whixZsiQTJkwYND5x4sRs27YthUJhl2PDaapoaWkZkTtK9Pf3l32bjF/Nzc1l3V6xWExnZ+eIHf/jjXyWl3yWl3yWz1C53DEGAAA7o6kCAAAAAAAAgD3y7W9/O8uXL8+tt96a+vr6NDY2ZsOGDYPW6e3t3e3YcBQKBV8yZdQbqWPU8V9e8lle8lle8lk+cgkAwHDVVjoAAAAAAKD6PPHEE/n+97+fxx9/vNKhAACwnzzyyCN53/velyuvvDLHHntskmfvIvHAAw8MrLNp06b09fWlsbFxyDEAAAAAGC00VQAAAAAAw3LnnXfmrLPOylVXXZXTTz89d955Z5Kkq6src+fOTWtraxYtWpRSqTTwnKHGAAAY/bZt25Z3vvOdaWtryxlnnJHe3t709vZm5syZ2bJlS1avXp0kWbp0aWbNmpVCoZDW1tZdjgEAAADAaKGpAgAAAADYY08++WQ6Ojpy8803Z/Xq1Vm4cGE+9rGPpa+vL/Pmzcu0adOycuXKdHd3Z9WqVUky5BgAANXhnnvuSXd3d2699dbMmDFj4N+jjz6ajo6OXHHFFZk1a1a+8pWvpL29PUlSV1e3yzEAAAAAGC3qKh0AAAAAAFA9ent7c+mll+b4449Pkrz4xS/O5s2bs3bt2vT09GTBggVpaGjI/Pnzs3DhwsydO3fIMQAAqkNbW1vWr1+/07HJkydnzZo16ezszIwZMzJp0qRBz9vVGAAAAACMBpoqAAAAAIA9dvjhh2f27NlJkmeeeSY33nhjzjrrrKxbty7Tp09PQ0NDkqS5uTnd3d1JMuTYcBSLxTK9il1veyT3MR7J68iQ1/KT0/IqFAqVDmGfjeZjwfG67+RuZDQ1NaWpqWnYYwAAAABQaZoqAAAAAIBhW7duXf7sz/4s9fX1ueuuu3L99ddn8uTJA+M1NTWpra3N5s2b09PTs8uxxsbGPd5nZ2dnWV9DpfYxHsnryJDX8pPTfdfQ0JCpU6dWOox9tn79+mzdurXSYQzJ8QoAAAAAUB6aKgAAAACAYWtubs5NN92URYsWZcGCBTn66KMzYcKEQetMnDgx27ZtS6FQ2OXYcJoqWlpaRuzq58ViMZ2dnSO6j/FIXkeGvJafnPK7mpubKx3CLjle992OHAIAAAAAJJoqAAAAAIC9UFNTk6lTp+baa6/N6aefnvnz52fDhg2D1unt7U19fX0aGxt3OTYchUJhxL88uj/2MR7J68iQ1/KTU3aohuPA8QoAAAAAUB61lQ4AAAAAAKge9957bxYtWjTweMeXOY855pg88MADA8s3bdqUvr6+NDY2pqWlZZdjAAAAAAAAAJWkqQIAAAAA2GPHHHNMvvCFL+QLX/hCfvGLX+TjH/94Tj755Jx22mnZsmVLVq9enSRZunRpZs2alUKhkNbW1l2OAQAAAAAAAFSSpgoAAAAAYI81NTXlE5/4RD73uc/l3HPPzdatW/PRj340dXV16ejoyBVXXJFZs2blK1/5Strb25NkyDEAAAAAAACASqqrdAAAAAAAQHU59dRTc+qppz5neVtbW9asWZPOzs7MmDEjkyZN2qMxAAAAAAAAgErRVAEAAAAAlE1TU1OampqGPQYAAAAAAABQCbWVDgAAAAAAAAAAAAAAAKASNFUAAAAAAAAAAAAAO/XEE0/k+9//fh5//PFKhwIAMCI0VQAAAAAAAAAAAADPceedd+ass87KVVddldNPPz133nlnkqSrqytz585Na2trFi1alFKpNPCcocYAAEYjTRUAAAAAAAAAAADAIE8++WQ6Ojpy8803Z/Xq1Vm4cGE+9rGPpa+vL/Pmzcu0adOycuXKdHd3Z9WqVUky5BgAwGilqQIAAAAAAAAAAAAYpLe3N5deemmOP/74JMmLX/zibN68OWvXrk1PT08WLFiQKVOmZP78+VmxYkWSDDkGADBaaaoAAAAAAAAAAAAABjn88MMze/bsJMkzzzyTG2+8MWeddVbWrVuX6dOnp6GhIUnS3Nyc7u7uJBlyDABgtKqrdAAAAAAAAAAAAADA6LRu3br82Z/9Werr63PXXXfl+uuvz+TJkwfGa2pqUltbm82bN6enp2eXY42NjXu8z2KxWNbXsLNtj+Q+RlqhUKh0CKS6j6H9ZSycb+OReatO5m3n9jQfI9JU8bGPfSwbN27MP/zDPyRJurq6smDBgjz88MM5//zzc8kll6Smpma3YwAAVA81IAAAAAAAAMDY09zcnJtuuimLFi3KggULcvTRR2fChAmD1pk4cWK2bduWQqGwy7HhNFV0dnaWJfZK72MkNDQ0ZOrUqZUOgyTr16/P1q1bKx1GVajW8228M2/VybztnbI3VXR1deWWW27J6tWrkyR9fX2ZN29eTjnllFx33XW5+uqrs2rVqsydO3fIMQAAqocaEAAAAAAAAGBsqqmpydSpU3Pttdfm9NNPz/z587Nhw4ZB6/T29qa+vj6NjY27HBuOlpaWEbsbQ7FYTGdn54jug/Ghubm50iGMes636mTeqpN527kdedmdsjZVlEqlfOhDH8pb3/rWTJkyJUmydu3a9PT0ZMGCBWloaMj8+fOzcOHCzJ07d8gxAACqgxoQAAAAAAAAYOy59957s3bt2nzgAx9IkoEvaB5zzDFZsWLFwHqbNm1KX19fGhsb09LSssux4SgUCiP+hdD9sQ/GNsfPnnO+VSfzVp3M294pa1PFrbfemnXr1uX1r399/v3f/z2nnHJK1q1bl+nTp6ehoSHJs5153d3dSTLk2HAUi8XyvQhgzOnv7x8zPyC838HIcX7tvbFWA+7YrmOicsxB5Y2VOVADsq/GyrlQzfbHHJhfAAAAAICdO+aYY/LXf/3XOfroo/PHf/zHWbJkSU4++eScdtpp+eAHP5jVq1dnzpw5Wbp0aWbNmpVCoZDW1tZs2bJlp2MAAKNV2Zoqent7s2TJkhx11FH55S9/mX/913/NP/zDP+Skk07K5MmTB9arqalJbW1tNm/enJ6enl2ODaczdU9uyQGMXw0NDZk6dWqlwyiL9evXZ+vWrZUOA2DAWK4B1ZiVZw4qr5rnQA1IOVXzuTBWmAMAAAAAgP2vqakpn/jEJ3LNNddk0aJFOeWUU/LRj340dXV16ejoSHt7exYvXpxisZhly5YlyZBjAACjVdmaKr761a9m69at+dznPpfnPe95eec735nXvva1WblyZV73utcNWnfixInZtm1bCoVCJkyYsNOx4XyhrqWlRScrsEv9/f2VDqFsmpubKx0CjFnFYtGX9fbCWKwBdxwLaszKMQeVZw5GFzVg5TgXKm9/zIE6EAAAAABg10499dSceuqpz1ne1taWNWvWpLOzMzNmzMikSZP2aAwAYDQqW1PFL3/5y5x44ol53vOe9+yG6+rS3Nycn/3sZ3n88ccHrdvb25v6+vo0NjZmw4YNOx0bjkKh4MsNwLjgvQ4YbcZyDajGrDxzUHnmYHQwB5XnXKg8cwAAAAAAMPo0NTWlqalp2GMAAKNNbbk29Ad/8Ad5+umnBy37+c9/ng984AN54IEHBpZt2rQpfX19aWxsTEtLyy7HAAAY/dSAAAAAAAAAAAAAVLOyNVWcdtpp6e7uzr/8y7/kl7/8ZT7/+c/nv/7rv3LKKadky5YtWb16dZJk6dKlmTVrVgqFQlpbW3c5BgDA6KcGBAAAAAAAAAAAoJrVlWtDz3ve83LDDTfk2muvzbXXXptDDz001113XY466qh0dHSkvb09ixcvTrFYzLJly57deV3dLscAABj91IAAAAAAAAAAAABUs7I1VSTJS1/60ixfvvw5y9va2rJmzZp0dnZmxowZmTRp0h6NAQAw+qkBAQAAAAAAAAAAqFZlbaoYSlNTU5qamoY9BgBA9VIDAgAAAAAAAAAAMJrVVjoAAAAAAAAAAAAAAACAStBUAQAAAAAAAAAAAAAAjEuaKgAAAAAAAAAAAAAAgHFJUwUAAAAAAAAAAAAAADAuaaoAAAAAAAAAAAAAAADGJU0VAAAAAAAAAOzWE088kVe+8pXZtGnTwLKOjo40NzcP/DvzzDMHxrq6ujJ37ty0trZm0aJFKZVKlQgbAAAAAIakqQIAAAAAAACAIT3++OOZN29efvaznw1a/uCDD2bp0qW5//77c//99+dLX/pSkqSvry/z5s3LtGnTsnLlynR3d2fVqlWVCB0AAAAAhqSpAgAAAAAAAIAhzZ8/P+ecc86gZdu3b09XV1dmzpyZgw8+OAcffHAOOuigJMnatWvT09OTBQsWZMqUKZk/f35WrFhRidABAAAAYEh1lQ4AAAAAAAAAgNGto6MjRx55ZD7ykY8MLOvq6kqpVMqcOXPy6KOPprW1NR0dHTniiCOybt26TJ8+PQ0NDUmS5ubmdHd379W+i8ViWV7D7+rv70+hUBiRbTP+lPs43bG9kTr+xxv5LC/5LC/5LJ+hcim/AAAMRVMFAAAAAAAAAEM68sgjn7Ns48aNOe6443L55ZfnkEMOyYc//OF86EMfyg033JCenp5Mnjx5YN2amprU1tZm8+bNaWxsHNa+Ozs79zn+nWloaMjUqVNHZNuMP+vXr8/WrVvLvt2ROv7HK/ksL/ksL/ksH7kEAGC4NFUAAAAAAAAAMGyzZ8/O7NmzBx5/8IMfTFtbW3p6elIoFDJhwoRB60+cODHbtm0bdlNFS0vLiNxRor+/v+zbZPxqbm4u6/aKxWI6OztH7Pgfb+SzvOSzvOSzfIbK5Y4xAADYGU0VAAAAAAAAAOyzgw8+OP39/XnsscfS2NiYDRs2DBrv7e1NfX39sLdbKBR8yZRRb6SOUcd/eclneclnecln+cglAADDVVvpAAAAAAAAAACoPtdcc02+/OUvDzzu7OxMbW1tDj/88LS0tOSBBx4YGNu0aVP6+vqGfZcKAAAAABhp7lQBAAAAAAAAwLC95CUvyZIlS3LYYYdl+/bt6ejoyHnnnZeGhoa0trZmy5YtWb16debMmZOlS5dm1qxZrhoNAAAAwKijqQIAAAAAAACAYZszZ066u7tz0UUX5cADD0xbW1vmz5+fJKmrq0tHR0fa29uzePHiFIvFLFu2rMIRAwAAAMBzaaoAAAAAAAAAYI+sX79+0OP29va0t7fvdN22trasWbMmnZ2dmTFjRiZNmrQ/QgQAAACAYdFUAQAAAAAAAMCIaGpqSlNTU6XDAAAAAIBdqq10AAAAAAAAAAAAAAAAAJWgqQIAAAAAAAAAAAAAABiXNFUAAAAAAAAAAAAAAADjkqYKAAAAAAAAAAAAAABgXNJUAQAAAAAAAAAAAAAAjEuaKgAAAAAAAAAAAAAAgHFJUwUAAAAAAAAAAAAAADAuaaoAAAAAAAAAAAAAAADGJU0VAAAAAMCw3H333TnjjDMyderUvP71r093d3eSpKurK3Pnzk1ra2sWLVqUUqk08JyhxgAAAAAAAAAqRVMFAAAAALDHHn744Vx66aVpb2/P2rVrc8QRR+Syyy5LX19f5s2bl2nTpmXlypXp7u7OqlWrkmTIMQAAAAAAAIBK0lQBAAAAAOyx7u7uXHzxxTnnnHNy6KGH5oILLsiPfvSjrF27Nj09PVmwYEGmTJmS+fPnZ8WKFUky5BgAAAAAAABAJdVVOgAAAAAAoHqcfvrpgx4/9NBDOeqoo7Ju3bpMnz49DQ0NSZLm5uZ0d3cnyZBjw1EsFvcx+t1veyT3MR7J68iQ1/KT0/IqFAqVDmGfjeZjwfG67+QOAAAAAPhtmioAAAAAgL3S19eXG2+8MRdeeGEeeeSRTJ48eWCspqYmtbW12bx5c3p6enY51tjYuMf76+zsLGv8ldrHeCSvI0Ney09O911DQ0OmTp1a6TD22fr167N169ZKhzEkxysAAAAAQHloqgAAAAAA9sqSJUtywAEH5A1veEOWLFmSCRMmDBqfOHFitm3blkKhsMux4TRVtLS0jNjVz4vFYjo7O0d0H+ORvI4MeS0/OeV3NTc3VzqEXXK87rsdOQQAAAAASDRVAAAAAAB74dvf/naWL1+eW2+9NfX19WlsbMyGDRsGrdPb27vbseEoFAoj/uXR/bGP8UheR4a8lp+cskM1HAeOVwAAAACA8qitdAAAAAAAQHV55JFH8r73vS9XXnlljj322CTP3kXigQceGFhn06ZN6evrS2Nj45BjAAAAAAAAAJWkqQIAAAAA2GPbtm3LO9/5zrS1teWMM85Ib29vent7M3PmzGzZsiWrV69OkixdujSzZs1KoVBIa2vrLscAAAAAAAAAKqmu0gEAAAAAANXjnnvuSXd3d7q7u3PrrbcOLP/a176Wjo6OtLe3Z/HixSkWi1m2bFmSpK6ubpdjAAAAAAAAAJWkqQIAAAAA2GNtbW1Zv379TscmT56cNWvWpLOzMzNmzMikSZMGPW9XYwAAAADA6HT33XfnmmuuyS9+8YtMmzYt1157bV70ohelq6srCxYsyMMPP5zzzz8/l1xySWpqapJkyDEAgNGottIBAAAAAABjR1NTU9ra2nbaNDHUGAAAAAAwujz88MO59NJL097enrVr1+aII47IZZddlr6+vsybNy/Tpk3LypUr093dnVWrViXJkGMAAKOVpgoAAAAAAAAAAABgkO7u7lx88cU555xzcuihh+aCCy7Ij370o6xduzY9PT1ZsGBBpkyZkvnz52fFihVJMuQYAMBoVTcSG33b296Wc889N6973evc5gsAYBxRBwIAAACMvIaGhkqHAAAAjAOnn376oMcPPfRQjjrqqKxbty7Tp08f+N2kubk53d3dSTLk2HAUi8V9jH732x7JfYy0QqFQ6RBIdR9D+8tYON/GI/NWnczbzu1pPsreVHHbbbflnnvuybnnnjtwK69TTjkl1113Xa6++uqsWrUqc+fOHXIMAIDqow4EAAAAqt1hB01Msb+UQu3ovfhDoVDI1KlTh1xntL8GAACg+vT19eXGG2/MhRdemEceeSSTJ08eGKupqUltbW02b96cnp6eXY41Njbu8f46OzvLGn+l9jESGhoadvt7IfvH+vXrs3Xr1kqHURWq9Xwb78xbdTJve6esTRW/+c1vsmjRorzwhS9MMvhWXg0NDZk/f34WLlyYuXPnDjkGAEB1UQcCAAAAY8HBDXUp1Nbkvct/kI2P9VQ6nL1y7AsOyifeeFKlwwAAAMaYJUuW5IADDsgb3vCGLFmyJBMmTBg0PnHixGzbti2FQmGXY8NpqmhpaRmxuzEUi8V0dnaO6D4YH5qbmysdwqjnfKtO5q06mbed25GX3SlrU8WiRYvS1taWp59+OsnQt/Iq122+ErcpAYbW398/Zn5AeL+DkeP82jeVqANHas7cCq/yzEHljZU5UAOyr8bKuVDN9sccmF8AYGc2PtaTB3/+ZKXDAAAAGBW+/e1vZ/ny5bn11ltTX1+fxsbGbNiwYdA6vb29ux0bjkKhMOJ/69kf+2Bsc/zsOedbdTJv1cm87Z2yNVXcd999uffee3PHHXfk6quvTpIhb+VVrtt8JW5TAgxtLN3yzi3jgNGoUnXgSNeAaszKMweVV81zoAaknKr5XBgrzAEAAAAAQGU88sgjed/73pcrr7wyxx57bJJn7yKxYsWKgXU2bdqUvr6+NDY2DjkGADBalaWp4umnn84VV1yRK6+8MgcddNDA8qFu5VWu23wlI3urL6D69ff3VzqEsnHLOBg5e3qbLwarZB04UjWgW+FVnjmoPHMwuqgBK8e5UHn7Yw7UgQAAAAAAO7dt27a8853vTFtbW84444z09vYmSWbOnJktW7Zk9erVmTNnTpYuXZpZs2alUCiktbV1l2MAAKNVWZoqrr/++pxwwgk57bTTBi3fH7f5StymBBg/vNcBo00l68CRrgHVmJVnDirPHIwO5qDynAuVZw4AAAAAAPa/e+65J93d3enu7s6tt946sPxrX/taOjo60t7ensWLF6dYLGbZsmVJkrq6ul2OAQCMVmVpqrj99tvzxBNPZObMmUme7VC966678od/+IfZvn37wHpu8wUAMLaoAwEAAAAAAADGpra2tqxfv36nY5MnT86aNWvS2dmZGTNmZNKkSYOet6sxAIDRqCxNFbfccsugL80tXrw406dPz3nnnZdzzz3Xbb4AAMYodSAAAAAAAADA+NTU1JSmpqZhjwEAjDZlaar4gz/4g0GPDzjggBxyyCGZNGmS23wBAIxh6kAAAAAAAAAAAACqWVmaKn7XtddeO/D/oW7l5TZfAABjizoQAAAAAAAAAACAalK7P3bS1NSUtra2nX5ZbqgxAACqmzoQAAAAAMaOJ554Iq985SuzadOmgWVdXV2ZO3duWltbs2jRopRKpT0aAwAAAIDRYr80VQAAAAAAAABQvR5//PHMmzcvP/vZzwaW9fX1Zd68eZk2bVpWrlyZ7u7urFq1ardjAAAAADCaaKoAAAAAAAAAYEjz58/POeecM2jZ2rVr09PTkwULFmTKlCmZP39+VqxYsdsxAAAAABhNNFUAAAAAAAAAMKSOjo689a1vHbRs3bp1mT59ehoaGpIkzc3N6e7u3u0YAAAAAIwmdZUOAAAAAAAAAIDR7cgjj3zOsp6enkyePHngcU1NTWpra7N58+YhxxobG4e172KxuPeBD6G/vz+FQmFEts34U+7jtL+/Pw0NDenv7y/rdserHfMzUu8n4418lpd8ls9QuZRfAACGoqkCAAAAAAAAgGErFAqZMGHCoGUTJ07Mtm3bhhwbblNFZ2fnPse6Mw0NDZk6deqIbJvx47CDJqbYXyp7g06hUNivx+cz24v5rx8/mGeeeWa/7bMSRur9ZLySz/KSz/KRSwAAhktTBQAAAAAAAADD1tjYmA0bNgxa1tvbm/r6+iHHhqulpWVE7ijhDgCUw8ENdSnU1uS9y3+QjY/1VDqcvXLsCw7KJ954UqZNm1bpUEZMsVhMZ2fniL2fjDfyWV7yWT5D5XLHGAAA7IymCgAAAAAAAACGraWlJStWrBh4vGnTpvT19aWxsXHIseEqFAq+ZMqot/Gxnjz48ycrHcY+GQ/nmfeT8pLP8pLP8pFLAACGq7bSAQAAAAAAAABQfVpbW7Nly5asXr06SbJ06dLMmjUrhUJhyDEAAAAAGE3cqQIAAAAAAACAYaurq0tHR0fa29uzePHiFIvFLFu2bLdjAAAAADCaaKoAAAAAAAAAYI+sX79+0OO2trasWbMmnZ2dmTFjRiZNmrRHYwAAAAAwWmiqAAAAAAAAAGCvNTU1pampadhjAAAAADAa1FY6AAAAAAAAAAAAAAAAgErQVAEAAAAAAAAAAAAAAIxLmioAAAAAAAAAAAAAAIBxSVMFAAAAAAAAAAAAAAAwLmmqAAAAAAAAAAAAAAAAxiVNFQAAAAAAAKNEsb9U6RAAAAAAAGBcqat0AAAAAAAAADyrUFuT9y7/QTY+1lPpUPbKac2H5f1nv7jSYQAAAAAAwB7TVAEAAAAAADCKbHysJw/+/MlKh7FXXnTYgZUOAQAAAAAAhqW20gEAAAAAAAAAAAAAAABUgqYKAAAAAAAAAAAAAABgXNJUAQAAAAAAAAAAAAAAjEuaKgAAAAAAAAAAAAAAgHFJUwUAAAAAAAAAAAAAADAuaaoAAAAAAAAAAAAAAADGJU0VAAAAAAAAAAAAAADAuKSpAgAAAAAAAAAAAAAAGJc0VQAAAAAAAAAAAAAAAOOSpgoAAAAAAAAAAAAAAGBc0lQBAAAAAAAAAAAAAACMS5oqAAAAAAAAAAAAAACAcUlTBQAAAAAwbE888URe+cpXZtOmTQPLurq6Mnfu3LS2tmbRokUplUp7NAYAAAAAAABQKZoqAAAAAIBhefzxxzNv3rz87Gc/G1jW19eXefPmZdq0aVm5cmW6u7uzatWq3Y4BAAAAAAAAVJKmCgAAAABgWObPn59zzjln0LK1a9emp6cnCxYsyJQpUzJ//vysWLFit2MAAAAAAAAAlaSpAgAAAAAYlo6Ojrz1rW8dtGzdunWZPn16GhoakiTNzc3p7u7e7RgAAAAAAABAJdVVOgAAAAAAoLoceeSRz1nW09OTyZMnDzyuqalJbW1tNm/ePORYY2PjHu+3WCzuW+B7sO2R3Md4JK8jQ17LbzTltFAoVDoExojRcDyPVnIDAAAAAPw2TRUAAAAAwD4rFAqZMGHCoGUTJ07Mtm3bhhwbTlNFZ2dnWWKt9D7GI3kdGfJafpXOaUNDQ6ZOnVrRGBg71q9fn61bt1Y6DAAAYAx44oknMnfu3Hz+858fuHhKV1dXFixYkIcffjjnn39+LrnkktTU1Ox2DABgNNJUAQAAAADss8bGxmzYsGHQst7e3tTX1w85NhwtLS0jdgX3YrGYzs7OEd3HeCSvI0Ney09OGYuam5srHcKoteOcBwAAdu/xxx/PX/3VX+VnP/vZwLK+vr7Mmzcvp5xySq677rpcffXVWbVqVebOnTvkGADAaFW2poq7774711xzTX7xi19k2rRpufbaa/OiF71IRyoAwBinDgQAIHm24WHFihUDjzdt2pS+vr40NjYOOTYchUJhxL/svD/2MR7J68iQ1/KTU8YSxzIAAFAO8+fPzznnnJP//M//HFi2du3a9PT0ZMGCBWloaMj8+fOzcOHCzJ07d8gxAIDRqrYcG3n44Ydz6aWXpr29PWvXrs0RRxyRyy67bKDrdNq0aVm5cmW6u7uzatWqJBlyDACA6qAOBABgh9bW1mzZsiWrV69OkixdujSzZs1KoVAYcgwAAAAAGL06Ojry1re+ddCydevWZfr06WloaEjy7J3yuru7dzs2HMVicUT/7Y99jHT8VF6lj4Nq+SdX1fnPvFXnP/O267zsTlnuVNHd3Z2LL74455xzTpLkggsuyNvf/nYdqQAAY5w6EACAHerq6tLR0ZH29vYsXrw4xWIxy5Yt2+0YAAAAADB6HXnkkc9Z1tPTk8mTJw88rqmpSW1tbTZv3jzk2HDuXNvZ2blvgY+SfYyEhoaGTJ06tdJhkGT9+vXZunVrpcOoCtV6vo135q06mbe9U5amitNPP33Q44ceeihHHXXUfulITbLHHSTA+NTf3z9mrnzp/Q5GjvNr71SyDhypOfvtrm0qwxxU3liZAzUg+2qsnAvVbH/MgfndN+vXrx/0uK2tLWvWrElnZ2dmzJiRSZMm7dEYAAAAAFA9CoVCJkyYMGjZxIkTs23btiHHhtNU0dLSMmJ/6ykWi+ns7BzRfTA+NDc3VzqEUc/5Vp3MW3Uybzu3Iy+7U5amit/W19eXG2+8MRdeeGEeeeSREe9ITXTUAEMbS93ZupuB0Wx/14EjXQOqMSvPHFReNc+BGpByquZzYawwB9WlqakpTU1Nwx4DAAAAAKpDY2NjNmzYMGhZb29v6uvrhxwbjkKhMOJfCN0f+2Bsc/zsOedbdTJv1cm87Z2yN1UsWbIkBxxwQN7whjdkyZIlI96RmoxsVypQ/fr7+ysdQtnoboaRs6cdqeza/q4DR6oG1LVdeeag8szB6KIGrBznQuXtjzlQBwIAwL7r6OjIsmXLBh5PmTIlX/3qV9PV1ZUFCxbk4Ycfzvnnn59LLrkkNTU1FYwU2JnDDpqYYn8phdrqPT+rPX6AatPS0pIVK1YMPN60aVP6+vrS2Ng45BgAwGhV1qaKb3/721m+fHluvfXW3XadlqsjNdFRA4wf3uuA0aoSdeBI14BqzMozB5VnDkYHc1B5zoXKMwcAADC6Pfjgg1m6dGlOOumkJEltbW36+voyb968nHLKKbnuuuty9dVXZ9WqVZk7d26FowV+18ENdSnU1uS9y3+QjY/1VDqcYTv2BQflE288qdJhAIwrra2t2bJlS1avXp05c+Zk6dKlmTVrVgqFwpBjAACjVdmaKh555JG8733vy5VXXpljjz02iY5UAIDxQB0IAAAAAOPX9u3b09XVlZkzZ+bAAw8cWH733Xenp6cnCxYsSENDQ+bPn5+FCxdqqoBRbONjPXnw509WOgwAqkBdXV06OjrS3t6exYsXp1gsDty5bKgxAIDRqrYcG9m2bVve+c53pq2tLWeccUZ6e3vT29ubmTNnDnSdJtllR+rvjgEAUB3UgQAAAAAwvnV1daVUKmXOnDk58cQT87a3vS0///nPs27dukyfPj0NDQ1Jkubm5nR3d1c4WgAA9tb69eszefLkgcdtbW1Zs2ZNrrrqqtx111057rjj9mgMAGA0KsudKu655550d3enu7s7t95668Dyr33tazpSAQDGMHUgAAAAAIxvGzduzHHHHZfLL788hxxySD784Q/nQx/6UI499thBX7qrqalJbW1tNm/ePOy71haLxXKHnSTp7+93sRcYQ4Z6r9gxNlLvJ+ONfJaXfJbPULmU35HR1NSUpqamYY8BAIw2ZWmqaGtry/r163c6Nnny5KxZsyadnZ2ZMWNGJk2aNOh5uxoDAGD0UwcCAAAAwPg2e/bszJ49e+DxBz/4wbS1teWYY47JhAkTBq07ceLEbNu2bdhNFZ2dnWWJ9Xc1NDRk6tSpI7JtYP9bv359tm7dOuQ6I/V+Ml7JZ3nJZ/nIJQAAw1WWpord0ZEKADA+qQMBAAAAYHw5+OCD09/fn0MPPTQbNmwYNNbb25v6+vphb7OlpWVE7ijR399f9m0CldPc3LzLsWKxmM7OzhF7Pxlv5LO85LN8hsrljjEAANiZ/dJUAQAAAAAAjH7F/lIKtTWVDmOfjIXXAFBNrrnmmkyfPj3nnHNOkmevDF1bW5vm5uasWLFiYL1Nmzalr69v2HepSJJCoeBLpsBu7cn7hPeT8pLP8pLP8pFLAACGS1MFAAAAAACQJCnU1uS9y3+QjY/1VDqUvXLsCw7KJ954UqXDABhXXvKSl2TJkiU57LDDsn379nR0dOS8887LySefnC1btmT16tWZM2dOli5dmlmzZvmCIwAAAACjjqYKAAAAAABgwMbHevLgz5+sdBgAVIk5c+aku7s7F110UQ488MC0tbVl/vz5qaurS0dHR9rb27N48eIUi8UsW7as0uECAAAAwHNoqgAAAAAAAABgr7W3t6e9vf05y9va2rJmzZp0dnZmxowZmTRpUgWiAwAAAIChaaoAAAAAAAAAYEQ0NTWlqamp0mEAAAAAwC7VVjoAAAAAAAAAAAAAAACAStBUAQAAAAAAAAAAAAAAjEuaKgAAAAAAAAAAAAAAgHFJUwUAAAAAADDuNTQ0VDoEAAAAAACgAjRVAAAAAAAAY8JhB01Msb807OcVCoVMnTo1hUJhBKKC/Wtvz4PRZiy8BgAAAACgOtRVOgAAAAAAAIByOLihLoXamrx3+Q+y8bGeSoczbKc1H5b3n/3iSodBlav28yBJjn3BQfnEG0+qdBgAAAAAwDihqQIAAAAAABhTNj7Wkwd//mSlwxi2Fx12YKVDYAyp1vMAAAAAAGB/q610AAAAAAAAAAAAAAAAAJWgqQIAAAAAAAAAAAAAABiXNFUAAAAAAAAAAAAAAADjkqYKAAAAAAAAAAAAYNyor6+vdAgAwCiiqQIAAAAAAAAAAAAYN14ydVoKhUKlwwAARom6SgcAAAAAADAauDodAAAAAIwP9XWFvHf5D7LxsZ5KhzJspzUflvef/eJKhwEAY4qmCgAAAACAVP/V6Yr9pRRqayodBgAAAABUhY2P9eTBnz9Z6TCG7UWHHVjpEABgzNFUAQAAAACQ6r463bEvOCifeONJlQ6D/aihoaHSIQAAAAAAAIwJmioAAAAAAP5/1Xp1OkaP/XHHkEKhkKlTp47oPgAAAAAAAMYLTRUAAAAAAFAmhdqaqr3jyWnNh+X9Z7+40mEAAAAAAADsV5oqAAAAAACgjKr1jicvOuzASocAAAAAAACw39VWOgAAAAAAAAAAAAAAAIBK0FQBAAAAAAAAAAAAAHvgsIMmpthfqnQY+2wsvAaAcqmrdAAAAAAAAAAAAAAAUA0ObqhLobYm713+g2x8rKfS4eyVY19wUD7xxpMqHQbAqKGpAgAAAAAAAAAAAACGYeNjPXnw509WOgwAyqC20gEAAAAAAAAAAAAAAABUgqYKAAAAAAAAAAAAAABgXNJUAQAAAAAAAADAmNbQ0FDpEAAAABilNFUAAAAAAAAAAFCVDjtoYor9pSHXKRQKmTp1agqFwn6Kavh29xoAAAAYOXWVDgAAAAAAAJJnv0RUqK2pdBgAAEAVObihLoXamrx3+Q+y8bGeSoezV459wUH5xBtPqnQYAAAA45amCgAAAAAARoVq/yLUac2H5f1nv7jSYQAAwLi08bGePPjzJysdBgAAAFVIUwUAAAAAAKNGNX8R6kWHHVjpEAAAAAAAABim2koHAAAAAAAAAAAAAAAAUAmaKgAAAAAAAAAAAAAAgHFJUwUAAAAAAAAAALDHGhoaKh0CAABA2WiqAAAAAAAAAACACjnsoIkp9pcqHcYeKxQKmTp1agqFwsCyaoofAADgd9VVOoCurq4sWLAgDz/8cM4///xccsklqampqXRYAACMMHUgAMD4owYcn1y9FABQBwIM7eCGuhRqa/Le5T/Ixsd6Kh3OsB37goPyiTeeVOkwgFFGDQgAVJOKNlX09fVl3rx5OeWUU3Ldddfl6quvzqpVqzJ37txKhgUAwAhTBwIAjD9qwJG146qmhdrR9YfpHVcvBQDGL3UgwJ7b+FhPHvz5k5UOA2CfqQEBgGpT0aaKtWvXpqenJwsWLEhDQ0Pmz5+fhQsXKp4AAMY4dSAAwPijBhxZ1X5V0yQ5rfmwvP/sF1c6DACgzNSBALB77vLIWKMGBIDKUFfuvYo2Vaxbty7Tp08fmMDm5uZ0d3fv8fNLpVKSZztbC4XCiMQIVL/+/v4kyUv+4MBMrNK3imMOOzDFYjHFYrHSocCYteP82lFfMLL2pQ4c6RqwWCymUCjkmWee8b5bIf39/fm93/s9dX4FjZU5KBQKakD2SX9/fyZOnOhnQgX19/enUCiM6PuROnD/Gc01YFL9nx8c/fyGFIvF1NeWqjL+JCnUlFIsFqt2DpL/Nw/V+hqqPf6k+l9DtcefVP9rqPb4k7HxGkb69yE14P41muvAaq8Bk+o/56s9/sRrGA2qPf6k+l/DmPkss6a2YneAbG5uTpJ9yuFovIPlcBX7S0mpf++f///nb2e1gxpw/xrNNWBS/XVgtf/cSKr/NVR7/Mn++/m942/P/t5WXcxblfmtOrYcdeX+tq814G63v4d1YE2pgpXitddem6effjpXXHHFwLI/+qM/yle+8pU0Njbu9vl9fX3p7OwcyRABgHGmpaUlEyZMqHQYY96+1IFqQABgJKgDR54aEAAYbdSA+4c6EAAYTdSA+4caEAAYbXZXB1b0ThWFQuE5wU2cODHbtm3bo6aKurq6tLS0pLa2NjU11d1pDQBUVqlUSn9/f+rqKloejRv7UgeqAQGAclIH7j9qQABgtFAD7l/qQABgNFAD7l9qQABgtNjTOrCiVWJjY2M2bNgwaFlvb2/q6+v36Pm1tbU6hwEAqtC+1IFqQACA6qQGBAAYn9SBAADjjxoQAKg2tZXceUtLSx544IGBx5s2bUpfX98e3aUCAIDqpQ4EABh/1IAAAOOTOhAAYPxRAwIA1aaiTRWtra3ZsmVLVq9enSRZunRpZs2alUKhUMmwAAAYYepAAIDxRw0IADA+qQMBAMYfNSAAUG1qSqVSqZIB3H333Wlvb8+BBx6YYrGYZcuW5bjjjqtkSAAA7AfqQACA8UcNCAAwPqkDAQDGHzUgAFBNKt5UkSSPPvpoOjs7M2PGjEyaNKnS4QAAsJ+oAwEAxh81IADA+KQOBAAYf9SAAEC1GBVNFQAAAAAAAAAAAAAAAPtbbaUDAAAAAAAAAAAAAAAAqARNFcB+1d/fn40bN6anp2e/7K+vry+PPvrowOPe3t5hPf+JJ57Itm3bhlznO9/5Tp566qm9ig8AAAAA2DdPPPFEvv/97+fxxx+vdCgAAADsB34PBIA942cm7DlNFcA++eu//ussWrRoj9fv7+/Pn/7pn+YrX/nKbtd94xvfmO9+97t55JFHcsIJJ+Q1r3nNc/7NnDkzy5cvH/S8VatW5d/+7d+SJD/84Q9z1lln5amnnsqXv/zlvO1tbxuySaKnpyevec1r8tOf/jRJcvHFF+cLX/jCkHF+6EMfysMPP5wkOe200/LHf/zHeeUrXznoX3Nz83MaL84+++z87Gc/G9jGpz/96YGxb33rW5k9e/ZucwTA7t19990544wzMnXq1Lz+9a9Pd3d3kqSrqytz585Na2trFi1alFKptEfb+z//5//k1a9+dV72spfls5/97EiGPqaUex6+8IUv5JRTTsm0adPyF3/xF3nsscdGMvwxodxzsMMzzzyT1772tfnud787EmGPKSM1BxdffHE6OjpGIuQxp9xzcMMNN2TWrFmZMWNG3v3ud+eJJ54YyfDHhF3NQfLsh7qvfOUrs2nTpj3enp/LlMu+vhePRTs7J4fK0/4eq0Z783NIXnfvzjvvzFlnnZWrrroqp59+eu68884k8lpOb3vb27Jq1aok8rqvOjo60tzcPPDvzDPPTCKvUCnOhX2zN+9pPFc56252ns9dHauJfA6l3L+/jHe7yqfjc++U+/dAxhfHQuWNhs8dGb7R8tkmwzNaPjtl71Xys9nxSFMFsE8KhULq6up2OrZhw4b8z//5P9PW1pYzzzwzZ555Zl796lenpqYm11133cCyM888M6effnpe+9rXJnm28SJJ6uvrUygUUlNTkxe84AW54447cvHFF+eCCy7IHXfckTvuuCOnnnpqampqBu33zjvvzNatW5MkDz74YE4++eQccMABedWrXpWDDz44l1xyyS5fz80335xCoZCjjjoqybNNI9dff/2QX9Ssq6tLfX39QMz//M//nK997Ws588wzc/vtt+frX/96JkyYkAkTJgx63iOPPJIDDjggF1xwQf7t3/4tN99880CzyMKFC/N//+//zVlnnZUNGzYMNQUADOHhhx/OpZdemvb29qxduzZHHHFELrvssvT19WXevHmZNm1aVq5cme7u7oFfQoby+OOP56/+6q9y7rnn5gtf+EJuv/323HffffvhlVS3cs/D9773vXziE5/I4sWL87WvfS1PP/30sJo8x6Nyz8Fvu+GGG9LV1TVCkY8dIzUH3/rWt3Lfffflve997whGPzaUew7uv//+rF69OsuWLcuXvvQl70V7YFdzkDz7M3bevHkDjed7ws9lyqUcPw/Hmp2dk0PlaX+PVaO9+Tkkr7v35JNPpqOjIzfffHNWr16dhQsX5mMf+5i8ltFtt92We+65J4n3gXJ48MEHs3Tp0tx///25//7786UvfUleoUKcC/tuuO9pPFc56252/dnCzo7VRD6HUu7fX8a7oT4Tc3wOX7l/D2R8cSxU3mj43JHhGy2fbTI8o+WzU/ZeJT+bHbdKAPtg/vz5pSVLlgy5zvbt20urV6/e5b8HHnhg0Pqf+tSnSi95yUtKzc3NpRe/+MWld7/73aUNGzaUSqVS6c1vfnPpS1/60sC6v/rVr0pPPvnkwONHH320dPLJJ5e2bdtWKpVKpfe///2lz33ucwPj//3f/136zne+U+rv7y/19/cP2u8vf/nL0syZM0vf+ta3Bi1/z3veU3rzm99c2rp166Dljz/+eGnbtm2lV7/61aX777+/tHbt2tLZZ59d+ulPf1oqlUql5ubm0pYtW0qlUql0wgknPCcv06ZNK/X29pZKpVLp6quvLt1www0DYz/+8Y9Lr3/964fIKgB74utf/3rplltuGXh87733lqZNm1b66le/WmptbS099dRTpVKpVPqv//qv0hvf+Mbdbu+zn/1s6eyzzx74GfLVr3611N7ePjLBjyHlnodbb7219JWvfGXg8YoVK0pnnXVW+QMfQ8o9Bzs89NBDpZkzZ5ZOP/300n333Vf2uMeSkZiDrVu3ls4444zSF7/4xRGJeawp9xzccMMNpUWLFg08Xr16delP/uRPyh/4GLKrOSiVSqW3vvWtpZtuuql0/PHHlx555JE92p6fy5TLvv48HIt2dk4Olaf9PVaN9ubnkLzu3s9//vPSv/7rvw48/q//+q/SSSedJK9l8sQTT5RmzZpVOvvss0srV66U1330zDPPlE466aRST0/PoOXyCpXhXNg3e/OexnOVs+5m5/nc1bFaKsnnUMr9+8t4t6t8Oj73Trl/D2R8cSxU3mj43JHhGy2fbTI8o+WzU/ZOpT+bHa92fnl5gJ24/fbbs2DBghx++OEDy37961+nvr4+d9xxx8Cyhx9+OHfccUeOO+64JEmpVMoll1ySRYsWDdzRYYe1a9fmwQcfzIknnjiw7IILLsicOXNy8cUX56KLLspJJ52UuXPnpq6uLj/5yU/y61//OjfccEOS5Jlnnsnf/d3fpbm5OUly/fXX51e/+lVe9rKXpb6+Plu2bMk3vvGNfOpTnxq0323btuUf/uEf8vKXv3wgxssvvzwvf/nLc8oppwxad+HChbngggvyjne8I3//93+f5z3veUmS6667Ls3NzampqUlHR0de9rKXJUm2b9+eYrGYurq6FAqF9PX1Ddre1VdfnRNOOCGlUil33313vvWtb+V5z3tePvvZzw5ceeLpp5/OIYccMozZAWBnTj/99EGPH3rooRx11FFZt25dpk+fnoaGhiRJc3PzwO0ph7J+/fr80R/90cBdkk488cT87d/+bfkDH2PKPQ+vf/3rd7o9dq3cc7DDhz70obzjHe/It771rbLGOxaNxBxcf/312bZtW+rq6nLvvfcOen/iuco9B8cdd1yWL1+eN77xjTnwwAOzYsWKzJo1a0RiHyt2NQdJ0tHRkSOPPDIf+chH9nh7fi5TLvv683As2tk5OVSe9vdYNdqbn0PyunuHH354Zs+eneTZzwlvvPHGnHXWWfJaJosWLUpbW1uefvrpJN4H9lVXV1dKpVLmzJmTRx99NK2treno6JBXqBDnwr7Zm/c0nqucdTc7z+eujtUjjjhCPodQ7t9fxrtd5dPxuXfK/Xsg44tjofJGw+eODN9o+WyT4Rktn52ydyr92ex4VVvpAIDqMWHChLzoRS/KV7/61YF/Z5xxRt7ylrcMWpYkdXX/r2erv78/SfKZz3zm/2PvzuOqqvb/j78Ph0GUQJxQ0zRTKRRNr1QOlQNlaZlDlpmV1/JGZqXgcDU1Fc2hTCrLG+aYmpoiZWpODZZp2WSUIUpOOJemgMCBw/n9wY/99chh9DC/no8Hjzp77WHtz97gOmvvz1qaP3++3c+uXbuM8my+vr6qX7++3N3dVa1aNVWrVk2ffvqpGjRooKlTp2rEiBGaN2+eNmzYoA0bNhjJG5L0wgsv6Pvvv9cvv/yi9957T/Xq1dN3332X42ffvn1GQoUkvfHGGzpw4IAmTpyY47yrV6+uFStW6PLly7r//vuNBJKUlBTVqlVLGRkZat26tcaPHy9JWrx4sXr06KH09HT16dNH7777rt3+9u/fL3d3d1mtVkVERKhv377KyMjQv//9b3366af69NNP9dZbbyk9Pf1aLhcA4CoWi0WLFi3SwIEDlZSUpAYNGhhlJpNJLi4uunjxYp77uHo7Ly8vnTlzptjqXBE54zpc6cKFC1q9erUGDhxYHNWtkJx1DdatW6ekpCQNGTKkOKtbITnjGpw8eVKLFy9Wo0aNdPLkSb322msaPny4bDZbcVe/QnDGNbjrrrvUqFEj3XPPPerQoYNSUlL0n//8p7irXmFceQ0kqWHDhoXeB/8uw1mc0SapaBz9TuYVp5IuK+8K+u8QcS242NhYdezYUbt27dL48eOJqxPs2bNHu3fv1ujRo41lxPXaHDp0SM2aNdOcOXO0ceNGubm5adKkScQVKCX8LlybovxNQ07ObHfDcTxzu1cl/g4UlDO+v+D/XBlP7s9r46zvgahcuBdKX1nod8S1Kc2+TRRNafedovDKQt9sZUVSBYACM5vNBV7XxeX//ry4u7vrwIED2rhxo5E0kP3zzTffaMKECTm2z8zMVFpamiIiIjR69Ght27ZNly9f1iOPPKKPPvpI8fHxMplMcnd3tztWzZo15ePjI0latWqV7rvvvnxH6920aZNWrFihIUOGqFOnTvL398/x0759ew0cOFCdO3fW5cuXJWX9Q1WzZk2lpqYqNDTU2N/QoUMVGRkpDw8PRUVFacSIEXbHO3bsmGrVqiWbzaZ169YZyR0LFy5Up06d1KlTJ4WEhCgjI6PA8QYA5C8iIkJVq1bVI488IrPZLHd3d7tyDw8Ppaam5rmPq7cryDaw54zrcKUpU6aoTZs26ty5s5NrWnE54xqcP39eb7zxhqZPn26XTIuCccY1iIqKUq1atbR48WINGzZMy5Yt0969e7Vr167irHqF4YxrsGnTJp08eVKbN2/Wd999p2bNmtl1bCFvV16DouLfZTiLM9oklUFecSrpsvKuoP8OEdeC8/f315IlS9S0aVONGzeOuF6jtLQ0vfLKK5o8ebK8vLyM5cT12vTq1Utr1qxRq1at1LBhQ02cONEYdIi4AiWP34VrU5S/aSgY/oY7V273alJSEvEsIGd8f8H/uTKe3J/XxlnfA1G5cC+UTXz3LV9Ks28TRVPafaconLLSN1tZkVQBoMCKMurtgAED1KZNG7Vr1y7Pn1atWmny5MmSpJUrVyo4OFj79+9Xly5d9Prrr+udd97Rn3/+qXvvvVc//vijXnnlFd1zzz3q0aOHw+P+8ccf2rBhg6KionTPPfcYP+3bt9f9998vq9VqrHv//fcrOjpagwYN0o8//qg333xTTZs21a+//mr81KlTR40aNdKMGTOMl36aN28uPz8/XbhwQd7e3nbH//rrr+Xn56cpU6bYLc9OxHB1ddV1110nX19fWSwWTZw4Ud9++60effRR9e7dW1999ZU2bNigjIwMu7oCAIpm165dWrVqlebMmSM3Nzf5+Pjo/PnzduskJyfLzc0tz/1cvV1BtsH/cdZ1yLZ27Vr98MMPdtPDIm/OugbTp0/Xww8/rFtuuaU4q1shOesanDlzRnfccYfRyeHl5aVGjRopISGh2OpeUTjrGmzcuFGPPfaYmjRpourVq+vll1/W1q1bdenSpeKsfoVw9TUoKv5dhrNca5ukssgrTiVdVp4V5t8h4lpwJpNJAQEBmjlzpnbs2EFcr9G7776rli1b5kheJ67O5e3trczMTNWqVYu4AqWA3wXnKsjfNBQMf8OLV/a9evbsWeJZAM76/oIs+fWJcX8WjrO+B6Jy4V4om/juW36Udt8miqa0+05ROGWlb7ayIqkCQIFlZmYqPj5eXbt2NX527NihpUuX2i2TZCQCuLu764033tAPP/yQ509ISIg8PDwkSXXq1NG0adPUpk0btW7dWi4uLvrggw/0zTffaNu2bWrfvr1effVVbdu2TdHR0TnqmZaWpv/+979q0aKFateurY0bN2rbtm3aunWrmjZtqrCwMLtZN0wmk2644Qa5urrKy8tL8fHxuvnmm+Xh4SEPDw+5ubnp/Pnzqlu3rt1xRo4cqczMTGVkZOi3334zlmdkZGjZsmWaMWOGjh8/rs8++8wo8/Ly0scff6wzZ87IarXq8OHDGjp0qLp06aL27dtr3rx5WrBggW677TYjnnv27HHaNQSAyuj48eMaNWqUJk+erKZNm0qSAgMDtW/fPmOdhIQEWSwWY7aj3Fy93R9//CE/P7/iqXgF48zrIEm//vqrXn31Vb3xxhuqVatWsdW7InHmNfj000/1wQcfGAmyP/74o0JCQhQZGVms51DeOfMa1K1bV2lpacbnzMxMnT59WvXr1y+eylcQzrwGVqtVf/31l/H57NmzxnLkztE1KCr+XYazXEubpDLJK04lXVZeFfbfIeKav927d2vWrFnG5+w+vyZNmhDXa7BhwwZ9/vnnRnv/008/1ZQpUxQdHU1cr8GMGTO0adMm43NMTIxcXFzk7+9PXIFSwO/CtSnK3zQUDH/DnSu3e7VevXrEMx/O/P4Cx/Hk/iwaZ38PROXCvVA28d23fCgLfZsonLLSd4rCKSt9s5UVSRUACuy6667TQw89pM8//9z46datm5566im7ZbfddpuRrebi8n9/Zh588EE9+OCD6tu3r/r27atu3bopNDTUKM9eNzg4WB06dDCWWywWeXt72yVCZDObzUpJSTE+22w2jR8/XmlpaVq8eLH+9a9/afr06ZKkJUuW6LrrrlNwcHCu55iZmalNmzapW7duxrK///5bVqvV4cs5P/30kwICAjRy5Ej9+eefkqR169apbt26ateunV5++WWdPn06x3Y7d+7UTTfdpCeeeEKhoaH64osvFBgYqMaNG6tdu3aqXbu2PvnkE+3cuVMdO3bMtb4AgLylpqbq2WefVXBwsLp166bk5GQlJyerXbt2SkxMNJLzIiMj1aFDB+PfmqSkJKWnp+fYX9euXfXjjz9qz549ysjI0KJFi9SpU6eSPKVyydnX4a+//lJISIiGDh2qFi1aGPtD7px9DXbs2KFPPvlE0dHRio6OVsuWLTVt2jQNGDCgJE+rXHH2Nbj//vv1xRdfaMuWLTp9+rTmzJkji8Witm3bluRplSvOvgZt27bVmjVr9OGHH2r9+vUKDQ1VmzZt5OvrW5KnVa7kdg3ymxWRf5dR3IKCgvL8O4AsecWppMvKo6L8O0Rc89ekSROtXr1aq1ev1qlTpzRnzhx17NhRnTt3Jq7XYOXKldqwYYPR3u/atatefPFFLV++nLheg1tuuUURERHau3evdu/erfDwcPXp00cdO3YkrkAp4Hfh2hTlbxoKhr/hzpXbverp6Uk88+Ds7y+VXW7xvPnmm7k/i8DZ3wNRuXAvlE189y37ykrfJgqnrPSdonDKSt9spWUDgGsQFhZme+utt3Itf/LJJ22ff/65zWaz2R599FHb8ePHjbLo6Gjb6NGjbTabzfbOO+/YZs6cabftoEGDbHv37rW9/fbbtvvvv9/Wq1cvW69evWxt27a1devWzdarVy/bAw88YOvfv7/NZrPZkpKSbCNGjLB1797dlpCQYLPZbLbU1FTbo48+anv22WdtDz/8sO3y5ct5ns+bb75p69Gjh81qtRrLfvvtN1vHjh0drj9kyBDb2rVrbRs3brSNHz/e1r17d9uRI0dsqampduu1bNnS+P/Tp0/bWrdubdu3b58tKirK9uKLL9pGjhxpe/rpp20RERG21157zTZ58mRbv379bCdPnsyzvgCAvG3bts3WvHnzHD/Hjx+3bdu2zdaqVStb+/btbbfddpstLi7O2K5Lly62bdu2Odzn8uXLbS1atLDdfvvtti5dutjOnTtXUqdTbjn7OixevNjh/pC74vhduNKgQYNse/bsKc5TKPeK4xp88cUXtoceesgWGBho69mzp+2HH34oqdMpl5x9DVJTU23h4eG2Tp062Vq0aGEbNGiQ7ejRoyV5SuVOXtcg29WfbTb+XUbJyOvvQGV29e9kXnEq6bLypqj/DhHX/O3cudN2//3329q0aWN74YUXbH///bfNZuN+daaxY8fa1q1bZ7PZiOu1ev31123t2rWz3X333bbw8HBbcnKyzWYjrkBp4Xfh2hTlbxocc1a7G1mujmdu96rNRjxzUxzfXyqzvOLJ/Vk0zv4eiMqFe6FsKO1+RxROWerbROGUlb5TFF1p9s1WRiabLZ/hAAEgD6GhoWrUqJFeeuklh+VPPPGEhgwZoi5dumjkyJE6evSoXXmnTp0UGhqqefPm6fLlyxozZoykrNkpHn30UU2dOlWBgYF22zz33HN67LHHdNddd9kt37x5s9auXau5c+fK29tbkvTDDz9ozpw5OnDggNq0aaPRo0fr5ptvzlHPxMREvf7669q+fbuWLl2qpk2bKjk5WYcOHdLatWt19OhRLVu2zG6bvXv36sUXX9SOHTtUtWpVWa1W9ejRQ5KMmTqyHTp0SL/++qtcXFwUEhKiqlWr6q233tLRo0c1ePBgNW7cWG+//bYWLFigjIwMhYaGatq0afrkk080b948tW/fPr9LAQAogjNnzigmJkZt27ZVjRo1Crzd0aNHFR8fr9tuu01eXl7FWMPKoajXAc7DNSh9XIPSxzUov/h3Gc7C34GCyStOJV1WkRDX4kFciwdxLR7EFSgd/C4UD+J67fgbXnKIZ+Fxf5Yc4ll43J8oCO6FsonvvuUX16584rqVT1y34kVSBYBr8uyzz6pJkyYaO3asw/IBAwbo2WefVZcuXXLdx8KFC7VmzRqNGzdOnTt31pkzZ/TEE0+oc+fOGjt2bI7phP7973/r8ccfV3BwsMP9ffPNN9q8ebO+//57+fj46Omnn1a3bt30wQcfaMmSJfL09FSbNm00aNAgBQYGKiUlRY888oiqV6+uadOmqVGjRpKk9PR09enTR35+fho5cqRatmyZo97XXXedHnnkEWNZ165dtXjxYmMf2QIDA7Vnzx7ZbDa98cYbGjZsmGrVqiVJ+vjjj/XAAw/IbDZr+vTpMplMGj9+vKSspJC2bdvKxcUl1/gBAAAAAAAAAAAAAAAAAAAAKBqSKgCUOovFIjc3N5lMJqfsb8+ePfrll1903333qXHjxnZlVqtVv/76q7799ls99dRTxiim58+fr/RZdgAAAAAAAAAAAAAAAAAAAEBlQ1IFAAAAAAAAAAAAAAAAAAAAAAColFxKuwIAAAAAAAAAAAAAAAAAAAAAAAClgaQKAAAAAAAAAAAAAAAAAAAAAABQKZFUAQAAAAAAAAAAAAAAAAAAAAAAKiWSKgAAAAAAAAAAAAAAAAAAAAAAQKVEUgUAAAAAAAAAAAAAAAAAAAAAAKiUSKoAAAAAAAAAAAAAAAAAAAAAAACVEkkVAAAAAAAAAAAAAAAAAAAAAACgUiKpAgAAAAAAAAAAAAAAAAAAAAAAVEokVQAAAAAAAAAAAAAAAAAAAAAAgEqJpAoAAAAAAAAAAAAAAAAAAAAAAFApkVQBAAAAAAAAAAAAAAAAAAAAAAAqJZIqAFwzm82mzMzM0q4GAAAAkCer1VraVQAAAKiUjh07ppdeekn//PNPgda3WCzG/1utVn3zzTdOb8tduHCh0NskJiYqIyPDqfUAAACo6MpKn1xZqQcAAAAAoGwiqQLANYmJiVFQUJC++eab0q6K0yUnJ9s9wC2IEydOKC4uLs91CvrwGAAAQJJiY2P1448/FmnbxMREJ9emaE6cOKFz584V+3Hmzp2rTZs25Vhus9n09NNP6/XXXzeWZbf1iiM5+J9//pHNZivQuitXrlRsbKxTj//rr7/q5ZdfVlpaWo6yorw8CAAAkJ8ffvhBX3/9tb799lt9++23+vLLL3Xu3DmlpqbKZrOpXr16+uWXX7Ro0SJjG4vFotTU1Bz7unz5srp3764NGzZIks6ePauQkBBt3rzZafWdP3++Bg8eXOA2W7Y5c+bopZdeKnSfIQAAQFGkpaVp0qRJOnPmjLHsgw8+0Isvvqjz588XeD+ffPKJ3njjDafWbe7cufroo4/yXW/79u3617/+pfj4eKcevzDOnj2rO+64Q2vWrCm1OuSlsP11VqtVv/zyiy5duuTU/QIAAABAZeda2hUAUH5YrVZlZGTI3d1dJpNJktS8eXNlZGTo+++/11133WW3blpamjw9PWUymRQXF6fatWvL19c3x37T0tJ011136e2339Ztt92WZx1mzpypbdu2ycvLK9d1UlNT1ahRI0VGRhbxTKWLFy/qmWeeUc+ePTV48OACb7dmzRr98ssvWrp0aa7rjB49Wg0bNtTEiRONOAIAAORm0aJFSkhI0MqVK41l586dyzGymq+vrzw8POyWjR8/XomJiVq8eLHR7khJSXGYSGAymVS1alW7ZQsXLpSrq6ueeuopSVkvuB09elSurq5ycfm/HP3MzExlZGSoQYMGuu6663Lse/r06Tpy5IjWrVsnT09P/f333zp37pzc3Nzs1sse9dff3z/fuDiyY8cOZWZmqkePHjnO7b777tPEiRN1xx136O6771ZQUFCeo9OtXr1at956a6HrcOLECf373//W6NGjdc899+S7/qxZszR+/HjdfPPNhT5Wbk6ePKm1a9fqlVdesVv+66+/6rnnntOiRYuKHGMAAABHPv30U/3555/av3+/atasqdq1ays4OFgzZsywW++9997Te++9Z3xu3769lixZYrfOypUrde7cOaMtVq9ePT366KN644031Llz5zz7BQsiMjJS69ev14IFC4w28qFDhxQSEqIGDRrof//7n6pUqaLk5GRt3bpVffr0MbYdPXq0XnzxRY0YMULvvPMOfXsAAMAp/vrrL3Xp0sVuWUREhLp166YjR45o9uzZmjNnjiTp+++/17lz54xnrpcvX9aePXvk4eEhk8lkJI22a9dOJpNJ7u7uql69uiIjI9W7d281adJEmZmZslgsMpvNcnNzU1RUlGJiYuTq6ipX15yvkKSnp6tmzZp67rnnjGWOBplLT0+XzWaTu7u7saxFixZKSUnR999/r5tuuslYnpGRIYvFkqM/UpLGjRunqKioPGP20UcfqVWrVjmW22w2paWlGfGQpDp16sjLy0vff/+9HnvsMWPdzMxMpaWlyd3dXWaz2Vh+9uxZ9enTRzVq1LDrA73a33//rddff1133HFHnnXNS3R0tN544w1t3bpVVapUKdA2mZmZevTRR7VixQq1a9fO4Tr0AwIAULGlpaVp+vTpev755+Xn5ycpK/l27969mjx5smrUqFGg/XzyySc6dOiQQkND8103OTlZixYt0n/+858cz6Sv9NNPP8nX11c33nij3fLz5887rFdsbKySk5P1r3/9q0B1Li/++ecf+fj4FKr/8PDhwzKZTGrcuHGu61y4cMHh+5cAnIOkCgAF9sMPP+jJJ590WLZgwQItWLAgx/IdO3aoQYMGWrhwob7++mtNmzZNnTp1UmpqqtHAstls+ueff4xEDClrpLq0tDTVqlXLbn8Wi0V33HGHpk+fnms9lyxZoh07dhT1NJWWlqbBgwerRYsWGjRokLH83LlzeuKJJ+zWHTNmjDp16iQ3NzeZTCa5urraPdh11CE4Y8YM/ec//9H06dM1YcKEItcTAABUDh4eHvL09LRbNnDgQB07dsxu2XvvvafOnTsbnxMTE/Xll19q+vTpdp01jz/+uH7//fccx6ldu3aO2ceaNm2q559/XrVr11aPHj30559/asCAAXJzc5OLi4vxoDYzM1Pp6emaP3++7rzzTrt9REdH65tvvtHq1auN8/jss880e/Zsmc1m48GkzWZTenq66tSpo+3bt0uS9u7da9cey7Z7926HnW65PfiVpP79+2vbtm06cOCA7r77bm3evNl4cHzlw9FTp06pf//+ORI+CuL8+fMaNGiQ+vbtW6CECklyc3PLtc5XevLJJ/Xdd9/ZLRs4cGCOxAlJxv6u3m+rVq00fPhwDR48WKtWrVKjRo0KVEcAAID8TJ48WZLUqVMnjRs3Tp07d5bFYtGDDz4oDw8PjRkzRs2aNdN//vMfY5vMzMwcyb7//POPFi1apIEDB6phw4bG8uHDh2vTpk0KDw/XrFmzilzPH3/8UYsWLdJHH31kt/9ly5apW7du2r9/vz7//HP16NFD69evz/GSWrVq1TR//nw9+uijWrx4sYYMGVLkugAAAGRzc3OTxWIxnqt27dpV1apVkyS9+OKLCgkJ0dmzZ+Xt7a1du3Zp3rx5Rn/fpUuX9P777yszM1M///yz2rVrp5o1a2rDhg1av3693XHuv/9+u8+zZ8/WQw89JF9fX9WvX99hP5XNZpPVapWXl5e2b9+u2NhYDR8+3OG6GzZs0Lhx4xye4+TJk40245UOHDiQY5m3t7fuueeeXJ+j3n333XaJG1c6ceKEunXr5rDs+PHjDme5XbZsmW6//Xbjs6urq/766y+tW7dOdevWdbgv6f8SV4pq48aNeu211zR//ny7hIq5c+dqy5YtxueGDRvqnXfekdlsNvozJRnPpG02mywWi5FEI9EPCABARVHaybdXSklJ0ebNm3X58mWNHTs21zq/+uqr6tixo0aOHGm3PCQkRE2aNNHMmTPtlm/ZskVbtmxx2E670iOPPKJ9+/bluU62Jk2aOJz19qWXXtIff/yR49n7lZKTk9WhQwdNnTq1QMdypLCD8GWbN2+ePDw89Oqrrzost9lsevLJJ9WrVy8NHTq0yPUDkDuSKgAUWOvWrbV9+3a5u7vrwIEDSklJUdu2be3W2bRpk/z8/NSmTRulpqYa2bAzZ87U0qVLNWPGDIWFhWns2LFyc3OT1WrV5cuXJUmDBw9W1apVZTabZbVa1bZtWy1cuNBu/y4uLtqyZYt+/PHHXOt56dIlNWvWrMjnOX36dNWrV0/Tpk3LUXb48GEtXLhQNWvW1NChQ7V//367UVmyXTnih7u7u2JiYozPtWrV0sKFC9WnTx8FBQWpe/fuRa4rAACouC5duiR3d3fZbDbZbDalpqYqPT1d1113nTw8PDRp0iQ9/vjjunTpkoKCgnI8SPzss8/UrFkzPfjggzp37pxq164tKetFsOHDh+uFF14w1v3444/15ptv5qjD3XffrREjRmjevHnq3r27WrZsqd9++63A5/DDDz9o4sSJmjRpkm655RZj+eOPP67HH3883+2zR4hbvXq16tatq++++05jxoxRenq6jh07JldXV5nNZplMJplMJmVmZiolJUUnTpyQp6enatSooU2bNmnu3Ln65JNP7GYyy+1BYnaSb2GTKmw2m8aOHavg4GC72BbkHAvy8NXV1VX33Xef8WD6ueeek6urq06fPq2MjAy5urrKZDLJxcVFSUlJkrKSgtPS0nT99dcbsXzssceUlJSkkSNHatWqVbk+gAYAACisY8eO6Z9//jESEdzd3Y0X+vbt26ewsDBVqVJFI0eO1HPPPWfXPsw2ZcoUZWZm6vnnn7db7uvrq6lTp2r48OGqV6+eRowYUaQ6Tp8+XePGjbNLqJCkhIQEPf300/Lw8FBCQoJsNpvi4uIcJvi6u7tr7ty56tevn/r16ycfH58i1QUAACCbowE3XF1ddfz4cbm6uuqNN97QyZMn9emnn6pKlSqqWrWqfvvtN7Vs2VJ169bVypUrtXPnTo0dO1bLly+XyWRSYmKixo4dq/Pnz2vYsGEKDw9XixYtJGX1Y2VkZBgv8nfp0kUBAQH6/PPPHdavZcuWatOmjRYtWqTvvvtOw4cPd7jevffeq9tuu01ubm7au3evatasqaZNm9qts2bNGt16661q0qSJ0Q/n6NyrVKmSZ0JDbjNI1K1bV9u2bZOHh4dOnjyp+Ph43X333Xbr7Nq1S+np6brrrruUlpamOnXqONz3E088YTeDxdWSk5PzLM/L0aNHNXXqVC1YsCDHjBsXLlwwBrvZsWOHtmzZolGjRtklWkjSQw89ZPc5LCzMLomZfkAAAMq/0k6+Xb9+vQ4cOGC0V1u1aiWr1arXX3/daFM2bdpUd911l9zc3FSjRg1VqVIlR7vj77//1u+//65///vfOnbsmDw8PIw2V/ZgxefOnZMkYzA/b29veXt7G/twdXVVSEiIhg0bZix77LHHdOedd9otmzdvnr7++muH8UxNTVXv3r3t1r/a9OnTlZiYmGt5fnIbhO+3337TqFGj7NZ9/fXX1bx5cyNebm5udoM5p6enKyMjw0gCMZlMeuuttzR06FC5urrq3//+d5HrCcAxkioAFFiVKlWMB47PPfecEhMTtXHjRruGUHR0tC5duqTNmzfbLTeZTBo8eLAGDBigKlWq6L777pMkjR07VmfPntW3336rNm3aSMoaZTm3h5EWi0U333yz+vbtm2s9d+3apVOnThXpHOPi4rRt2zZ99tlnOcqyz6dp06aqW7eu3N3d1axZM+3du9cY4fjdd99VfHy8kQWcnp7usEPQ19dXM2fO1NixY9WtW7cCjU4MAAAql6CgILvPrVu3lpQ1dXt2EsGVrnyAZ7PZtHz5cr300ksymUz673//q+rVq2vOnDmFftA3ZMgQPfLII4Xe7u+//9awYcP06KOPqn///tqxY4c6duxY4Gnspf97oFyrVi3VrVvXGFklJiZGw4cPN0Zny+50S0tLU3x8vJYtW6YBAwZo0qRJMpvNOnbsmJEkkZKSkmNE5Oxj5TVVbX6+/PJLnThxQu+8806e6x0/fjzHS3zZbDab/vzzT910000O6+fp6Wk8TM4eDXDkyJH65ZdfjDi4uLgY5xccHKz09HR9++23djN7PPPMM9q5c6eioqI0YMCAop4yAACAnc2bN+u2226ze/B34MABvfnmm1q4cKHRxrnzzjs1dOhQrVy5UjfccIOxbnR0tDZt2qR58+Y57Bu85557NGbMGM2ePVsJCQmaPHmy3bHy8+uvv+rs2bPq2bNnjrLMzExjJjar1aqdO3fqrrvuynVfjRs31u23367169dr8ODBBa4DAABAYSxYsEBbtmyxSy6oXbu2RowYIZvNpq+++spY/tNPP+mOO+4w+gyvu+46SdKoUaPk7++vtm3b6tChQ5o/f75ee+21HO2o48ePKzw8PEdf0XfffaeuXbuqTZs2cnFxybOP0MvLS15eXrJYLJo1a5ZuuOEGrVixwijPzMzUBx98oK+//lqrVq3KdT9WqzXf2Djq35Oy+tCy25jTp0/Xnj171LVrV7u+se3btxvLswcIvFJ6erqkrIFhrnyR72pTpkwx1i2sOXPm6KmnnsqRUCFlPZP28fHRLbfcoj/++ENms1mvvvqqZs6cacS/VatWioqKUtOmTWWz2ZSSkuIwaYJ+QAAAyrfSTr6tUaOGGjZsaDyLvf766yVlPavdvn27XnjhBdWsWVMTJ05U8+bNNWrUKIfPsT/88EN5enqqW7duxgxh2e0ai8WijIwMI7EjIyND6enpmjhxol37xWw2O3yee/UyFxeXXN/DM5lMWrZsmT755JNcY37+/HkFBwfnWp6XvAbhy8jI0LFjx7Ru3TpJUu/evfXll1+qX79+OfazdOlS4/9vvPFGu/cYb7zxRi1cuFCPPPKI2rZta7xDAMA5eIsXQJGMGTNGTz31lD766CNjlOEjR45o//79eu211+w6bTIzM3X8+HE1atTIaHTZbDZFRERo7969WrVqle68806Fhobqo48+Up8+fTR16lR16tTJ2EdKSoo8PDz08MMP6/jx43nWrWvXrqpevbpsNpvS0tIK9eLeypUr1adPH4cPbh2NIOzm5qbDhw/r888/18iRI+Xq6ioXFxd5eHjo6NGj2rJli55++mmHx7rjjjvk6+urL774olBTfQEAgMph586duu6669StWzcFBARo/vz5SktLM0buyG00NinrhTRXV1d17dpVx48f1+7du+1mokhPT1dycrLx2WKx5NiHxWKRzWaTm5ubvL29tWLFCn300UfGy/tXto1sNpsyMzOVkZGhYcOGqXv37qpZs6YmT56s+++/X7t379awYcM0duxYDRw4UGlpaXJ3d3d4Dunp6UpPT5evr2+u59ihQwfFxsbmWN63b1916dJFL7zwgjGFbXa7NLvzrHfv3jpy5EiObe+//35FREQ4PF5BrFy5Uo8//nieI75ZLBb16tVLAwYMcDgt7sKFC7VgwQLt2LEjx4NtR7EwmUxauXJljnbqF198oZCQELvZ0q7e7qmnntJbb73Fw1QAAOAUaWlpWrFihc6cOWPM4Prll1/qmWeekcVi0fPPP6+kpCQlJSXJ09NTVapU0dChQ7VmzRr5+Pho165dmjBhgh544AE1b95cJ0+edNj+6dmzp12/Ynh4eJ7JD1fat2+fOnXq5PChaq1atfTnn3/q6NGj6tixoz7//HO98soree6vc+fO2r17d4GODQAAUBD33nuvpP9LKnB3d1dwcLCmT59ut15UVJTeffddu2WbN2/OMYPEu+++K5PJpDlz5sjV1VWNGjVSUlKSxowZozfeeMOuveXu7i6z2axJkybZ7ePll18u9OBw7u7uGjFihMaPH68vv/xSnTt3liTt2bNHFy5cyHdQksTERG3YsEEbNmzIdR1H/ZlXCwsL0/33368FCxYYfXFJSUn65ptv9Oyzz6pmzZp266enp8tms8nLy0tvvPFGvvt/9dVXddNNNxmJFQWd+fbMmTP6+uuvNXXqVIflV/f1ubi4yMvLS/Pnz1ebNm10xx13GMfz8PBQVFSUGjRooNtuu83hvugHBACg4imp5Nu7775bX3/9tebOnatevXrpoYceUkpKihYsWKDp06cb77tFR0fnOnhdSkqKPvzwQ/n6+srd3V0///yzXfm7776r3bt364MPPsjznPN6Nl7QddPT0xUUFKQuXbrkuu2nn35a5MTZvAbhy36GfOXsvXfddZeeeuopubm5yWQyacKECfL19VVYWJikrDavo7o0atRIY8aM0auvvqrVq1cXqa4AHCOpAkCBWSwWJSUlSZKaN2+uvn37qnnz5jp//rykrBfJ6tatqw4dOuj8+fPKzMyUm5ub9u3bp2HDhumJJ57QCy+8oMOHD2v27Nm6cOGCli1bZtdhNXv2bC1evFjPP/+8brnlFr399tuqXbu27r//fl28eFFVq1aVl5eXwwSHq+t66dIl1axZM8dUqHn59ddfHb7glhuTyaT4+Hh9+OGHGjlypF3ZiRMnNGfOHA0dOjTX7e+++27t27ePpAoAAJCDn5+fYmJijLaWi4uL0cmVmZmZ56hwW7duVUJCgrp27apLly6pffv2du2N9957T++9957dNtkji2R76623tGDBAklZM5ZFRUWpYcOGcnNz059//qmpU6dq2rRpatiwoZFUkZ6erqZNmxr76NGjhywWiyZPnqx77rlHQ4YM0YcffqjJkyfnee5Vq1bVzz//bLT5unXrZlee3RF25MgRNW7c2OE+cmsvenh4aOLEiRo0aJCx7OWXX1ZGRkaedcrPr7/+mu+Ld7t379bly5dznE+2vn37av78+VqwYEGOtqUkrV+/3m463qCgIJlMJiUnJys5OVl16tQpcH3vuusuvfDCC0pNTS1UEjIAAIAjb7/9ts6cOaOwsDD1799fd9xxhzw9PY2Zw+rVq6caNWqoRo0acnNzU3p6ukJCQnTs2DHVq1dPL774ojp16qSmTZsaLxPm5sEHH9TKlSs1efJku7Znfk6ePOlwJGIpqx327LPPqkaNGho4cKCSk5PzfVDr5+dX5NlyAQAAHNm6dasaNGigrl275rvulX1fO3bs0JEjRzRq1CiNGjVKHTt21ODBg/Xmm2+qQYMG6tatm5KSkmSxWOTt7a20tDS99tprds9E09LSlJ6err59+9od5+TJkw5Hz3UkJSVFKSkpkqROnTrpgQceUJ06dYz+zVWrVqlVq1a68cYbdf78eVmtVnl6euYYXGT06NE5Rva92pUzT1wpPT1diYmJkrJeGHz88cd12223GXXIHpW4Z8+eOn/+vGw2m0wmk2rUqKH169dr2rRp8vDw0HXXXZfn4ClS1kAziYmJSk5O1pQpU9S7d++8A/T//f7772rZsqWqV69eoPWzffTRR6pWrZqRVHHl8g4dOjhMqpDoBwQAoCIozeTb9u3bKzMzU6tXr1ZERISqVKmiQYMGFfhdt8WLFyspKUlVq1aVJG3YsMGuHZr9nDkgIMBY1r17d82dO9duPyaTSfPnz1dkZKSxLD09XbGxsXbLrFarWrZsabdt9mDOQ4cO1d9//51nffv166d69eoZz75zSxZxJK9B+Bw9u/bw8NDPP/+sgwcP6umnn5bZbJbZbJaHh4d+++03/fLLL3bPtK/Uq1cvzZkzR/v377eLHYBrQ1IFgALbtGlTjoSDqKioHOt17NjR+P+QkBCNHDlSCxYs0OTJk5WUlCRvb2/deuuteu6551SlShVZLBY9+uijqlGjhkwmk4YMGaKuXbvq559/Vu3atSVlZXJK0ueff64zZ87kW1dPT88Cd1xdKa+Hq7kxm82qVq2aw+VmsznPBJA6derop59+KnQ9AQBA5fDxxx9Lks6ePasePXpo8eLFuv7662WxWPJ8qPfcc88pNTVVPj4+GjBggMaPH29XPnz4cLsHkx9//LHdTBaSNGTIED366KP6/fffNWnSJN1000266aabJGVN6XrjjTfq4Ycflslk0q+//upwqnpJmjZtmo4cOWJ0fPXq1Utdu3Y1Rr+TsqZ8XbNmjdavX6/09HQjwSG7w2716tWqW7euvvvuO40ZM0Ymk0m7du3SM888ow0bNhTqZTqTyZRjpg6r1Zpv0m5eLl++rH/++SffpIbNmzerYcOGateuncPyGjVqaMiQIXr//ff15JNP2iUfu7i46L777tO4ceMkZV3j7Do//fTTqlevXo7Oxby4u7urevXqOnXqlG688cYCbwcAAHC1kydP6v3331ejRo1kNpuNdqqLi4vMZrOioqI0b948JScny2w2680335SPj48WLlxo7OPDDz9Uo0aNZLVaNXDgQJ0+fVq9evXSokWLdOuttxrrPfzww7r++uvVqlUrh/2SeXF3d7drA16pQ4cO+vLLL1W1alW99dZb6tu3r3r16iUpa+Q/R/2FSUlJBR6NGAAAoCgyMzOVmpqqc+fO2S1PTEw0XqhLTEzUa6+9Jilr5tvNmzdrz549ateunaZOnapGjRqpTp06qlGjhnx8fGQymfTzzz/rf//7n10fY4sWLYyEg6v5+voWqL4LFy7U22+/bbfs008/zbFe+/btjf+fNm2a+vfvb1de2GSDKzl68WzZsmU51rvyJcAHH3xQr7/+uh555BE98sgjOnv2rHbs2FGg4wUFBRWqb1KSTp06VajBUbLl9kza1dU1zwF46AcEAKD8K83kW1dXV/n5+cnHx0e+vr4KCgrSggULdOTIEQ0bNkxNmjTJtS4JCQlasGCBHn74Ye3cuVNSVtvkuuuu03fffScp50wVL7/8ssNZyWw2m5577jm7Z9x9+/ZVly5d7JbNnTvXbnZZi8WioKAgubm5qVq1aqpWrVq+z4VTU1N16dIltW7dWosXL85z3SsVZBC+K5lMJu3bt0+ff/65nn76abuyP/74Q4sWLco1qcLNzU3t27fXvn37SKoAnIikCgAFZjabVbVq1QJ3ImVmZhodce3bt1d0dLTS09Pl7e0tKWuEkn/++cdoqGSPumuxWLRt2zb16dMnxz5XrFghk8mkHj16GMvGjRunESNGGA83f/zxR+3evbtISRVubm65PlzNTfYIJkWRnJzMw1cAAOBQUlKS1q9fr/r16xsP2UaPHq3ly5crOTnZ4QO0bNkJDmFhYXrssceMZIjCyB5J+OTJk3ZtnczMTEVFRSkkJMRIqBg4cKCWLl2qf/3rX3b7WLJkiZEY4uqa9fUzu7PqSh4eHnJxcTHaiVceS5Jq1aqlunXr2j3Abd++vZo2bar58+drzpw5hTq3mTNnaubMmXbLHLU9C8rV1VUmk0mXL1/ONdklKSlJW7Zs0ZAhQ/Lc11NPPaWlS5fq/ffft+uwzMzMlKenpzGN75VtyKeeekqhoaEaPnx4ga+1zWbT5cuXaYsCAIBrVr9+fc2YMcN4MHqlixcv6vDhw7LZbGrXrp3Wrl2r06dP55glrHnz5naff/rpJ5lMJrVs2dKu7fjXX3+pfv36Rapn48aN80zEqFmzpi5evCiz2axt27YZdVq/fr1CQkJyrB8XF8dLaQAAoFi5uLjoq6++0ubNm43+p/T0dFWtWlW1atWSlJUwYLPZJGX1F7m6usrFxUVVq1bVH3/8IUlq166dMZDJ448/rtmzZ+eYxXbo0KFKT0/PtS4TJkzIt76urq5q0qSJVqxYUaDzs1qtxojFktSyZcscdahWrZp++uknRUZGOuwDvOuuu4zZdiUZyQWfffaZfHx88q2DzWbLMUPZyZMnNXnyZE2ZMsXo69u+fbvOnDmjxx9/3Fhv1qxZGjt2bKGTKoryPFrK6h8syjNp+gEBAKh4Sir59rXXXtPmzZtlsVg0YMAAbdiwQV5eXnrxxRc1d+5cPfjgg3k+p01JSVH79u3Vvn17o+8w+/lvUc65KNzd3fXbb79JypolIykpKd9tatWqVeCZOLIVdBC+q+U3mHNemEkXcD6SKgAU2KVLl+Tt7Z3rdKr5OXz4sDw8PIyX5apUqaKFCxfq9ttvtztGUFBQri+jubm56ccff9TRo0ftlq9evdroCMrvJcO8NG7cWHFxcWrRokWu61gsFqWlpclms8lms8lqterixYuaNm2afvrpJ/31118KCQnRX3/9ZXRi5iYuLk7NmjUrUl0BAEDFtnjxYnl5ealjx446deqUxo8fr3Xr1iktLU1//fWXMaNXblatWqUffvhB69ev159//qkLFy4YSQ+XL1+262QrSOdRtjVr1qhKlSrGyL2tWrXS448/rtGjR2vDhg1GO+z777/XjBkzNGHCBE2bNq2wpy/p/6awvVr2w87HH39cU6dO1fDhwwv1QtvEiRPtRvV4+eWXcz1WQbi7u6t+/fqKi4vTbbfd5nCd6OhopaSk5Jv46+XlpQEDBuiDDz5QSEiI8fDXUUdhdluze/fuql27tt577z3Nnj27QHU+duyYTCaT6tWrV6D1AQAA8tKnTx+HSRWXL19Wo0aNZDKZVKVKFVWpUkUuLi45Xly72o4dO3TzzTfbvQh3+fJlXbp0yUgyLaxOnTpp4sSJOnr0qBo1auRwnXXr1qlfv35Gn6XNZlNMTEyO9TIyMhQdHa2JEycWqS4AAABXyk4k6Natm93yCRMmaMKECerdu7f69eunatWqafny5XaJoo8++qj8/f31/PPP59hvfHy8GjRooE8++USLFy/Whg0b9OuvvzrsZ4qNjdXo0aPVokUL7dq1S5s3bzb69AYNGuRwtOCrXbp0Sb6+vkV+luzm5qYZM2YYI+3GxMQYM7O6u7srMDBQs2bNMtZfsWKFzpw5Y7ePxMRESVLDhg2NQV6KUg9Jev/9940khosXLyo9PV3z58831ktKSsr3RTdHGjdurIMHD+a5TmZmptLS0uySkTMzM7Vx40b9+uuvkqRXX31Vbm5uOnDggO64445c90U/IAAAFU9JJd/27NlTnTt3VrVq1RQVFWW0Cb/88kvdfPPNeuyxx9SyZUtt2rTJYT2bNWumefPm6fPPPzeWWSwW/fPPP/L397db98rP3bt3z7GvjIwMpaen2yWn2my2HMuuHszlSu+8844CAwONmdMuXLig2bNn50imTUxMLHRSRUEG4XOkqImzUlZ7NL93BgAUDkkVAArs/PnzqlmzZpG3X7hwoTIyMvTmm29KyprCavDgwYVqGKSnp6t169Y5Zqp49NFHc8xUURSdO3fW2rVr8xyp+MpGU2ZmpurWratu3bopPT1dbm5u8vb21r/+9S+dPn1aMTExyszMdPig+OLFi9q+fbueeeaZItUVAABUXEeOHNHChQv14osv6siRI5Kkm266SWPGjDFG+m3YsGGu2+/fv1+vvPKK3Nzc1KFDB3l6eiogIMAYJW7RokVatGiR3TbXX399vvXauXOnZsyYoTvvvFOvvfaaLly4oL///lunTp3SiRMnNHfuXGPUun/961+aNWuWunbtWuSkiuyOvr/++kuurq66cOGCpP9LMLj//vtltVoLVPdsuY1ikl8ybH6y25GOkiosFosiIyPVsWPHPK9btoEDB2rBggWKjo7WU089ZdQ7JSVFp0+flpTVLs4+FxcXF/33v/8t1Kh4a9euVceOHYv04BcAAKAgMjMzdfjw4UIPKBIfH6+PP/7YbtYuScYLc0V9Gax27drq2bOnZs6cafcyXDar1apjx44Zybp5tQ8XLVqkKlWqqEuXLkWqCwAAwJX++usvSVkvp3l7e+uBBx6wKz9z5ozq16+vixcv5ti2Vq1auvPOOx3uNyUlRY0bN1ZGRoaqVKkiKasfyVF/kKurqy5evKi//vpLiYmJysjIMOpls9nk6uoqm82W5wjB1/os2cXFRfXq1TNmYs3uE5SyRur19PS0m6XV19fXqGO2v//+W9WrVy9yQoUk42XBZ555Jt+ZKooyUMutt96qxMRE7d6923ih72pRUVFG8swtt9wiKWtWjoyMDOPcmjVrpvr16+vo0aN51oN+QAAAyq/STr7NTnbdvXu3VqxYoTFjxkiS/vjjDyUmJmro0KH5nsPV78w98MADslqtCgoKUp06dTR16lSlp6crPDw8120kKTU1Ve+9916OGdf279+fY1nr1q0d1sXNzU1ff/21fvnlF0n/N8Df1cm02eddGAUZhE+S0tLSjP/Pbl8fO3ZM4eHh+vnnnyVlDVx94sSJfJ9fHzx4MM9jASg8kioAFNj+/fvVsmXLIm2blpamr776ym7Kr8zMTC1ZssThTBW5NQqefPJJnT17NkfHkNVqNZbdeuutdvssjH79+um9997T1q1bde+999qVZTccN27cqDp16qhXr17KzMxUx44d1bFjR0nS22+/rYMHD2ro0KE6e/asbr755lzP5Y033tCtt96qm2++uUh1BQAAFZe3t7fuvvtuDRo0KEdCwp49e9S4ceM8R3wLCAjQhAkT1LRpU/n7++dYd/jw4XrhhReMzx9//LGR+JoXHx8fVa1aVenp6bJarbrlllt0/fXXq27duvr555+1dOlShYaGqmrVqjKbzerdu7cuXbpUyLP/P9ntu0cffdThch8fH7sHmQWRmpqq8PBwu445KStB41o88cQT6tOnjx5//PEcHXVnzpxRo0aNNGTIkALtq27dupozZ446depkLMvMzNRnn32mzz77zFgWFBRk/P+VScf5OXr0qFauXJmjgxEAAOBaZGZm6o033tCbb76pqlWr6vLly9qxY0ee7czU1FR5eHgYDy3j4+M1dOhQNWvWLEcbMDvZ+FpG2B09erR69+6td999V8OGDbMr2759u4KDgyVJ9evX13fffSdJOZJCvvnmG82bN0+LFi3ixTQAAOAUcXFx8vb2Nto5Vw5IFxsbq/PnzysgIKDAg8plZmYaL2c1bdpUsbGxBRrkbsuWLdq9e7f+/vtvnTlzRkuXLpX0f6P9pqWl5Tljxf79+9WzZ88C1dERR3XMfs5a0EH6ruV5drYGDRoYfbLZ/ZCZmZmy2Wx2z6hHjRqV6wt7eXF3d9egQYP0+uuv68MPP8wxkrHNZtNDDz2kCRMmaMOGDVq1apUkacqUKcY6H3zwgfr376/mzZvrxhtvzLWvmH5AAADKt7KQfCtl9eFVr17daLeYzWa7dfNrJ17JbDbrxx9/1LJly7R48WIlJCTo9ttvl4eHR57bnTt3ThMnTtSgQYOMZX379lWXLl3snnvPnTs313azxWLRnXfemWOmiquTabNnPyusvAbhk7Lalq1atTI+22w23XjjjbrjjjtktVrl6uoqHx8ftWvXTtWqVdNPP/2U67Hi4+MVExOjDh06FKmuABwjqQJAgZw/f167du3Sq6++WqTtt27dKldXVyP5QJKqVaum0NDQHOvWqlXL4VRcsbGxeuWVV+wetGZbv369MRWrzWZTWlqaGjZsqDZt2hSqntWrV9f48eM1fvx4NW7cWM2bNzfKsht/Xl5e8vb21k033ZRng65OnTrq37+/tm7dqrZt2xrTq0lZI4Js2LBB69atK1T9AABA5VCjRg2HL59ZrVatWLFCDz74oMPt9u/fr127dmnw4MF64oknJElnz57V7t27lZycbLwkVlAXL17Uxx9/rEuXLmnFihV6/PHHtWvXLoejg7Ro0UL9+/c3Ot6cITupdceOHWrQoIG+//57/fe//y3UCHDZ69psNplMJn3yyScOR9TLHuGtsA9qs91444165plnNHLkSK1cuVJ169Y1yho2bKgPPvigUPu7OknCarWqT58+mjlzpiTp+eefV7Vq1Qq1Tynrmr744ovq2bOn2rVrV+jtAQAAcpOWlqbQ0FA9/fTTkqQFCxaoSZMmxoNCq9Uqm81mPHA9duyYHnjgAf3www+yWq1au3at3n77bdWtW1eRkZFGX9/OnTv1008/afPmzWrSpImuu+66ItexVq1a+t///qchQ4bo0qVL+u9//2uU7d+/XyNGjJCU9UB26NChMplMxgh8UtZgK+PGjdOUKVNoSwEAAKf5/vvvcx0Nd+XKlWrRokWOxNIffvhBX3/9tV544QWjr+vuu++Wi4uLOnTooG+//Va1atVS48aNFRsbm2O/GRkZyszMtHuhf+zYsbr99tu1ceNGLV++XEuWLJEk43lrSEiIQkJCHNYzLi5OBw4csHvxv7BsNptOnTql+Ph4SdKpU6eM57M2m00pKSlGmSRjVttsFotFn332mdEvWlSvv/66fvjhB6M9mn2s9PR0LVy40FiWnp6uFi1a6K233ir0Mf7zn/9o69atmjp1qsLDw+36Ii0Wi9zc3OTt7S0/P798Z+nt3Lmzjhw5ou+++07t2rUz2tv0AwIAUP6VleTbI0eOqHHjxrmWDx06VF5eXgWqgyRNnTpVI0aM0IABA3Tq1CmH7w9e6dKlSzp37pyaNm1a4GM48tJLLyk5Odl4fnzlf7P/v0uXLnkObpiXvAbhy8zMlNls1p49eyRlDZ5ntVr14IMPGs/+//vf/8rX11fPPPOMjhw5ol9//dXhcWw2m2bNmqWHHnqoyHUF4BhJFQAKJCIiQt7e3jlmbygIm82mhQsX6t5775Wrq6uSkpKUkZGhDz/8MM9tzp8/Lx8fH6Pjp0mTJlq7dq18fHzsOrH8/f01f/58IwEiO6miqNO69u7dW8eOHdPAgQM1f/58YwRgd3d3Pfzww/L09JQku06zbGazWfHx8frzzz9VtWpVpaSkaOLEiRowYIBGjhwpSVq0aJHeeustvfPOO7rxxhuLVEcAAFB5XNmJM3fuXJ09e1YDBw40yq98Kc1isRjTk27cuFEJCQmqUqWKmjdvrttvv11//PGHUlNTdeHCBbsHkOfOnVN6erpiY2Pl6+srPz8/bdiwQdOnT9fNN9+sqVOnasmSJVq1apW6d++ugIAA+fr6GgkU6enpSklJ0aVLl5SSkqJevXoZ+85vWtK81vH09FSLFi2Mh7u33XabPv/88xzrpaamSspKBL664y85Odmoo7u7u9GWu5rVatXOnTuNTseiJIc8//zzSkhI0COPPKJFixbl27GXlpam1NTUArVbGzVqpDp16hif33nnnRzrWCwWmc1mnThxwmEH6JkzZ/Tvf/9b119/vSZMmFCAMwIAACi46dOnGwOQbNu2TWvXrtWyZcskZT00tFgsSktL01133aVPPvlEH330kf7973/L3d1dCxcu1BtvvKEnn3xSL7zwgqpWrWrst3r16lq1apXatm2b7wPWgmjZsqVWrVqlH3/80W55dt+dlDVz2IYNG3JsW6tWLb399tu6++67r7keAAAAUla/1tatW/X000/r7Nmz+vbbb/X333/LxcVFX3zxhT766CMtWrRIUtbowWfOnFFsbKx27Nihjz/+WCNHjlRSUpIk6auvvlKNGjWUlpamAQMG6Pnnn5f0fy/PZe9DkubNm6czZ85oxowZkuRwwLsrOSq/MiFj1qxZCggIKPSAd1fKzMzUqFGj7JZ5e3tLyuq7i4mJyTEQyZWDyCxevFgXL17Uww8/XOQ6SFnJJe7u7nYvBr799ts6ePCgXQJFRkaG0tPTi3SMKlWqaP78+Xrqqac0YsQIzZkzx+gjvPXWW42+veDgYIcD5WS/kJcdn6ioKC1ZskS7d+9WtWrV6AcEAKCCKAvJt+np6Vq/fr3uueeeXOuZXwKnzWazex5sNps1Y8YMdevWTWlpafrtt98UGBjocGA/SdqzZ4/c3d1166235nmcvHz55Zd67bXX5O7ubrS1stu4y5YtM5ZlZmYqLS1NLVq0sBtEryDyGoQvO1k4u/3WrFmzPGfBbdy4sRo3bqxPP/1Ud911l7GdJL311luKjY01BuMD4DwkVQDI1y+//KLVq1dr2rRpOaYfLYiffvpJBw4c0NixYyVJ7777rj788MM8GwbZiRFbtmzR9ddfr3nz5mn58uXy8fHJ8YLYddddp+eff95ufzabTcnJyWrXrp0iIiIKXecXX3xR9erVs8vmrF69uqZPn57ndh07dtTSpUt1//33S8rqmGzUqJEGDBhgrFOvXj0tW7bMbjovAACA3GRPl3r+/Hl99dVXevXVV+3aKNWqVdPtt9+uSZMmyWazaejQoWrVqpVcXFzUpUsXI4nz4MGD6tu3r9zc3HTo0CF98skndsex2WwaMGCAnnnmGQ0fPlypqalq3769XnvtNbm6uqpPnz5av369vvrqK23YsEHnzp1TampqjlkjhgwZYpdUcfVIH1f67bfftGXLFn3xxRcO25ktWrRQVFRUvjGaMmWKoqKi5ObmlqPTLjupwmKx5NmWNZvNevfdd7V//3498MADatiwYb7HvZrJZNKMGTO0ePFiVa9ePdf1bDab+vfvr9jYWNlstlw7Q680derUfNc5deqUevbsqfT0dIdTvXp5eemhhx7SkCFD7JKUAQAAnKFmzZrG/wcHB+v22283Hva5uLgYD2lbtGiR48Wwp59+Wvfff7/q16+fY7+tWrUyRnBzliZNmqhJkyaF3u722293aj0AAAD++OMPValSRX379lVKSor++9//qm3btjp9+rTGjBmjYcOGqX379pKkf/3rXzKbzXrooYfk7u6ucePGScp6MWvHjh2qXr26bDabRo0apcDAQPXs2VOSlJKSorS0NElZs6Nu2rRJsbGxeu6554x6WCwWDR482O45bHafldVqNV4CO3bsmL788ktlZGSoe/fukrJm8/r222+1YMGCa4pFenq6VqxYYfTv/fDDD3rppZeMsttuu81uNtglS5bowIEDkqSTJ0/q7bff1jPPPGPXLi0Mq9Wqdu3aycfHJ8eAK5cvX5bVatV9992Xo84XL17U8uXLdfPNNxfqeA0bNtSqVau0ceNGu0FX+vbtm++29913n2bMmGE8u65atar+85//GDPb0g8IAED5VxaSbzMyMjR+/Hj9/fffGjRokFG3jIyMHM9+jxw5ooSEBCUkJORof1gsFrtk1B9//FHh4eEKCgrS3Xffrblz52rBggW69957FRgYqHr16qlevXrGjF3r1q3T3XffnaONdmX9bTabMjIy9Ndffzls/9x+++1at26d3QDPCQkJ6tatm6Kioox2VHZSRfbgMYWV2yB8vr6+dsm/n376aY5tzWaz9u/fr+PHj8vNzU1//fWXRo8eralTp6p///6SpGnTpmnDhg1asmQJs1QAxcBkK8iwoQAqvR07dqhbt25F3j4+Pl6NGzfOM5ECAAAAecvIyCjybFyl5fTp07r77ru1evXqHKOHWCwWdevWTddff72GDBlSpFnRJOno0aM6dOiQWrdurVq1ahW5rqdOnVLNmjWLlEhcWJ9//rkSEhLUoUOHa56q9krbt29XnTp11KJFC9reAAAAAAAA5cCVL20lJSXJy8tLGRkZ2rBhg/r06VPo/V28eFE+Pj6F2iYxMVGenp4F6ntMSUmxmw02MzNTO3fuVOfOnQtbVaf68ssvddddd+U6wjEAAEB58vPPPyssLEzr1q1TSkqKunbtqrZt22rQoEEaM2aMnn32Wb3wwguSpOPHj+vxxx/XmTNnjOTbgQMHKjMzUydPnlT9+vVlMpn04osvytfX1xjMbd26dVqyZIk2bNigMWPG6MYbb9S+ffv03HPPqXXr1tq0aZMmT56s999/327w4FGjRikxMVHvvfeesWzLli168cUXVb9+fb333ntq3ry5URYdHa3Zs2dry5YteuGFF3Tq1CkNHTrUSDJISUnRp59+qs8//1z79u3T33//rYULF6pTp0766aefNHDgQL333ns5Zo/t0aOHunTpotGjR+v8+fPq1KmTrFarwsLC9J///MdYb/z48frqq6/k5eVll0ScmZmp8+fPq2bNmnbLbTabLl26pD59+mjMmDGFvnY2m02LFy9Wr169CvXsevv27Ro9erQuX74sKSvJIiAgQEuXLjWSPlavXq3bb79djRs3LnS9AOSPpAoAAAAAAAAAAAAAAAAAAACgjCgLybcF3SYjI0N///23/Pz88lzv7Nmzql27tl0Sw9UsFosxCN65c+f06aef5phVTcqaraxKlSrGjA2ffvqpmjVrJn9//3zrCwCOkFQBAAAAAAAAAAAAAAAAAAAAAAAqJeY9BAAAAAAAAAAAAAAAAAAAAAAAlRJJFQAAAAAAAAAAAAAAAAAAAAAAoFJyWlLF9u3b1a1bNwUEBKh///6Kj4+XJMXFxalfv34KCgrSrFmzZLPZjG3yKgMAAAAAAAAAAAAAAAAAAAAAAChOJpsTMhmOHTumhx9+WJMnT9Ztt92m8PBwnTlzRsuWLdN9992nTp066ZlnntG0adPUvXt39evXTxaLJdeygsrMzFRGRoZcXFxkMpmu9TQAAEAlZrPZlJmZKVdXV7m4MJlXWUYbEAAAOBPtwPKBNiAAAHAm2oDlB+1AAADgLLQByw/agAAAwJkK2g50SlLFF198odOnT+uxxx6TJO3Zs0fPPPOMIiIiNH78eH311Vfy9PRUbGyspkyZog8//FDbt2/PtaygLBaLYmJirrX6AAAAhsDAQLm7u5d2NZAH2oAAAKA40A4s22gDAgCA4kAbsOyjHQgAAJyNNmDZRxsQAAAUh/zaga7OOEiXLl3sPh8+fFiNGjVSbGysWrduLU9PT0mSv7+/4uPjJSnPsoLKzhYJCAiQ2Wy+1tPIwWq1av/+/cW2//KCOBCDbMSBGGQjDlmIQ8WKQfa5MCpJ2Zd9jQIDA4utDRgTE1Ns+0fRcF3KHq5J2cM1KXu4JmXT1dcl+zPtwLKtuNuAjvA7XLKId8ki3iWHWJcs4l2yynO8aQOWH/QFli7ikz9ilDfikzfikzfikz9ilDf6AcuvkugL5PfHMeKSO2LjGHHJHbFxjLjkjtg45oy4FLQd6JSkiitZLBYtWrRIgwcP1vHjx9WgQQOjzGQyycXFRRcvXlRSUlKuZT4+PgU6Vvb0Xvv373fuSVyluPdfXhAHYpCNOBCDbMQhC3GoWDFg+tCyL/samc3mYv0SUdz7R9FwXcoerknZwzUpe7gmZdPV14V2YNlWUm1AR/gdLlnEu2QR75JDrEsW8S5Z5TnetAHLPvoCywbikz9ilDfikzfikzfikz9ilDf6AcufkuwL5PfHMeKSO2LjGHHJHbFxjLjkjtg45oy45NcOdHpSRUREhKpWrapHHnlEEREROabJ8PDwUGpqqsxmc65lBU2qyMbIJMWLOBCDbMSBGGQjDlmIQ8WKQfa5AAAAAAAAAAAAAAAAAACAysOpSRW7du3SqlWrtGbNGrm5ucnHx0cHDx60Wyc5OTnfssJiZJKSQRyIQTbiQAyyEYcsxIEYAAAAAAAAAAAAAAAAAACA8snFWTs6fvy4Ro0apcmTJ6tp06aSsmaQ2Ldvn7FOQkKCLBaLfHx88iwDAAAAAAAAULZduHBBP/30k86fP1/aVQEAAAAAAABQjOgLBAAAFZ1TkipSU1P17LPPKjg4WN26dVNycrKSk5PVrl07JSYmKjo6WpIUGRmpDh06yGw2KygoKNcyAAAAAAAAAGXXxo0bde+992rq1Knq0qWLNm7cKEkKDw+Xv7+/8XPPPfcY28TFxalfv34KCgrSrFmzZLPZSqv6AAAAAAAAAAqIvkAAAFAZuDpjJ998843i4+MVHx+vNWvWGMt37Nih8PBwhYWFafbs2bJarVq+fHnWgV1dcy0DAAAAAAAAUDZdunRJ4eHhWrFihZo3b67o6Gi9/vrr6tmzp37//XdFRkaqTZs2kiQXl6wxXSwWi0JCQtSpUyfNnTtX06ZNU1RUlPr161eapwIAAAAAAAAgD/QFAgCAysIpSRXBwcE6cOCAw7IGDRpo69atiomJUdu2bVWjRg277XIrAwAAAAAAAFD2JCcna/z48WrevLkk6eabb9bFixeVkZGhuLg4tWvXTtWqVbPbZufOnUpKStK4cePk6emp0NBQTZkyhQepAAAAAAAAQBlGXyAAAKgsnJJUkR8/Pz/5+fkVugwAAAAAAABA2VKvXj316tVLkpSenq5Fixbp3nvvVVxcnGw2m3r37q0zZ84oKChI4eHhql+/vmJjY9W6dWt5enpKkvz9/RUfH1/oY1utVqeeS0GOVZLHrMyId8ki3iWHWJcs4l2yynO8y2OdAQAAgNJQUfsCy/P3meJEXHJHbBwjLrkjNo4Rl9wRG8ecEZeCblsiSRUAAAAAAAAAKpbY2Fg9+eSTcnNz0+bNm/Xll1+qWbNmmjBhgnx9fTV9+nRNmjRJ77//vpKSktSgQQNjW5PJJBcXF128eFE+Pj4FPmZMTExxnEqZO2ZlRrxLFvEuOcS6ZBHvkkW8AQAAgIqvovYF8n3GMeKSO2LjGHHJHbFxjLjkjtg4VhJxIakCAAAAAAAAQKH5+/tryZIlmjVrlsaNG6d33nnHGLVOkiZOnKjg4GAlJSXJbDbL3d3dbnsPDw+lpqYW6kFqYGCgzGaz084hL1arVTExMSV6zMqMeJcs4l1yiHXJIt4lqzzHO7vuAAAAAAqmovUFlufvM8WJuOSO2DhGXHJHbBwjLrkjNo45Iy4F7QskqQIAAAAAAABAoZlMJgUEBGjmzJnq0qVLjpHmvL29lZmZqbNnz8rHx0cHDx602z45OVlubm6FOqbZbC7xjuTSOGZlRrxLFvEuOcS6ZBHvkkW8AQAAgIqvovYF8n3GMeKSO2LjGHHJHbFxjLjkjtg4VhJxcSnWvQMViKenZ2lXAQAAAAAAoNTt3r1bs2bNMj5nd2C+88472rRpk7E8JiZGLi4uqlevngIDA7Vv3z6jLCEhQRaLpVAj0wEAAABAWcRzZABARUZfIPB/aPcBQMXGTBUo86yZNpldTKVaB7PZrICAgCJvXxbOAQAAAABQOZX376Tlvf4VUZMmTfT888+rcePGuuuuuxQREaGOHTsqICBAERERql27tjIyMhQeHq4+ffrI09NTQUFBSkxMVHR0tHr37q3IyEh16NCBkXZgx83NTTKV/3GA+LsFAABQOOW5/ZT9HNmaaSvtqgAAUCzoC0RxKk/tQEfvD5an+gMA8kdSBco8s4tJL636WYfOJpV2VYqkaR0vvTmgTWlXAwAAAABQSZXn79V8py6b/Pz89Oabb2rGjBmaNWuWOnXqpNdee001atRQfHy8hg0bpmrVqik4OFihoaGSJFdXV4WHhyssLEyzZ8+W1WrV8uXLS/lMUNa4urqW679ZEn+3AAAAioI2IAAAZRd9gShO5bkdSBsQACoekipQLhw6m6TfT14q7WoAAAAAAFAu8b0aznbnnXfqzjvvzLE8LCxMYWFhDrcJDg7W1q1bFRMTo7Zt26pGjRrFXU2UU/zNAgAAqHxoAwIAUHbRF4jiRDsQAFBWkFQBAAAAAAAAoET4+fnJz8+vtKsBAAAAAAAAoJjRFwgAAMoTl9KuAAAAAAAAAAAAAAAAAAAAAAAAQGkgqQIAAAAAAAAAAAAAAAAAAAAogNpeHrJm2kq7GtesIpwDADiLa2lXAAAAAAAAAAAAAAAAAAAAACgPvD1dZXYx6aVVP+vQ2aTSrk6RNK3jpTcHtCntagBAmUFSBQAAAAAAAAAAAAAAAAAAAFAIh84m6feTl0q7GgAAJ3Ap7QoAAAAAAAAAAAAAAAAAAAAAAACUBpIqAAAAAAAAAAAAAAAAAAAAAABApURSBQAAAAAAAAAAAAAAAAAAAAAAqJRIqgAAAAAAAAAAAAAAAAAAAAAAAJUSSRUAAAAAAAAAAAAAAAAAAAAAAKBSIqkCAAAAAAAAAAAAAAAAAAAAAABUSiRVAAAAAAAAAAAAAAAAAAAAAACASomkCgAAAAAAAAAAAAAAAAAAAAAAUCmRVAEAAAAAAAAAAAAAAAAAAAAAAColkioAAAAAAAAAAAAAAAAAAAAAAEClRFIFAAAAAAAAAAAAAAAAAAAAAAColEiqAAAAAAAAAAAAAAAAAAAAAAAAlZJTkyouXLigrl27KiEhQZIUFRUlf3//HD9RUVGSpPDwcLvl99xzjzOrAwAAAAAAAAAAAAAAAAAAAAAAkCunJVWcP39eISEhOnHihLHsgQce0N69e42fr776Sr6+vgoKCpIk/f7774qMjDTK169f76zqAAAAwMmuTqCVpLi4OPXr109BQUGaNWuWbDbbNZcBAAAAAAAAAAAAAAAAAFBSnJZUERoaqh49etgtc3d3l7e3t/ETHR2te++9Vw0bNlRGRobi4uLUrl07o9zLy8tZ1QEAAIATOUqgtVgsCgkJUYsWLbRu3TrFx8cbM5IVtQwAAAAAAAAAAAAAAAAAgJLk6qwdhYeHq2HDhnr11VcdlqelpWnZsmVas2aNpKzRiW02m3r37q0zZ84oKChI4eHhql+/fqGPbbVar6nu+e23uPZfXpR2HMxmc6kc19kqwn1U2vdCWUAMshCHLMShYsWgIpxDccpOoP3ll1+MZTt37lRSUpLGjRsnT09PhYaGasqUKerXr1+RywAAAAAAAAAAAAAAAAAAKElOS6po2LBhnuUbNmxQ69at1aBBA0nSoUOH1KxZM02YMEG+vr6aPn26Jk2apPfff7/Qx46JiSlSncvK/suL0oiDp6enAgICSvy4xeHAgQNKSUkp7Wo4Bb8TxCAbcchCHIhBZeAogTY2NlatW7eWp6enJMnf31/x8fHXVAYAAAAAAACgfIqOjlZERIQuXryo1q1ba9q0aWrQoIHi4uI0btw4HTt2TA8//LDGjBkjk8lU2tUFAAAAAAAADE5LqsjPqlWr9MILLxife/XqpV69ehmfJ06cqODgYCUlJcnLy6tQ+w4MDCyW2QysVqtiYmKKbf/lBXFwDn9//9KuwjXjXiAG2YhDFuJQsWKQfS5wzFECbVJSkpEwK0kmk0kuLi66ePFikct8fHwKXCdmK6tcuC5lD9ek7OGalD1l5ZqU93aa5NwYXn1dSvv6AAAAABXBsWPHFBERoXfeeUe+vr6aN2+exo0bp4ULFyokJESdOnXS3LlzNW3aNEVFRTFrLQAAAAAAAMqUEkmqOHr0qI4dO6YOHTrkuo63t7cyMzN19uzZQidVmM3mYn1BoLj3X14Qh2tTkWLHvUAMshGHLMSBGFRWZrNZ7u7udss8PDyUmppa5LLCJFUwW1nlxHUpe7gmZQ/XpOwpzWtSUWaALI7ZH/ldAQAAAJxn//79at26tVq0aCFJ6tu3r0aMGKGdO3cqKSlJ48aNk6enp0JDQzVlyhSSKgAAAAAAAFCmlEhSxebNm9W5c2e5ubkZy2bMmKHWrVurR48ekrIeZLu4uKhevXolUSUAAABcIx8fHx08eNBuWXJystzc3IpcVhjMVla5cF3KHq5J2cM1KXu4Js7jzNkfr74uzFgGAAAAXLumTZtqz5492r9/vxo2bKiVK1eqY8eOio2NVevWreXp6Skpq20fHx9f6P0za23pKKn4VJTvzNxHOfE7ljfikzfikz9ilDdmrAUAAEBhlEhSxddff62+ffvaLbvlllsUERGh2rVrKyMjQ+Hh4erTp4/RoQYAAICyLTAwUGvXrjU+JyQkyGKxyMfHp8hlhcFsZZUT16Xs4ZqUPVyTsodrcu2KI35cFwAAAMB5mjZtqu7du6tPnz6SpAYNGuijjz5SZGSkGjRoYKxnMpnk4uKiixcvMmttOVKc8akoMyxKxTPLYkXB71jeiE/eiE/+iFHeiA8AAAAKotiTKlJTU7Vv3z5NnTrVbnnv3r0VHx+vYcOGqVq1agoODlZoaGhxVwcAAABOEhQUpMTEREVHR6t3796KjIxUhw4dZDabi1wGAAAAAAAAoPz55Zdf9MUXX+ijjz7STTfdpMjISA0dOlR33HGH3N3d7db18PBQampqoZIqmLW2dBCfwnHmLIsVBfdQ3ohP3ohP/ohR3pixFgAAAIXh9KSKAwcO2H2uUqWKfvvtN4frhoWFKSwszNlVAAAAQAlwdXVVeHi4wsLCNHv2bFmtVi1fvvyaygAAAAAAAACUP5s2bVLPnj3VqlUrSdKIESO0atUq+fj46ODBg3brJicny83NrVD7Z9ba0kV8CoYY5Y57KG/EJ2/EJ3/EKG/EBwAAAAVR7DNVAAAAoOK4OoE2ODhYW7duVUxMjNq2basaNWpccxkAAADKhwsXLujw4cNq3Lgx7TkAAIBKzmq16vz588bn5ORkXb58Wa6urtq3b5+xPCEhQRaLpVCzVAAAAKD00RcIAAAqOpfSrgAAAADKNz8/PwUHBzvsPCtqGQAAAMq2jRs36t5779XUqVPVpUsXbdy4UZIUFxenfv36KSgoSLNmzZLNZjO2yasMAAAA5Vvbtm21bds2LVmyRBs2bNCwYcNUq1YtPfHEE0pMTFR0dLQkKTIyUh06dGC0aAAAgHKEvkAAAFAZkFQBAAAAAAAAoMAuXbqk8PBwrVixQtHR0ZoyZYpef/11WSwWhYSEqEWLFlq3bp3i4+MVFRUlSXmWAQAAoPzr0aOHhg4dqqVLl2rcuHFKTEzU22+/LTc3N4WHh+uVV15Rhw4dtGXLFoWFhZV2dQEAAFBA9AUCAIDKgqQKAAAAAAAAAAWWnJys8ePHq3nz5pKkm2++WRcvXtTOnTuVlJSkcePG6YYbblBoaKjWrl0rSXmWAQAAoPwzmUwaPny4vvjiC/32229av369WrZsKUkKDg7W1q1bNXXqVG3evFnNmjUr5doCAACgoOgLBAAAlYVraVcAAAAAAAAAQPlRr1499erVS5KUnp6uRYsW6d5771VsbKxat24tT09PSZK/v7/i4+MlKc+ywrBarU46i4IfqySPWZlVtDiX9fPh/i45xLpkEe+SVZ7jXR7rXN75+fnJz8+vtKsBAACAQqqofYHl+ftMcSrpuJjN5hI5DvJ2Ldeb36XcERvHiEvuiI1jzohLQbclqQIAAAAAAABAocXGxurJJ5+Um5ubNm/erHfffVcNGjQwyk0mk1xcXHTx4kUlJSXlWubj41PgY8bExDj1HMrqMSur7AftFcGBAweUkpJS2tXIF/d3ySHWJYt4lyziDQAAAFR8FbUvkO8zjpVEXDw9PRUQEFDsx0H+nNGXye9S7oiNY8Qld8TGsZKIC0kVAAAAAAAAAArN399fS5Ys0axZszRu3Dg1btxY7u7udut4eHgoNTVVZrM517LCPEgNDAwssdHLrFarYmJiSvSYlZnVatWhQ4dKuxpO4+/vX9pVyBP3d8kh1iWLeJes8hzv7LoDAAAAKJiK1hdYnr/PFCfiUjldS18m90zuiI1jxCV3xMYxZ8SloH2BJFUAAAAAAAAAKDSTyaSAgADNnDlTXbp0UWhoqA4ePGi3TnJystzc3OTj45NrWWGYzeYS70gujWOi/Csv9wz3d8kh1iWLeJcs4g0AAABUfBW1L5DvM44Rl8rFGdeaeyZ3xMYx4pI7YuNYScTFpVj3DgAAAAAAAKBC2b17t2bNmmV8zu7AbNKkifbt22csT0hIkMVikY+PjwIDA3MtAwAAAAAAAFA20RcIAAAqC5IqAAAAAAAAABRYkyZNtHr1aq1evVqnTp3SnDlz1LFjR3Xu3FmJiYmKjo6WJEVGRqpDhw4ym80KCgrKtQwAAAAAAABA2URfIAAAqCxIqgAAAAAAAABQYH5+fnrzzTe1dOlS9ezZUykpKXrttdfk6uqq8PBwvfLKK+rQoYO2bNmisLAwScqzDAAAAAAAAEDZRF8gAACoLFxLuwIAAAAAAAAAypc777xTd955Z47lwcHB2rp1q2JiYtS2bVvVqFGjQGUAAAAAAAAAyib6AgEAQGVAUgUAAAAAAAAAp/Hz85Ofn1+hywAAAAAAAACUL/QFAgCAisKltCsAAAAAAAAAAAAAAAAAAAAAAABQGkiqAAAAAAAAAAAAAAAAAAAAAAAAlRJJFQAAAAAAAAAAAAAAAAAAAAAAoFIiqQIAAAAAAAAAAAAAAAAAAAAAAFRKJFUAAAAAAAAAAAAAAAAAAAAAAIBKiaQKAAAAAAAAAAAAAAAAAAAAAABQKZFUAQAAAAAAAAAAAAAAAAAAAAAAKiWSKgAAAAAAAAAAAAAAAAAAAAAAQKVEUgUAAAAAAAAAAAAAAAAAAAAAAKiUSKoAAAAAAAAAAAAAAAAAAAAAAACVEkkVAAAAAAAAAAAAAAAAAAAAAACgUiKpAgAAAAAAAAAAAAAAAAAAAAAAVEpOTaq4cOGCunbtqoSEBGNZeHi4/P39jZ977rnHKIuLi1O/fv0UFBSkWbNmyWazObM6AAAAAAAAAAAAAAAAAAAAAAAAuXJaUsX58+cVEhKiEydO2C3//fffFRkZqb1792rv3r1av369JMlisSgkJEQtWrTQunXrFB8fr6ioKGdVBwAAAAAAAAAAAAAAAAAAAAAAIE9OS6oIDQ1Vjx497JZlZGQoLi5O7dq1k7e3t7y9veXl5SVJ2rlzp5KSkjRu3DjdcMMNCg0N1dq1a51VHQAAAAAAAAAAAAAAAAAAAAAAgDy5OmtH4eHhatiwoV599VVjWVxcnGw2m3r37q0zZ84oKChI4eHhql+/vmJjY9W6dWt5enpKkvz9/RUfH1+kY1utVqecQ277La79lxelHQez2Vwqx3W2inAflfa9UBYQgyzEIQtxqFgxqAjnAAAAAADlWZUqVUq7CgAAAAAAAAAAAKiEnJZU0bBhwxzLDh06pGbNmmnChAny9fXV9OnTNWnSJL3//vtKSkpSgwYNjHVNJpNcXFx08eJF+fj4FOrYMTEx11z/0tx/eVEacfD09FRAQECJH7c4HDhwQCkpKaVdDafgd4IYZCMOWYgDMQAAAACAssCaaZPZxVTa1SgSs9msJk2alHY1AAAAAAAAAAAAUAk5LanCkV69eqlXr17G54kTJyo4OFhJSUkym81yd3e3W9/Dw0OpqamFTqoIDAwsltkMrFarYmJiim3/5QVxcA5/f//SrsI1414gBtmIQxbiULFikH0uAAAAAFBemV1MemnVzzp0Nqm0q1Iknf1ra3T3m0u7GgAAAAAAAAAAAKhkijWp4mre3t7KzMzU2bNn5ePjo4MHD9qVJycny83NrdD7NZvNxfoiZ3Hvv7wgDtemIsWOe4EYZCMOWYgDMQAAAACAsuLQ2ST9fvJSaVejSG6qXa20qwAAAAAAAAAAAIBKyKU4dz5jxgxt2rTJ+BwTEyMXFxfVq1dPgYGB2rdvn1GWkJAgi8VS6FkqAAAAAAAAAAAAAAAAAAAAAAAAiqJYZ6q45ZZbFBERodq1aysjI0Ph4eHq06ePPD09FRQUpMTEREVHR6t3796KjIxUhw4dGOUaAAAAAAAAAAAAAAAAAAAAAACUiGJNqujdu7fi4+M1bNgwVatWTcHBwQoNDc06sKurwsPDFRYWptmzZ8tqtWr58uXFWR0AAAAAAAAAAAAAAAAAAAAAAACD05MqDhw4YPc5LCxMYWFhDtcNDg7W1q1bFRMTo7Zt26pGjRrOrg4AAAAAAAAAAAAAAAAAAAAAAIBDxTpTRUH4+fnJz8+vtKsBAAAAAAAAAAAAAAAAAAAAAAAqGZfSrgAAAAAAAAAAAAAAAAAAAAAAAEBpIKkCAAAAAAAAAAAAAAAAAAAAAABUSiRVAAAAAAAAAAAAAAAAAAAAAACASomkCgAAAAAAAAAAAAAAAAAAAAAAUCmRVAEAAIBrEh0drc6dO6tNmzYaPHiwEhISJElxcXHq16+fgoKCNGvWLNlsNmObvMoAAABQ9m3fvl3dunVTQECA+vfvr/j4eElSeHi4/P39jZ977rnH2IY2IAAAAAAAAFD+0BcIAAAqA5IqAAAAUGTHjh1TRESE3nnnHW3cuFH169fXuHHjZLFYFBISohYtWmjdunWKj49XVFSUJOVZBgAAgLLv2LFjGj9+vMLCwrRz507Vr19fL7/8siTp999/V2RkpPbu3au9e/dq/fr1kmgDAgAAAAAAAOURfYEAAKCyIKkCAAAARbZ//361bt1aLVq0UP369dW3b18dPnxYO3fuVFJSksaNG6cbbrhBoaGhWrt2rSTlWQYAAICyLz4+XiNHjlSPHj1Uq1YtPfbYY/rtt9+UkZGhuLg4tWvXTt7e3vL29paXl5ck2oAAAAAAAABAeURfIAAAqCxcS7sCAAAAKL+aNm2qPXv2aP/+/WrYsKFWrlypjh07KjY2Vq1bt5anp6ckyd/f35gGNq+ywrBarc47EQf7La79o2i4LmUP16Ts4ZqUPWXlmpjN5lI9vjM4M4ZXX5fSvj7lUZcuXew+Hz58WI0aNVJcXJxsNpt69+6tM2fOKCgoSOHh4apfv36ZbwPmdazydI9UhN/3iqKs3zfl8f4ur4h1ySLeJas8x7s81hkAAAAoDRW1L7A8f58pTiUdF/ozy4Zrud78LuWO2DhGXHJHbBxzRlwKui1JFQAAACiypk2bqnv37urTp48kqUGDBvroo48UGRmpBg0aGOuZTCa5uLjo4sWLSkpKyrXMx8enwMeOiYlx3omUwv5RNFyXsodrUvZwTcqe0rwmnp6eCggIKLXjO8uBAweUkpLi1H3yu+IcFotFixYt0uDBg3Xo0CE1a9ZMEyZMkK+vr6ZPn65Jkybp/fffLzdtwLJyzKKoKL/vFUVx/N0qDuXl/q4IiHXJIt4li3gDAAAAlUNF7Avk+4xjJREX+jPLDmf0ZfK7lDti4xhxyR2xcawk4kJSBQAAAIrsl19+0RdffKGPPvpIN910kyIjIzV06FDdcccdcnd3t1vXw8NDqampMpvNuZYVphMtMDCwWEausFqtiomJKbb9o2i4LmUP16Ts4ZqUPVwT5/H393favq6+LtmfUTQRERGqWrWqHnnkEbm5ualXr15G2cSJExUcHKykpKQy3wZ0hN9hXAtn/t0qDtzfJYdYlyziXbLKc7xpAwIAAACFV5H6Asvz95niRFwqp2vpy+SeyR2xcYy45I7YOOaMuBS0L5CkCgAAABTZpk2b1LNnT7Vq1UqSNGLECK1atUo+Pj46ePCg3brJyclyc3PLs6wwzGZzsX6JKO79o2i4LmUP16Ts4ZqUPVyTa1cc8eO6XLtdu3Zp1apVWrNmjcO2nLe3tzIzM3X27Nly0wYsK8dE+Vde7hnu75JDrEsW8S5ZxBsAAACo+CpqXyDfZxwjLpWLM64190zuiI1jxCV3xMaxkoiLS7HuHQAAABWa1WrVX3/9ZXxOTk7W5cuX5erqqn379hnLExISZLFY5OPjo8DAwFzLAAAAUD4cP35co0aN0uTJk9W0aVNJ0owZM7Rp0yZjnZiYGLm4uKhevXq0AQEAAAAAAIByir5AAABQGZBUAQAAgCJr27attm3bpiVLlmjDhg0aNmyYatWqpSeeeEKJiYmKjo6WJEVGRqpDhw4ym80KCgrKtQwAAABlX2pqqp599lkFBwerW7duSk5OVnJysm6++WZFRERo79692r17t8LDw9WnTx95enrSBgQAAAAAAADKIfoCAQBAZeFa2hUAAABA+dWjRw8dPnxYS5cu1blz59SsWTO9/fbbcnNzU3h4uMLCwjR79mxZrVYtX75ckuTq6pprGQAAAMq+b775RvHx8YqPj9eaNWuM5Tt27NCff/6pYcOGqVq1agoODlZoaKgk2oAAAAAAAABAeURfIAAAqCxIqgAAAECRmUwmDR8+XMOHD89RFhwcrK1btyomJkZt27ZVjRo1ClQGAACAsi04OFgHDhxwWBYWFqawsLBct6MNCAAAAAAAAJQf9AUCAIDKgqQKAAAAFBs/Pz/5+fkVugwAAAAVE21AAAAAAAAAoHKgLxAAAJQnLqVdAQAAAAAAAAAAAAAAAAAAAAAAgNJAUgUAAAAAAAAAAAAAAAAAAAAAAKiUSKoAAAAAAAAAAAAAADjF66+/rpCQEONzXFyc+vXrp6CgIM2aNUs2m60UawcAAAAAAADkRFIFAAAAAAAAAAAAAOCaxcXFaeXKlRo/frwkyWKxKCQkRC1atNC6desUHx+vqKioUq4lAAAAAAAAYI+kCgAAAAAAAAAAAADANbHZbJo0aZKeeuop3XDDDZKknTt3KikpSePGjdMNN9yg0NBQrV27tpRrCgAAAAAAANhzLe0KAAAAAAAAAAAAAADKtzVr1ig2Nlb9+/fXF198oU6dOik2NlatW7eWp6enJMnf31/x8fGF3rfVanV2de32W1z7L+9KKj5ms7lY919SuI9y4ncsb8Qnb8Qnf8Qob1fHhzgBAAAgLyRVAAAAAAAAAAAAAACKLDk5WREREWrUqJFOnz6tjz/+WP/73//Upk0bNWjQwFjPZDLJxcVFFy9elI+PT4H3HxMTUxzVLrH9l3fFGR9PT08FBAQU2/5L0oEDB5SSklLa1SiT+B3LG/HJG/HJHzHKG/EBAABAQZBUAQAAAAAAAAAAAAAosm3btiklJUVLly5V9erV9eyzz+rBBx/UunXr1LdvX7t1PTw8lJqaWqikisDAwGKZzcBqtSomJqbY9l/eEZ/C8ff3L+0qlDncQ3kjPnkjPvkjRnm7Oj7ZnwEAAABHnJpUceHCBfXr10/Lli0zRhzZvn27ZsyYoVOnTqlFixaaOXOmbrrpJklSeHi4li9fbmx/ww03aNu2bc6sEgAAAAAAAAAAAACgGJ0+fVqtWrVS9erVJUmurq7y9/fXiRMndP78ebt1k5OT5ebmVqj9m83mYn1ZtLj3X94Rn4IhRrnjHsob8ckb8ckfMcob8QEAAEBBuDhrR+fPn1dISIhOnDhhLDt27JjGjx+vsLAw7dy5U/Xr19fLL79slP/++++KjIzU3r17tXfvXq1fv95Z1QEAAAAAAAAAAAAAlIC6desqLS3NbtnJkyc1duxY7du3z1iWkJAgi8VSqFkqAAAAAAAAgOLmtKSK0NBQ9ejRw25ZfHy8Ro4cqR49eqhWrVp67LHH9Ntvv0mSMjIyFBcXp3bt2snb21ve3t7y8vJyVnUAAAAAAAAAAAAAACWgc+fOio+P14cffqjTp09r2bJl+uOPP9SpUyclJiYqOjpakhQZGakOHTowWjQAAAAAAADKFFdn7Sg8PFwNGzbUq6++aizr0qWL3TqHDx9Wo0aNJElxcXGy2Wzq3bu3zpw5o6CgIIWHh6t+/fqFPrbVar22yuez3+Laf3lR2nGoKJ2qFeE+Ku17oSwgBlmIQxbiULFiUBHOAQAAAAAAAABKQ/Xq1fX+++9r5syZmjlzpmrVqqW5c+eqUaNGCg8PV1hYmGbPni2r1arly5eXdnUBAAAAAAAAO05LqmjYsGGe5RaLRYsWLdLgwYMlSYcOHVKzZs00YcIE+fr6avr06Zo0aZLef//9Qh87JiamKFUuM/svL0ojDp6engoICCjx4xaHAwcOKCUlpbSr4RT8ThCDbMQhC3EgBgAAAAAAAABQ2d16661atWpVjuXBwcHaunWrYmJi1LZtW9WoUaMUagcAAAAAAADkzmlJFfmJiIhQ1apV9cgjj0iSevXqpV69ehnlEydOVHBwsJKSkuTl5VWofQcGBhbLbAZWq1UxMTHFtv/ygjg4h7+/f2lX4ZpxLxCDbMQhC3GoWDHIPhcAAAAAAAAAgHP5+fnJz8+vtKsBAAAAAAAAOFQiSRW7du3SqlWrtGbNGrm5uTlcx9vbW5mZmTp79myhkyrMZnOxvshZ3PsvL4jDtalIseNeIAbZiEMW4kAMAAAAAAAAAAAAAAAAAABA+eRS3Ac4fvy4Ro0apcmTJ6tp06bG8hkzZmjTpk3G55iYGLm4uKhevXrFXSUAAAAAAAAAAAAAAAAAAAAAAIDinakiNTVVzz77rIKDg9WtWzclJydLkqpWrapbbrlFERERql27tjIyMhQeHq4+ffrI09OzOKsEAAAAAAAAAAAAAAAAAAAAAAAgqZiTKr755hvFx8crPj5ea9asMZbv2LFDvXv3Vnx8vIYNG6Zq1aopODhYoaGhxVkdAAAAAAAAAAAAAAAAAAAAAAAAg9OTKg4cOGD8f3BwsN3nq4WFhSksLMzZVQAAAAAAAAAAAAAAAAAAAAAAAMiXS2lXAAAAAAAAAAAAAAAAAAAAAAAAoDSQVAEAAAAAAAAAAAAAAAAAAAAAAColkioAAAAAAAAAAAAAAAAAAAAAAEClRFIFAAAAAAAAAAAAAAAAAAAAAAColEiqAAAAAAAAAAAAAAAAAAAAAAAAlRJJFQAAAAAAAAAAAAAAAAAAAAAAoFIiqQIAAAAAAAAAAAAAAAAAAAAAAFRKJFUAAAAAAAAAAAAAAAAAAAAAAIBKiaQKAAAAAAAAAAAAAAAAAAAAAABQKZFUAQAAAAAAAKBQtm/frm7duikgIED9+/dXfHy8JCkuLk79+vVTUFCQZs2aJZvNZmyTVxmAkufp6VnaVQAAAAAAAOUAfYEAAKAyIKkCAAAAAAAAQIEdO3ZM48ePV1hYmHbu3Kn69evr5ZdflsViUUhIiFq0aKF169YpPj5eUVFRkpRnGVCR1PbykDWz7L8kYDabFRAQILPZnKOsPNQfAAAAAACUDPoCAQBAZeFa2hUAAAAAAAAAUH7Ex8dr5MiR6tGjhyTpscce0zPPPKOdO3cqKSlJ48aNk6enp0JDQzVlyhT169cvzzKgIvH2dJXZxaSXVv2sQ2eTSrs6hda0jpfeHNCmtKsBAAAAAADKCPoCAQBAZUFSBQAAAAAAAIAC69Kli93nw4cPq1GjRoqNjVXr1q3l6ekpSfL391d8fLwk5VlWGFar9RprX/hjleQxr5WjWQdQOg6dTdLvJy+VdjWKrDzd92VdefxbUp4R75JVnuNdHusMAAAAlIaK2hdYnr/PFKeSjgv9mWXDtVxvfpdyR2wcIy65IzaOOSMuBd2WpAoAAAAAAAAARWKxWLRo0SINHjxYx48fV4MGDYwyk8kkFxcXXbx4UUlJSbmW+fj4FPh4MTExTq1/WT1mUXh6eiogIKC0q4EK4sCBA0pJSSntalQo5eVvSUVBvEsW8QYAAAAqh4rYF8j3GcdKIi70Z5YdzugL5Hcpd8TGMeKSO2LjWEnEhaQKAAAAAAAAAEUSERGhqlWr6pFHHlFERITc3d3tyj08PJSamiqz2ZxrWWEepAYGBpbY6GVWq1UxMTElekygrPD39y/tKlQY/C0pWcS7ZJXneGfXHQAAAEDBVaS+wPL8faY4EZfK6Vr6ArlnckdsHCMuuSM2jjkjLgXtCySpAgAAAAAAAECh7dq1S6tWrdKaNWvk5uYmHx8fHTx40G6d5OTkfMsKw2w2l3hHcmkcEyht3PPOx9+SkkW8SxbxBgAAACq+itoXyPcZx4hL5eKMa809kzti4xhxyR2xcawk4uJSrHsHAAAAAAAAUOEcP35co0aN0uTJk9W0aVNJWSPH7du3z1gnISFBFotFPj4+eZYBAAAAAAAAKLvoCwQAAJUBSRUAAAAAAAAACiw1NVXPPvusgoOD1a1bNyUnJys5OVnt2rVTYmKioqOjJUmRkZHq0KGDzGazgoKCci0DAAAAAAAAUDbRFwgAACoL19KuAAAAAAAAAIDy45tvvlF8fLzi4+O1Zs0aY/mOHTsUHh6usLAwzZ49W1arVcuXL5ckubq65loGAAAAAAAAoGyiLxAAAFQWJFUAAADAKV5//XUdOnRI//vf/yRJcXFxGjdunI4dO6aHH35YY8aMkclkyrcMAAAAZVtwcLAOHDjgsKxBgwbaunWrYmJi1LZtW9WoUcNuu9zKAAAAAAAAAJQ99AUCAIDKwqW0KwAAAIDyLy4uTitXrtT48eMlSRaLRSEhIWrRooXWrVun+Ph4RUVF5VsGAACA8s/Pz0/BwcEOH5TmVQYAAAAAAACgfKEvEAAAVBQkVQAAAOCa2Gw2TZo0SU899ZRuuOEGSdLOnTuVlJSkcePG6YYbblBoaKjWrl2bbxkAAAAAAAAAAAAAAAAAACXJtbQrAAAAgPJtzZo1io2NVf/+/fXFF1+oU6dOio2NVevWreXp6SlJ8vf3V3x8vCTlWVYYVqvVeSfhYL/FtX8UDdel7OGalD1ck7KnrFwTs9lcqsd3BmfG8OrrUtrXBwAAAAAAAAAAAABQukiqAAAAQJElJycrIiJCjRo10unTp/Xxxx/rf//7n9q0aaMGDRoY65lMJrm4uOjixYtKSkrKtczHx6fAx46JiXHquZT0/lE0XJeyh2tS9nBNyp7SvCaenp4KCAgoteM7y4EDB5SSkuLUffK7AgAAAAAAAAAAAACQSKoAAADANdi2bZtSUlK0dOlSVa9eXc8++6wefPBBrVu3Tn379rVb18PDQ6mpqTKbzXJ3d3dYVpikisDAwGIZedtqtSomJqbY9o+i4bqUPVyTsodrUvZwTZzH39/fafu6+rpkfwYAAAAAAAAAAAAAVE5OTaq4cOGC+vXrp2XLlhmjD8fFxWncuHE6duyYHn74YY0ZM0YmkynfMgAAAJR9p0+fVqtWrVS9enVJkqurq/z9/XXixAmdP3/ebt3k5GS5ubnJx8dHBw8edFhWGGazuVhfUC3u/aNouC5lD9ek7OGalD1ck2tXHPHjugAAAAAAAAAAAAAAJMnFWTs6f/68QkJCdOLECWOZxWJRSEiIWrRooXXr1ik+Pl5RUVH5lgEAAKB8qFu3rtLS0uyWnTx5UmPHjtW+ffuMZQkJCbJYLPLx8VFgYGCuZQAAAAAAAAAAAAAAAAAAlCSnJVWEhoaqR48edst27typpKQkjRs3TjfccINCQ0O1du3afMsAAABQPnTu3Fnx8fH68MMPdfr0aS1btkx//PGHOnXqpMTEREVHR0uSIiMj1aFDB5nNZgUFBeVaBgAAAAAAAAAAAAAAAABASXJ11o7Cw8PVsGFDvfrqq8ay2NhYtW7dWp6enpIkf39/xcfH51tWWFar9Rprn/d+i2v/5UVpx6GivGBZEe6j0r4XygJikIU4ZCEOFSsGFeEcSkP16tX1/vvva+bMmZo5c6Zq1aqluXPnqlGjRgoPD1dYWJhmz54tq9Wq5cuXS5JcXV1zLQMAAAAAAAAAAAAAAAAAoCQ5LamiYcOGOZYlJSWpQYMGxmeTySQXFxddvHgxzzIfH59CHTsmJqboFS8D+y8vSiMOnp6eCggIKPHjFocDBw4oJSWltKvhFPxOEINsxCELcSAGld2tt96qVatW5VgeHBysrVu3KiYmRm3btlWNGjUKVAYAAAAAAAAAAAAAAAAAQElxWlKFI2azWe7u7nbLPDw8lJqammdZYZMqAgMDi2U2A6vVqpiYmGLbf3lBHJzD39+/tKtwzbgXiEE24pCFOFSsGGSfC5zLz89Pfn5+hS4DAAAAAAAAAAAAAAAAAKAkFGtShY+Pjw4ePGi3LDk5WW5ubnmWFZbZbC7WFzmLe//lBXG4NhUpdtwLxCAbcchCHIgBAAAAAAAAAAAAAAAAAAAon1yKc+eBgYHat2+f8TkhIUEWi0U+Pj55lgEAAAAAAAAAAAAAAAAAAAAAABS3Yk2qCAoKUmJioqKjoyVJkZGR6tChg8xmc55lAAAAAAAAAAAAAAAAAAAA/4+9e4/vuf7/P35/H7bZ4bOxaA5DhZZT4mN9+qAPMilKzpEOchw6saI5hZFDCZ0UJUpISAnlUB9SKn0jI4zJOYcQNtve2/v9/v2x314fbzvPtvfe2+16uXS59H69Xnu9H+/H+/1+eb6fz9fj+QQAAChq1iI9udWqmJgYRUVFafr06bLb7Vq0aFGu+wAAAAAAAAAAAAAAAAAAAAAAAIpaoRdV7N+/3+VxRESE1q9fr9jYWDVp0kTBwcF52gcAAAAAAAAAAAAAAAAAAAAAAFCUinSligwhISEKCQnJ9z4AAAAAAAAAAAAAAAAAAAAAAICiYnZ3AAAAAAAAAAAAAAAAAAAAAAAAAO5AUQUAAAAAAAAAAAAAAAAAAAAAACiTKKoAAAAAAAAAAACqFOAju8Pp7jCuW2l4DQAAAAAAAAAAoPhY3R0AAAAAAAAAAABwv0Bfqyxmk55dukMHzyS4O5wCqX1jgGb3bOzuMAAAAAAAAAAAgAehqAIAAAAAAAAAABgOnknQnpOX3B0GAAAAAAAAAABAsTC7OwAAAAAAAAAAAAAAAAAAAAAAAAB3oKgCQL74+vq6OwQAAAAAAAAAAAAAAAAAAAAAKBQUVQDIld3hlCRZLBbVq1dPFovFzRHlX8ZrAAAAAAAAAAAAAAAAAAAAAIAMVncHAKDks5hNenbpDh08k+DuUAqk9o0Bmt2zsbvDAAAAAAAAAAAAKPX69eunDh06qEuXLoqLi1N0dLSOHj2qbt26acSIETKZTO4OEQAAAAAAAHBBUQWAPDl4JkF7Tl5ydxgAAAAAAAAAAAAoob744gtt3bpVHTp0kM1mU2RkpFq0aKGZM2dq0qRJWrlypbp27eruMAEAAAAAAAAXZncHAAAAAAAAAAAAAADwbH///bemTZumm2++WZK0ZcsWJSQkKDo6WjVq1NDw4cO1fPlyN0cJAAAAAAAAZMZKFQAAAAAAAAAAAACA6zJt2jRFREQoJSVFkrRv3z41atRIvr6+kqSwsDDFx8cX6Nx2u73Q4szqvEV1fk9XXPmxWCxFev7iwucoM75jOSM/OSM/uSNHObs2P+QJAAAAOaGoAgAAAAAAAEC+XbhwQV27dtWHH36o0NBQSVJMTIwWLVpkHFOjRg1t2LBBkhQXF6fo6GgdPXpU3bp104gRI2QymdwSOwAAAArXjz/+qG3btunLL7/UpEmTJEkJCQlGO1GSTCaTzGazLl68qKCgoHydPzY2tlDjLe7ze7qizI+vr6/q1atXZOcvTvv371dSUpK7wyiR+I7ljPzkjPzkjhzljPwUDvoCAQBAaUdRBQAAAAAAAIB8OX/+vAYPHqwTJ064bN+zZ4/mzp2rxo0bS5LMZrMkyWazKTIyUi1atNDMmTM1adIkrVy5Ul27di322AEAAFC4UlJS9NJLL2n8+PEKCAgwtlssFnl7e7sc6+Pjo+Tk5HwXVTRs2LBIVjOw2+2KjY0tsvN7OvKTP2FhYe4OocThM5Qz8pMz8pM7cpSza/OT8Rj5R18gAAAoCyiqAAAAAAAAAJAvw4cPV/v27bVz505jW1pamuLi4tS0aVP5+/u7HL9lyxYlJCQoOjpavr6+Gj58uCZMmMBAKgAAQCnw9ttvq0GDBmrVqpXL9qCgIB04cMBlW2Jiory8vPL9HBaLpUhvFi3q83s68pM35Ch7fIZyRn5yRn5yR45yRn6uH32BAACgLKCoAgAAAAAAAEC+xMTEqHr16nr55ZeNbXFxcXI6nerUqZNOnz6t8PBwxcTEqGrVqtq3b58aNWokX19fSekzuMbHx+f7ee12e6G9hrw+V3E+5/XiBgHgf0rKd9cTryWejHwXL0/OtyfGXJKtXr1aFy5cUNOmTSVJycnJWrdunapVq6a0tDTjuOPHj8tms+V7lQoAAAC4V2nsC/Tk3zNFqbjzQn9myXA97zffpeyRm6yRl+yRm6wVRl7y+rcUVQAAAAAAAADIl+rVq2fadvDgQdWpU0djxoxRhQoVNHnyZI0bN07vvfeeEhISFBoaahxrMplkNpt18eLFfN1UFxsbWyjx54c7nrMgfH19Va9ePXeHAZQY+/fvV1JSkrvDMHjKtaS0IN/Fi3xj8eLFLsUT06dPV6NGjdS5c2d16NBBq1atUqdOnTR37lw1a9aMG6cAAAA8TGnuC+T3TNaKIy/0Z5YchdGPxncpe+Qma+Qle+Qma8WRF4oqAAAAAAAAAFy3jh07qmPHjsbjsWPHKiIiQgkJCbJYLPL29nY53sfHR8nJyfkaSG3YsGGx3YRnt9sVGxtbrM8JoPCEhYW5OwRJXEuKG/kuXp6c74zYUTgqV67s8tjPz08VKlRQcHCwYmJiFBUVpenTp8tut2vRokVuihIAAACFydP7Aj3590xRIi9l0/X0o/GZyR65yRp5yR65yVph5CWvfYEUVQAAAAAAAAAodIGBgXI4HDpz5oyCgoJ04MABl/2JiYny8vLK1zktFkuxdyS74zkBXL+S9r3lWlK8yHfxIt+41tSpU43/j4iI0Pr16xUbG6smTZooODjYjZEBAACgqHhqXyC/Z7JGXsqWwniv+cxkj9xkjbxkj9xkrTjyYi7SswMAAAAAAAAoE6ZMmaK1a9caj2NjY2U2m1WlShU1bNhQv/32m7Hv+PHjstls+ZqZDgAAAJ4pJCREERERFFQAAACUIvQFAgCA0oaVKgAAAAAAAABct7p162rWrFmqVKmS0tLSFBMTo86dO8vX11fh4eG6fPmyVq1apU6dOmnu3Llq1qwZM+0AAAAAAAAAHoi+QAAAUNpQVAEAAAAAAADgunXq1Enx8fEaMmSI/P39FRERoeHDh0uSrFarYmJiFBUVpenTp8tut2vRokVujhgAAAAAAABAQdAXCAAAShuKKgAAAAAAAAAUyP79+10eR0VFKSoqKstjIyIitH79esXGxqpJkyYKDg4ujhABAAAAAAAAFAL6AgEAQGlGUQUAAAAAAACAYhESEqKQkBB3hwEAAAAAAACgiNEXCAAAPEmxFFWsXLlS0dHRmbZPmTJFe/bscVneq0aNGtqwYUNxhAUAAAAAAAAAAAAAAAAAAAAAAMqwYimqeOCBBxQREWE8vnLlijp16qTw8HAtW7ZMc+fOVePGjSVJZrO5OEICAAAAAAAAAAAAAAC4LpUCfGR3OGUxm9wdynUpDa8BAAAAAICCKpaiCm9vb3l7exuPFy9erHvvvVdVqlRRXFycmjZtKn9//+IIBQAAAAAAAAAAAAAAoFAE+lplMZv07NIdOngmwd3hFEjtGwM0u2djd4cBAAAAAIDbFEtRxdVSUlL04YcfatmyZYqLi5PT6VSnTp10+vRphYeHKyYmRlWrVi3usAAAAAAAAAAAAAAAAArk4JkE7Tl5yd1hAAAAAACAAij2oorVq1erUaNGCg0N1RdffKE6depozJgxqlChgiZPnqxx48bpvffey9c57XZ7kcSacd6iOr+ncHceLBaLW563sHny54j3IPM5PPn9LAzkIR15KF05KA2vAQAAAAAAAAAAAAAAAAAA5E+xF1UsXbpUTz/9tCSpY8eO6tixo7Fv7NixioiIUEJCggICAvJ8ztjY2EKPszjP7ynckQdfX1/Vq1ev2J+3KOzfv19JSUnuDiPfeA+yxnUhHXlIRx7IAQAAAAAAAAAAAAAAAAAA8EzFWlRx5MgRHT16VM2aNctyf2BgoBwOh86cOZOvooqGDRsWyUz6drtdsbGxRXZ+T0EeCkdYWJi7QyjzCuM94PuQjjykIw+lKwcZrwUAAAAAAAAAAAAAAAAAAJQdxVpUsW7dOrVq1UpeXl6SpClTpqhRo0Zq3769pPRZrs1ms6pUqZKv81osliK9kbOoz+8pyMP1IXfuV5jvAd+HdOQhHXkgBwAAAAAAAAAAAAAAAAAAwDOZi/PJvvvuO/3rX/8yHtetW1ezZs3S9u3btW3bNsXExKhz587y9fUtzrAAAABQSPr166eVK1dKkuLi4tS1a1eFh4dr2rRpcjqdxnE57QMAAAAAAAAAAAAAAAAAoLgUW1FFcnKyfvvtN91xxx3Gtk6dOqldu3YaMmSIoqOj1bx5c40ZM6a4QgIAAEAh+uKLL7R161ZJks1mU2RkpOrXr68VK1YoPj7eKLbIaR8AAAAAAAAAAAAAAAAAAMWp2IoqypUrp927d6tWrVou26OiorR9+3b997//1ZgxY+Tn51dcIQEAAKCQ/P3335o2bZpuvvlmSdKWLVuUkJCg6Oho1ahRQ8OHD9fy5ctz3QcAAAAAAAAAAAAAAAAAQHGyujsAAAAAeL5p06YpIiJCKSkpkqR9+/apUaNG8vX1lSSFhYUpPj4+1335YbfbCyn6rM9bVOdHwfC+lDy8JyUP70nJU1LeE4vF4tbnLwyFmcNr3xd3vz8AAAAAAAAAAAAAAPeiqAIAAADX5ccff9S2bdv05ZdfatKkSZKkhIQEhYaGGseYTCaZzWZdvHgxx31BQUF5ft7Y2NjCexFuOD8Khvel5OE9KXl4T0oed74nvr6+qlevntuev7Ds379fSUlJhXpOvisAAAAAAAAAAAAAAImiCgAAAFyHlJQUvfTSSxo/frwCAgKM7RaLRd7e3i7H+vj4KDk5Ocd9+SmqaNiwYZHMvG232xUbG1tk50fB8L6UPLwnJQ/vScnDe1J4wsLCCu1c174vGY8BAAAAAAAAAAAAAGUTRRUAAAAosLffflsNGjRQq1atXLYHBQXpwIEDLtsSExPl5eWV4778sFgsRXqDalGfHwXD+1Ly8J6UPLwnJQ/vyfUrivzxvgAAAAAAAAAAAAAAJIoqAAAAcB1Wr16tCxcuqGnTppKk5ORkrVu3TtWqVVNaWppx3PHjx2Wz2RQUFKSGDRtq+fLlWe4DAAAAAAAAAAClh6+vr7tDAAAAAAAgVxRVAAAAoMAWL17sUjwxffp0NWrUSJ07d1aHDh20atUqderUSXPnzlWzZs1ksVgUHh6uy5cvZ7kPAAAAAAAAAAAUr0oBPrI7nLKYTYV6XovFonr16hXqObNTFPEDAAAAAMoOiioAAABQYJUrV3Z57OfnpwoVKig4OFgxMTGKiorS9OnTZbfbtWjRIkmS1WrNdh8AAAAAAAAAAChegb5WWcwmPbt0hw6eSXB3OPlW+8YAze7Z2N1hAAAAAAA8GEUVAAAAKDRTp041/j8iIkLr169XbGysmjRpouDg4DztAwAAAAAAAAAAxe/gmQTtOXnJ3WEAAAAAAFDsKKoAAABAkQkJCVFISEi+9wEAAAAAAAAAAAAAAKBk8/X1dXcIAFAozO4OAAAAAAAAAAAAAAAAAAAAAEDxqBTgI7vDeV3nsFgsqlevniwWSyFFlT/XGz8AXI2VKgAAAAAAAAAAAAAAAAAAAIAyItDXKovZpGeX7tDBMwnuDiffat8YoNk9G7s7DAClCEUVQBHLqOi0mE3uDgUAAAAAAAAAAAAAAAAAAECSdPBMgvacvOTuMADA7SiqAIqYp1d0tgqrpBfa3ebuMAAAAAAAAAAAAAAAAAAAAACg0FFUARQTT63orFXJ390hAAAAAAAAAAAAAAAAAAAAAECRMLs7AAAAAAAAAAAAAAAAAAAAAAAAAHegqAIAAAAAAAAAAAAAAAAAAAAAAJRJFFUAAAAAAAAAAAAAAAAAAAAAAIAyiaIKAAAAAAAAAPl24cIF3XPPPTp+/LixLS4uTl27dlV4eLimTZsmp9OZp30AAAAAAAAASi76AgEAQGlHUQUA5JOvr6+7QwAAAAAAwK3Onz+vyMhInThxwthms9kUGRmp+vXra8WKFYqPj9fKlStz3QcAAAAAAACg5KIvEAAAlAUUVQAo9SoF+MjuKJyKd4vFonr16slisRTK+fKjsF4DAAAAAADXa/jw4Wrfvr3Lti1btighIUHR0dGqUaOGhg8fruXLl+e6ryRjYgUAAAAAAACUdWWlLxAAChtjDIBnsbo7AAAoaoG+VlnMJj27dIcOnklwdzgFUvvGAM3u2djdYQAAAAAAIEmKiYlR9erV9fLLLxvb9u3bp0aNGhmDBGFhYYqPj891X37Y7fZCiD4HJrMsZpOk/02sAMAzFfn1Io8y4igp8ZR25Lt4eXK+PTFmAEDpxI12ADxBaewL9OTfM0WpuPPijkltUXpkTLSc0adf0uR1jMHucEpORzFEVDJw/c0euclaYeQlr39LUQWAMuPgmQTtOXnJ3WEAAAAAAODxqlevnmlbQkKCQkNDjccmk0lms1kXL17McV9QUFCenzc2Nvb6As+Br6+v6tWr57GTMrQKq6QX2t3m7jCAEmP//v1KSkpydxiGorx+ITPyXbzINwDA3Ur6DXXZufZGO098DQDKhtLYF1icz+GJiiMvGf2xQEGVpomWf/+9ZPVlFgeuv9kjN1krjrxQVAEAAAAAAADgulksFnl7e7ts8/HxUXJyco778jOQ2rBhwyKfvcxTJ2WoVcnf3SEAJUpYWJi7Q5CUPgNWbGxssVy/QL6LmyfnOyN2AEDpUJpuqAMAT+HpfYGe/HumKJEXeCJP7dO/WknpyywOXGeyR26yVhh5yWtfIEUVAAAAAAAAAK5bUFCQDhw44LItMTFRXl5eOe7LD4vFQkcygDwpadcKrl/Fi3wXL/INACgpSsMNdQDgKUpLXyC/Z7JGXoDiVRa/b1xnskduslYceTEX6dkBAAAAAAAAlAkNGzbUb7/9Zjw+fvy4bDabgoKCctwHAAAAAAAAwLPQFwgAAEqbYimqiImJUVhYmPFf27ZtJUlxcXHq2rWrwsPDNW3aNDmdzuIIBwAAAAAAAEAhCw8P1+XLl7Vq1SpJ0ty5c9WsWTNZLJYc9wEAAAAAAADwLPQFAgCA0sZaHE+yZ88ezZ07V40bN5Ykmc1m2Ww2RUZGqkWLFpo5c6YmTZqklStXqmvXrsUREgAAAAAAAIBCZLVaFRMTo6ioKE2fPl12u12LFi3KdR8AAAAAAAAAz0JfIAAAKG2KvKgiLS1NcXFxatq0qfz9/Y3tGzduVEJCgqKjo+Xr66vhw4drwoQJFFUAAAAAAAAAHmL//v0ujyMiIrR+/XrFxsaqSZMmCg4OztM+AAAAAAAAACUbfYEAAKA0K/Kiiri4ODmdTnXq1EmnT59WeHi4YmJitG/fPjVq1Ei+vr6SpLCwMMXHxxd1OAAAAAAAAACKUEhIiEJCQvK9DwAAAAAAAIBnoS8QAACUFkVeVHHw4EHVqVNHY8aMUYUKFTR58mSNGzdOtWvXVmhoqHGcyWSS2WzWxYsXFRQUlK/nsNvthR22y3mL6vyewt15sFgsbnleoCQqKdcjd18XSgryULpyUBpeAwAAAAAAAAAAAAAAQEFlTJINAEBZU+RFFR07dlTHjh2Nx2PHjlVERIRuueUWeXt7uxzr4+Oj5OTkfBdVxMbGFkqs7jq/p3BHHnx9fVWvXr1if16gpNq/f7+SkpLcHYaB62M68kAOAAAAAAAAAAAAAAAAiovd4ZTFbCrUc1osFu7VAwCUWUVeVHGtwMBAORwOVaxYUQcOHHDZl5iYKC8vr3yfs2HDhkWymoHdbldsbGyRnd9TkAeg5AgLC3N3CJK4LmQgD6UrBxmvBQAAAAAAAAAAAAAAoCSzmE16dukOHTyT4O5QCqRVWCW90O42d4cBAIChyIsqpkyZokaNGql9+/aS0meyNpvNCgsL0/Lly43jjh8/LpvNlu9VKqT0CsmivJGzqM/vKcgD4H4l7TvIdSEdeSAHAAAAAAAAAAAAAAAAxengmQTtOXnJ3WEUSK1K/u4OAQAAF0VeVFG3bl3NmjVLlSpVUlpammJiYtS5c2c1b95cly9f1qpVq9SpUyfNnTtXzZo144ZMAAAAAAAAAAAAAAAAAAAAAABQLIq8qKJTp06Kj4/XkCFD5O/vr4iICA0fPlxWq1UxMTGKiorS9OnTZbfbtWjRoqIOBwAAAAAAAAAAAAAAAAAAAAAAQFIxFFVIUlRUlKKiojJtj4iI0Pr16xUbG6smTZooODi4OMIBAAAAAAAAAAAAABSijRs3asqUKfrzzz9Vv359TZ06VbVq1VJcXJyio6N19OhRdevWTSNGjJDJZHJ3uAAAAAAAAIDB7O4AQkJCFBERQUEFAAAAAAAAAAAAAHigo0ePatSoUYqKitKWLVtUtWpVjR49WjabTZGRkapfv75WrFih+Ph4rVy50t3hAgAAAAAAAC7cXlQBAAAAAAAAAAAAAPBc8fHxGjZsmNq3b6+KFSuqV69e2r17t7Zs2aKEhARFR0erRo0aGj58uJYvX+7ucAEAAAAAAAAXVncHAAAAAAAAAAAAAADwXK1bt3Z5/Mcff6hmzZrat2+fGjVqJF9fX0lSWFiY4uPj831+u91eKHFmd96iOr+nK678WCyWIj0/4Em4Hv0P1+jckaOcXZsf8gQAAICcUFQBAAAAAAAAAAAAACgUNptN8+fPV58+fXTs2DGFhoYa+0wmk8xmsy5evKigoKA8nzM2NrYoQi2283u6osyPr6+v6tWrV2TnBzzN/v37lZSU5O4wShSu0bkjRzkjPwAAAMgLiioAAAAAAAAAAAAAAIVi1qxZ8vPzU48ePTRr1ix5e3u77Pfx8VFycnK+iioaNmxYJKsZ2O12xcbGFtn5PR35AYpfWFiYu0MoMbgG5Y4c5eza/GQ8BgAAALJCUQUAAAAAAAAAAAAA4Lp9//33Wrp0qZYtWyYvLy8FBQXpwIEDLsckJibKy8srX+e1WCxFerNoUZ/f05EfoPjwXcuMa1DuyFHOyA8AAADywuzuAAAAAAAAAAAAAAAAnu3YsWN6/vnnNX78eNWuXVtS+goTv/32m3HM8ePHZbPZ8rVKBQAAAAAAAFDUKKoAAAAAAAAAAAAAABRYcnKyBg0apIiICLVp00aJiYlKTExU06ZNdfnyZa1atUqSNHfuXDVr1ozZogEAAAAAAFCiWN0dAAAAAAAAAAAAAADAc23dulXx8fGKj4/XsmXLjO2bNm1STEyMoqKiNH36dNntdi1atMiNkQIAAAAAAACZUVQBAAAAAAAAAAAAACiwiIgI7d+/P8t9oaGhWr9+vWJjY9WkSRMFBwcXc3QAAAAAAABAziiqAAAAAAAAAAAAAAAUmZCQEIWEhLg7DAAAAAAAACBLZncHAAAAAM+2ceNGtWnTRvXq1VP37t0VHx8vSYqLi1PXrl0VHh6uadOmyel0Gn+T0z4AAAAAAAAAAAAAAAAAAIoLRRUAAAAosKNHj2rUqFGKiorSli1bVLVqVY0ePVo2m02RkZGqX7++VqxYofj4eK1cuVKSctwHAAAAAAAAAAAAAAAAAEBxoqgCAAAABRYfH69hw4apffv2qlixonr16qXdu3dry5YtSkhIUHR0tGrUqKHhw4dr+fLlkpTjPgAAAAAAAAAAAAAAAAAAipPV3QEAAADAc7Vu3drl8R9//KGaNWtq3759atSokXx9fSVJYWFhio+Pl6Qc9+WH3W6/zuhzPm9RnR8Fw/tS8vCelDy8JyVPSXlPLBaLW5+/MBRmDq99X9z9/gAAAAAAAAAAAAAA3IuiCgAAABQKm82m+fPnq0+fPjp27JhCQ0ONfSaTSWazWRcvXlRCQkK2+4KCgvL8fLGxsYUaf3GfHwXD+1Ly8J6UPLwnJY873xNfX1/Vq1fPbc9fWPbv36+kpKRCPSffFQAAAAAAAAAAAACARFEFAAAACsmsWbPk5+enHj16aNasWfL29nbZ7+Pjo+TkZFkslmz35aeoomHDhkUy87bdbldsbGyRnR8Fw/tS8vCelDy8JyUP70nhCQsLK7RzXfu+ZDwGAAAAAAAAAAAAAJRNFFUAAADgun3//fdaunSpli1bJi8vLwUFBenAgQMuxyQmJua6Lz8sFkuR3qBa1OdHwfC+lDy8JyUP70nJw3ty/Yoif7wvAAAAAAAAAAAAAABJMrs7AAAAAHi2Y8eO6fnnn9f48eNVu3ZtSemrSPz222/GMcePH5fNZlNQUFCO+wAAAAAAAAAAAAAAAAAAKE4UVQAAAKDAkpOTNWjQIEVERKhNmzZKTExUYmKimjZtqsuXL2vVqlWSpLlz56pZs2ayWCwKDw/Pdh8AAAAAAAAAAAAAAAAAAMXJ6u4AAAAA4Lm2bt2q+Ph4xcfHa9myZcb2TZs2KSYmRlFRUZo+fbrsdrsWLVokSbJardnuAwAAAAAAAAAAAAAAAACgOFFUAQAAgAKLiIjQ/v37s9wXGhqq9evXKzY2Vk2aNFFwcLDL32W3DwAAAJ4tJibGpWi2Ro0a2rBhg+Li4hQdHa2jR4+qW7duGjFihEwmkxsjBQAAAAAAAHA96AsEAAClhdndAQAAAKD0CgkJUURERJZFEzntAwAAgOfas2eP5s6dq+3bt2v79u367LPPZLPZFBkZqfr162vFihWKj4/XypUr3R0qAAAAAAAlQqUAH9kdTneHcV08PX4ABUNfIAAUXGloA0q0A1F6sFIFAAAAAAAAgEKRlpamuLg4NW3aVP7+/sb2jRs3KiEhQdHR0fL19dXw4cM1YcIEde3a1Y3RAgAAAABQMgT6WmUxm/Ts0h06eCbB3eHkW+0bAzS7Z2N3hwGgmNEXCADXx9PbgBLtQJQuFFUAAAAAAAAAKBRxcXFyOp3q1KmTTp8+rfDwcMXExGjfvn1q1KiRfH19JUlhYWGKj4/P9/ntdnthh+zCYrEU6fkBFJ+ivl7kVUYcJSWe0o58Fy9PzrcnxgwAKBsOnknQnpOX3B0GAOSJJ/cFevLvmQz0ZQKlR2loA+b1eloarr9FhdxkrTDykte/LZaiio0bN2rKlCn6888/Vb9+fU2dOlW1atVSTEyMFi1aZBxXo0YNbdiwoThCAgAAAAAAAFDIDh48qDp16mjMmDGqUKGCJk+erHHjxql27doKDQ01jjOZTDKbzbp48aKCgoLyfP7Y2NiiCFuS5Ovrq3r16hXZ+QEUr/379yspKcndYRiK8vqFzMh38SLfAAAAQNnkyX2BxfkcRYG+TAAlTX77Yz31+lscyE3WiiMvRV5UcfToUY0aNUrjx4/XnXfeqZiYGI0ePVpLly7Vnj17NHfuXDVunL70i9lsLupwAAAAAAAAABSRjh07qmPHjsbjsWPHKiIiQrfccou8vb1djvXx8VFycnK+BlIbNmzIDGwA8iQsLMzdIUhKnwErNjaW61cxId/Fy5PznRE7AAAAgILz5L5AT/49AwAlUV77Y7n+Zo/cZK0w8pLXvsAiL6qIj4/XsGHD1L59e0lSr1691L9/f6WlpSkuLk5NmzaVv79/UYcBAAAAAAAAoJgFBgbK4XCoYsWKOnDggMu+xMREeXl55et8FouFjmQAeVLSrhVcv4oX+S5e5BsAAACA5Jl9gfyeAYDCkd9rKdff7JGbrBVHXop8aYjWrVurV69exuM//vhDNWvWVFxcnJxOpzp16qTbb79d/fr108mTJ4s6HAAAAAAAAABFZMqUKVq7dq3xODY2VmazWWFhYfrtt9+M7cePH5fNZsvXzHQAAAAAAAAASg76AgEAQGlS5CtVXM1ms2n+/Pnq06ePDh48qDp16mjMmDGqUKGCJk+erHHjxum9997L93ntdnsRRPu/8xbV+T2Fu/NAxRXwPyXleuTu60JJQR5KVw5Kw2sAAAAA3K1u3bqaNWuWKlWqpLS0NMXExKhz585q3ry5Ll++rFWrVqlTp06aO3eumjVrRr8PAAAAAAAA4KHoCwQAAKVJsRZVzJo1S35+furRo4e8vLzUqRWNKQAAss1JREFUsWNHY9/YsWMVERGhhIQEBQQE5Ou8sbGxhR1qsZ7fU7gjD76+vqpXr16xPy9QUu3fv19JSUnuDsPA9TEdeSAHAAAAANJ16tRJ8fHxGjJkiPz9/RUREaHhw4fLarUqJiZGUVFRmj59uux2uxYtWuTucAEAAAB5eXm5OwQAAACPRF8gAAAoTYqtqOL777/X0qVLtWzZsiw7pgIDA+VwOHTmzJl8F1U0bNiwSCpZ7Xa7YmNji+z8noI8ACVHWFiYu0OQxHUhA3koXTnIeC0AAAAArk9UVJSioqIybY+IiND69esVGxurJk2aKDg42A3RAQAAAK7q1qvv+f3bDqcsZpO7wwAAAGUQfYEAAKC0KJaiimPHjun555/X+PHjVbt2bUnSlClT1KhRI7Vv315S+gzXZrNZVapUyff5LRZLkXZ0FfX5PQV5ANyvpH0HuS6kIw/kAAAAAEDehISEKCQkxN1hAAAAAAYvq0XPLt2hg2cS3B1KgdS+MUCzezZ2dxgAAACZ0BcIAAA8SZEXVSQnJ2vQoEGKiIhQmzZtlJiYKEm67bbbNGvWLFWqVElpaWmKiYlR586d5evrW9QhAQAAAAAAAAAAAAAgSTp4JkF7Tl5ydxgAAAAAAABwkyIvqti6davi4+MVHx+vZcuWGds3bdqkQ4cOaciQIfL391dERISGDx9e1OEAAAAAAAAAAAAAAAAAAAAAAABIKoaiioiICO3fvz/LfVFRUYqKiirqEAAAAAAAAAAAAAAAAAAAAAAAADIxuzsAAAAAAAAAAAAAAAAAAAAAAAAAd6CoAgAAAAAAAAAAAAAAAAAAAAAAlEkUVQAAAAAAAAAAAAAAAAAAgDLDy8vL3SEAAIAShKIKAAAAAAAAAAAAAAAAAABQZtStV18Wi8XdYQAAgBLC6u4AAAAAAAAAAAAAAAAAAAAAiouX1aJnl+7QwTMJ7g4l31qFVdIL7W5zdxgAAJQqFFUAAAAAAAAAAAAAAAAAAIAy5eCZBO05ecndYeRbrUr+7g4BAFCC2B1OWcwmd4dRYCUlfooqAAAAAAAAAAAAAAAAAAAAAADwMBazyWNXX6p9Y4Bm92zs7jAkUVQBAAAAAAAAAAAAAAAAAAAAAIBH8tTVl0oSs7sDAAAAAAAAAAAAAAAAAAAAAAAAcAeKKgAAAAAAAAAAAAAAAAAAAAAAQJlEUUUuvLy83B0CAAAAAAAAAAAAAAAAAAAAAAAoAhRV5KJuvfqyWCzuDuO62B1Od4cAAAAAAAAAAAAAAAAAAAAAAECJY3V3ACWdl9WiZ5fu0MEzCe4OpUBq3xig2T0buzsMAAAAAAAAAAAAAAAAAAAAAABKHIoq8uDgmQTtOXnJ3WEAAAAAAAAAAAAAAAAAAAAAAIBCZHZ3AACAssHucLo7hOtWGl4DAAAAAAAAipevr6+7QwAAAAAAAAAAADlgpQoAQLGwmE16dukOHTyT4O5QCqT2jQGa3bOxu8MAAAAAAABADioF+MjucMpiNrk7FEmSxWJRvXr18vU3JSl+AAAAAAAAAADKAooqAADF5uCZBO05ecndYQAAAAAAAKCUCvS1evTkHkzsAQAAAAAAAABA8aOoAgAAAAAAAAAAlCpM7gEAAAAAAAAAAPLK7O4AAAAAAAAAAAAAAAAAAAAAAAAA3IGiCgAAcF18fX3dHQIAAAAAAAAAAAAAAAAAAECBUFQBAEAZYXc4C/2cFotF9erVk8ViKfRzZ6UoXgMAAAAAAAAAAAAAAAAAACi7rO4OAAAAT+ZJqzRYzCY9u3SHDp5JcHcoBVL7xgDN7tnY3WEAAAAAAAAAAAAAAAAAAIBShKIKAADyoFKAj+wOpyxmk7EtY5UGT3LwTIL2nLzk7jAAAAAAAAAAAAAAAAAAAABKBIoqAAAF4kkrNBSGQF+rR6/00Cqskl5od5u7wwAAAAAAAAAAAAAAAAAAAChRKKoAAA+Q1SoJ7uSJKzQUFk9d6aFWJX93hwAAAAAAAAAAAAAAAAAAAFDiuL2oIi4uTtHR0Tp69Ki6deumESNGyGQqGTcNA0BJwSoJAEoj2oEAAABlD21AAACAsol2oOcqayuXAyhZuAbljhyhJKMNCAAAPIlbiypsNpsiIyPVokULzZw5U5MmTdLKlSvVtWtXd4YFACUWqyQAKC1oBwIAAJQ9tAEBAADKJtqBRasoVzsvyyuXA8iforgWueMaVFTX06JybY48Lf6slIbXgHS0AQEAgKdxa1HFli1blJCQoOjoaPn6+mr48OGaMGECjacSiMp2AABQmGgHAgAAlD20AQEAAMom2oFFi9XOAZQEnn4tkv53PfLU1+Dp8UtS7RsDNLtnY3eHgUJCGxAAAHgatxZV7Nu3T40aNTJu2A8LC1N8fLw7Qyp1CmM2AGYgAQAAha2ktwO9vLzcHQIAFAgF8SUP7wnwPyW9DQgAAPKP9i7ygnZg8WC1cwAlgadei6T/XY889TV4evwofWgDAgAAT+PWooqEhASFhoYaj00mk8xmsy5evKigoKBc/97pdEpKXy7MYrEUenwOh0OSVLeyv3wK//TF4vbQf0hOh97aFK+TF5PcHU6+3R4apG7/rO7R78FNN/jKbrd77Gvw9PglXkNJ4OnxS57/Gjw9fkm6pZK/7Ha77HZ7kZw/47wZ7QsUretpBxZ1G9But+vWsNuM//dUdodTcjrcHUahcTgcKleunFJTUz36fSlNeE+KicmcryL5sLAwSSXr+uXpy7Vfb/wl5T3x1HZgUbQBM86V0ZagHVh8SnIbMIPFYvHY70tp+N3Ha3A/T49f8vzXUNT9H6Udv1Ouks/fEgVVlO3douzboA1YvEpyO7A0jAd7+r99nh6/xGsoCTw9fsnzX4Onxy95/mvw9Pilwv89RD+ge5XkNqDk+e3A0vCd9/TX4OnxS57/Gjw9fql0vIb8/vtN/132ric3njy+ldtn6No2XUHktR1ocrqxpfjKK68oLS1N0dHRxraWLVtq2bJlCgkJyfXvbTabYmNjizJEAABQxjRs2FDe3t7uDqPUu552IG1AAABQFGgHFj3agAAAoKShDVg8aAcCAICShDZg8aANCAAASprc2oFuXakiKChIBw4ccNmWmJgoLy+vPP291WpVw4YNZTabZTJ57qyXAADA/ZxOpxwOh6xWtzaPyozraQfSBgQAAIWJdmDxoQ0IAABKCtqAxYt2IAAAKAloAxYv2oAAAKCkyGs70K2txIYNG2r58uXG4+PHj8tms+W6xFcGs9lM5TAAAIAHup52IG1AAAAAz0QbEAAAoGyiHQgAAFD20AYEAACexuzOJw8PD9fly5e1atUqSdLcuXPVrFkzWSwWd4YFAACAIkY7EAAAoOyhDQgAAFA20Q4EAAAoe2gDAgAAT2NyOp1OdwawceNGRUVFyd/fX3a7XYsWLVKdOnXcGRIAAACKAe1AAACAsoc2IAAAQNlEOxAAAKDsoQ0IAAA8iduLKiTp9OnTio2NVZMmTRQcHOzucAAAAFBMaAcCAACUPbQBAQAAyibagQAAAGUPbUAAAOApSkRRBQAAAAAAAAAAAAAAAAAAAAAAQHEzuzsAAAAAAAAAAAAAAAAAAAAAAAAAd6CoAgAAAAAAAAAAAAAAAAAAAAAAlEkUVQAAAAAosWJiYhQWFmb817ZtW3eHBJQYFy5c0D333KPjx48b2/jOAK42btyoNm3aqF69eurevbvi4+Ml8V0BAADIi6x+c+Tkk08+UYsWLVS/fn317dtXZ86cKeIIAQAAAACFJbv+dPxPv379tHLlSneHUeK8+uqrioyMdHcYJcaqVavUqlUrNW7cWH369MlzvwrKnqz63rgW594nWZTXYooqshEXF6euXbsqPDxc06ZNk9PpdHdIxSK7L2RZzcfVX76ymoNrGz1lLQ/ZNXLKQh6y+scpp9ddGnOS34ZLacyBlP+GSmnNA8oGPr8lz549ezR37lxt375d27dv12effebukMqs/LYNULTOnz+vyMhInThxwmU73xn34jd1yXL06FGNGjVKUVFR2rJli6pWrarRo0dL4ruCdAX5bnKzaMFdz7UwNTVVDz74oH766acijLB0uZ58Dxs2TDExMUUYXelSkFy/9957atasmZo0aaKnn35aFy5cKIZIS4/83uj/888/6/7779e//vUvffDBB0UcXemR3W+O7Pzyyy+aPXu2pk+frk2bNiklJUXTpk0r4iiB68Nvtcz4XZt3jCNnr6yPL2enLI8754Qx6ZwxXp0zxrFREHwOspZTfzrSffHFF9q6dau7wyhx4uLitHjxYo0aNcrdoZQIR48e1axZs/TWW29pzZo1qlq1qqKjo90dlltxn0HWsup741qce59kUV+LKarIgs1mU2RkpOrXr68VK1YoPj6+TFQYZveFLKv5uPrLV1ZzcG2jp6zlIbtGTlnIQ1b/OOX0uktjTvLbcCmNOZDy31AprXlA2cDnt+RJS0tTXFycmjZtqsDAQAUGBiogIMDdYZVJ+W0boOgNHz5c7du3d9nGd8a9+E1d8sTHx2vYsGFq3769KlasqF69emn37t18VyCpYP+OcbNowV3vtfC9995TXFxcEUZYulxPvr/77jv9+OOPevbZZ4s4ytKhILnevn27Vq1apUWLFumzzz7jWpJP+b3R//z58xo8eLA6dOigTz75RKtXr9aPP/5YxFGWDln95sjJH3/8ofHjx6tZs2aqXLmyunTpot27dxdhhMD14bdaZvyuzTvGkbNX1seXs1OWx51zwph0zhivzhnj2CgIPgfZy64/Hen+/vtvTZs2TTfffLO7QylRnE6nxo0bpyeeeEI1atRwdzglwu+//65GjRqpfv36qlq1qrp06aI//vjD3WG5DfcZZC+rvjeuxTn3SRbLtdiJTDZs2OAMDw93Xrlyxel0Op179+519uzZ081RFb1vvvnGuXjxYuPxtm3bnPXr1y+T+bhw4YKzWbNmznbt2jlXrFhRJnPgcDicDz/8sHPWrFnGtrKWh3Xr1jmfeeYZ4/H27dudzZs3LxN5eOKJJ5wLFixw3nrrrc5jx445nc6c3//SmJOscpDdddLpLJ05cDqzzkOGa6+VTmfpzQPKBj6/Jc+ePXucd9xxhzMiIsLZsGFDZ9++fZ0nTpxwd1hlUn7bBih6R48edTqdTpf3hO+Me/GbuuRbvHixs3379nxX4HQ6C/bv2LJly5xff/218Xj58uXOe++9t0jjLC2u51r4xx9/OJs2beps3bq188cffyzKMEuNguY7KSnJ2aZNG+enn35a1CGWGgXJ9XvvveecNm2a8XjVqlXOhx9+uEjjLE1y6qvKygcffOBs166d0+FwOJ3O9PcsKiqqqMMsFbL6zZEfr7zyinPAgAGFHRZQaPitlhm/a/OGceTsMb6cvbI87pwTxqRzxnh1zhjHRkHwOci7jP50pHvxxRed48aNc44cOdK4rsDpXLp0qbNRo0bO5cuXO7/55hunzWZzd0hud+DAAeedd97p3LNnj/PSpUvOYcOGOUeMGOHusNyG+wyyl5e+t7J4Lc4pL8VxLWaliizs27dPjRo1kq+vryQpLCzMZbm80qp169bq1auX8fiPP/5QzZo1y2Q+pk2bpoiICN1xxx2SyuZnYtmyZdq3b59CQ0P17bffKjU1tczloXbt2vrxxx/1+++/6/Lly1q8eLGaN29eJvIQExOjJ554wmVbTq+7NOYkqxxkd52USmcOpKzzkOHaa6VUevOAsoHPb8lz8OBB1alTRzNmzNCaNWvk5eWlcePGuTusMim/bQMUverVq2faxnfGvfhNXbLZbDbNnz9fjzzyCN8VSCrYv2Pdu3fXvffeazy++jchcnY918Jx48ZpwIABqlatWlGGWKoUNN9vv/22kpOTZbVatW3btjK55Hp+FSTXderU0YYNG3T06FGdO3dOy5cvV7NmzYoj3FIhp76qrOzfv1933XWXTCaTJOn222/X77//XlThlSpZ/ebIqwsXLuiTTz7RI488UogRAYWL32qZ8bs2bxhHzh7jy9kry+POOWFMOmeMV+eMcWwUBJ+DvLm6Px3Sjz/+qG3btumFF15wdyglSmJiombNmqWaNWvq1KlT+uCDD/Too48qJSXF3aG5Ve3atdWuXTt17txZTZs21W+//aaRI0e6Oyy34T6D7OXW91ZWr8XZ5aW4rsUUVWQhISFBoaGhxmOTySSz2ayLFy+6MaridfUXsqzlI6svX1nLQXaNnrKWh+waOWUhD1n945TT6y6NOclvw6U05kDKf0OltOYBZQOf35KnY8eOWrZsmW6//XZVr15dY8eO1ffff6+EhAR3h1bm5LdtAPfgO1NylOXf1CXVrFmz5Ofnpx49evBdgaTr/3eMm0Xzp6D5XrFihRISEtS3b9+iDrFUKUi+T548qQ8++EA1a9bUyZMn9corr+ipp56isCIXBcn1f/7zH9WsWVNt27ZVs2bNlJSUpIEDBxZHuKVCfm/0v/Y9CggI0OnTpws7LFxjwoQJaty4sVq1auXuUIBs8VstZ/yuzRrjyNljfDlnZXncOSeMSeeM8eqcMY6NguBzkDdX96eXdSkpKXrppZc0fvx4BQQEuDucEmXDhg1KSkrSwoULNXToUM2fP1+XLl3SqlWr3B2aW+3cuVPffvutPv30U/3666964IEHNGDAgDLbz8p9BgXHtfh/ivNaTFFFFiwWi7y9vV22+fj4KDk52U0RFb+rv5BlKR/ZffnKUg6k7Bs9K1asKFN5yK6RU9Y+Dxlyet1lMSfXNlzKUg5yaqiUpTyg9OHzW/IFBgbK4XDozJkz7g4F4jvjCfjOuE9Z/U1dUn3//fdaunSpZsyYIS8vr0z7+a6UTdf73eRm0fwpSL7Pnz+v1157TZMnT5bVai3qEEuVguR75cqVqlixoj744AMNGTJEH374obZv367vv/++qMP1aAXJ9dq1a3Xy5EmtW7dOP/30k+rUqcNMh0Xo2veIdljRW758uX755Re9/PLL7g4FyBG/1XLG79rMGEfOGePLOWPcOe8Yk867sjxenR3GsZEbPge5y60/vax5++231aBBA/qBs3Dq1CndfvvtKl++vCTJarUqLCxMx48fd29gbrZ27Vp16NBBt99+u/z9/fXcc8/p+PHj2rdvn7tDKzG4FueOa7Gr4rwWU1SRhaCgIJ0/f95lW2JiYpn5cF77hSxL+cjuy1eWciBl3+hJSUkpU3nIrpFT1j4PGXJ63WUtJ1k1XMpSDnJqqJSlPKD04fNb8kyZMkVr1641HsfGxspsNqtKlSpujAoZ+M6UPHxnSoay/Ju6JDp27Jief/55jR8/XrVr15bEdwXprue7yc2i+VeQfE+ePFndunVT3bp1izq8Uqcg+T59+rTuuusuYzArICBANWvWLPODoLkpSK7XrFmjXr166ZZbblH58uU1evRorV+/XpcuXSrqcMuka98j2mFFa9euXXr55Zf12muvqWLFiu4OB8gRv9Wyx+/arDGOnDPGl3PGuHPeMSadN2V9vDo7jGMjN3wOcpZVf3pZt3r1an3zzTdq2rSpmjZtqi+//FITJkzQ+PHj3R2a21WuXFkpKSku206ePKmqVau6KaKSwW6366+//jIeJyYm6sqVK7Lb7W6MqmThWpwzrsWZFee1mCm+stCwYUMtX77ceHz8+HHZbDYFBQW5MarikdUXsizlY/Xq1bpw4YKaNm0qSUpOTta6detUrVo1paWlGceV5hxI2Td6Ro4cqYULFxrbSnse7HZ7pgG3K1euyGq16rfffjO2l/Y8ZMjpWlCWrhPZNVzKUg6yu1bu2rVL7dq1KzN5QOlTlr7HnqJu3bqaNWuWKlWqpLS0NMXExKhz587y9fV1d2gQ35mSiO+M+5X139QlTXJysgYNGqSIiAi1adNGiYmJkqTbbruN7woK/N3MuFn0nXfe4WbRfChIvr/88kv5+/vr448/liRduXJFkZGRGjx4sAYOHFjkMXuyguS7cuXKio+PNx47HA6dOnWqzA+C5qYgub52YDVjpSQGVotGw4YNtWbNGuPx3r17FRIS4saIPF9CQoJ8fHwyDXT/9ddfioyM1IABA1S/fn2j7eXv7++OMIFc8Vsta/yuzR7jyDljfDlnjDvnHWPSuWO8OnuMYyM3fE+yl11/up+fn0wmk5ujc5/Fixe7tPWmT5+uRo0aqXPnzm6MqmRo1aqVJk2apCVLlqh169Zav3699u7dq9dee83doblVkyZNNGrUKC1YsEA33HCDPv30U1WsWFFhYWHuDq3E4FqcPa7FWSvOazErVWQhPDxcly9f1qpVqyRJc+fOVbNmzWSxWNwbWBHL6guZmJiopk2blpl8LF68WKtXr9aqVau0atUq3XPPPXrmmWe0aNGiMpMDKb3REx8fryVLlujUqVP68MMPtXfvXrVo0aJM5aFJkybasGGDFixYoNWrV2vIkCGqWLGiHnvssTKVhww5XRvLynUzu+uk0+ksMzmQsr9WPvPMM2UqDyh9+PyWPJ06dVK7du00ZMgQRUdHq3nz5hozZoy7w8L/x3em5OE74178pi55tm7dqvj4eC1btkxNmjQx/gsPD+e7ghz/HUtISFBqamqmv8nqZtGMDm3krCD53rRpk7744gvjt2eDBg00adIk9ezZs5ij9zwFyff999+vb7/9Vl9//bVOnTqlGTNmyGazqUmTJsUcvWcpSK6bNGmiZcuWacmSJfrss880fPhwNW7cWBUqVCjm6EuX7PJ9zz336P/+7//0448/Ki0tTfPnz1eLFi3cEGHp0bFjR23evDnT9i+//FLnzp3TrFmzXNpeQElFv0Zm/K7NGePIOWN8OWeMO+cdY9I5Y7w6Z4xjIzd8DrKXXX/6iRMn3B2aW1WuXFmhoaHGf35+fqpQoYKCg4PdHZrblS9fXu+9954+//xztWvXTgsXLtTMmTMVGhrq7tDcqn379howYIAWLlyo6OhoXb58WW+88QarMFyFa3H2uBZnrTivxSan0+ks9LOWAhs3blRUVJT8/f1lt9u1aNEi1alTx91hFamNGzdq6NChmbZv2rRJ+/btK3P5kKQXX3xRd955p7p06VLmPhM7d+7U1KlTtXfvXlWsWFHR0dGKiIgoU3lwOp166623tGLFCp09e1Z16tRRTEyMGjRoUGbyEBYWpk2bNhkN3pxed2nNydU5yOk6mbG/NOZAyvxZuNrV10qp9H4WUDbw+QVylp+2AVDW8Jsa8DzZ/Tt2zz33aNSoUYqIiHA5fsGCBZoyZUqm8+zfv7+4QvZo+c33tR577DE99dRT+te//lVMEXu2guT7v//9r2bNmqVDhw6pRo0amjBhgv75z3+6IXrPkt9cp6Sk6JVXXtHXX3+tCxcuqHHjxpo8ebJq1Kjhplfgma79bZLTZ/vjjz/WlClTFBAQID8/Py1btozVhgBIol/jWvyuzZ+yPI6cHcaXs8e4c84Yk84Z49U5Yxwb+cXnAACKH/cZwFNQVJGD06dPKzY2Vk2aNKG6UORDIgcZyEO6spqHnF53Wc3J1chBOvIAT8bnF8gfvjNA3vBdAUomvpvFi3wXL/JdfMh1yXfkyBHFx8frzjvvVEBAgLvDAVCCcA3PO3KVM/KTM/KTM/KTGWPSBUd+ckZ+IPE5AICSgGsxSiKKKgAAAAAAAAAAAAAAAAAAAAAAQJlkdncAAAAAAAAAAAAAAAAAAAAAAAAA7kBRBQAAAAAAAAAAAAAAAAAAAAAAKJMoqgAAAAAAAAAAAAAAAAAAAAAAAGUSRRUAAAAAAAAAAAAAAAAAAAAAAKBMoqgCAAAAAAAAAAAAAAAAAAAAAACUSRRVAAAAAAAAAAAAAAAAAAAAAACAMomiCgAAAAAAAAAAAAAAAAAAAAAAUCZRVAEAAAAAAAAAAAAAAAAAAAAAAMokiioAAAAAAAAAAAAAAAAAAAAAAECZRFEFAAAAAAAAAAAAAAAAAAAAAAAokyiqAAAAAAAAAAAAAAAAAAAAAAAAZRJFFQAAAAAAAAAAAAAAAAAAAAAAoEyiqAIAAAAAAAAAAAAAAAAAAAAAAJRJFFUAQAHY7XZ3hwAAAJCjK1eu6PTp0+4OAwAAACVMWWsn0o8HAADKkrNnz7q0f86dOyebzWY8TkxM1PLly3Xp0qVCf+4jR47I6XQaj5OTk12e+7HHHtP48eONx+fPn8+yrZaWlqZLly65nKsk+/vvv/N1/MWLF7Vz5045HI5sj7HZbLpy5cp1RgYAAAAAyA+KKgA3SUlJ0bhx41wGMD/66CM988wzOn/+fJ7P88UXX+i1117L8Zj/+7//0759+woca4bsOm62bt2aY6dPYUpNTdWePXuK/HlWrVqlt956K8t9c+bMUe/evZWWliYpvUMwJSWlSAZo09LSlJCQkKdjN23apM2bNxfq81++fFmjR4/O8vNz4cKFQn0uAABQeG1ESVqzZo26du1a2CEWmNPpVEpKSrb758+fr2PHjuV4jvj4eO3cudNl2+HDh10eX9t2atu2rd555x3j8ZkzZ7I8t81m0+XLl3N8/pIiP23EDGfPntXu3btzPOby5ctGGxcAAJQsnthOPHHihM6ePVvkzzNz5kytXbs203an06l+/frp1VdfNbYlJibKZrMVSV/m33//necb/xYvXlwo/bVX27Vrl0aPHp1lm5t+PAAAyo7evXvrgw8+MB6/8sor6tu3r/E4KSlJo0eP1rlz57Ic2xw/fryio6NzfI7HH39cK1eudNl26tQpde7cWUOHDlVSUpKSkpLUsWNHl3Hsc+fOufS/Pf/88+rRo0em9svu3bsVHh6eYxvm0qVL+uijj7Lsz/v666/1n//8Rw899FC2/z3wwANq3ry5S9FHfjkcDo0bNy7XfF1r9+7d6t27d47HLFy4UH379vWY/koAAAAAKA2s7g4AKO3++usvtW7d2mXbrFmz1KZNGx0+fFjTp0/XjBkzJEk///yzzp49qwoVKkhKL2L48ccf5ePjI5PJZAzKNW3aVCaTSd7e3ipfvrzmzp2rTp066ZZbbpHD4ZDNZpPFYpGXl5ckacWKFfrmm2+0ePFi3XLLLZKkN998U2+88YZLXD4+Ptq1a1e2r6Vnz57q37+/OnbsaGzbuXOn+vXrp/fff18tWrTI9m9//PFHff7555o0aZIsFoskae/evbJYLMZjKX2wMy0tTeXLl1flypUznefjjz/Wa6+9ps8++0y1atVScnKy/vjjD3l7e7scZ7fbZbPZdOutt2balxe7du3Snj17NHTo0Ez77rnnHs2ZM0czZ87UCy+8oMjISG3bti3bc0VFRWngwIH5jiElJUXPPvusQkNDNWbMmFyPX7p0qQIDA9WyZct8P1d2UlNTtXz5ct1333267bbbjO1JSUl68MEHNXLkSD344IOF9nwAAJQV19NGlNILAwICAox2VGpqqmw2m37++WedPHlSffv2lZeXl9EedDgcevnll9WvXz9VqVJFkrRs2TLZ7Xb16tVLSUlJio+PV7ly5WQymbKMOTU1VTfeeKOCg4ONbTNnznQpWMiNxWLR77//nmm73W7Xb7/9prVr1+rTTz/NNoYVK1bo119/1dKlSyWlD0D26NFD3bt317hx4/TXX3/poYce0tChQ/XYY48ZuUpKSjKep0+fPqpRo4bmzJnj8jwbNmzQ6NGjMxVtXO3s2bNas2aNHn30UVmtrj+nFyxYoIULFyowMDDbv7fZbLJarVq9enW2x+Qmv23EDN9++63mzp2rjRs3ZnvMjBkzdPbsWc2cObNAbWgAAHD9SkI78f3335fVatUTTzwhKb2P8siRI7JarTKb/zdPk8PhUFpamkJDQ/WPf/wj02uZPHmyDh8+rBUrVsjX11fnzp3T2bNnjefOkFHUGRYWVqCcbdq0SQ6HQ+3bt3fZbjKZdN9992ns2LG666671LJlS4WHh+c4Mconn3yiO+64I98xnDhxQk8++aReeOEFtW3bNtfjp02bplGjRrn0t12vkydPavny5XrppZdctu/atUuDBw/W/PnzC5xjAADgOUwmk8qXL2883rVrl7p06WI8zmiLbdy4Ub/88oveeecdHT58WMuWLdOIESNktVqNQoPZs2erZ8+e2r9/v2688Uaj7XL69GklJye7PG/lypU1ceJEjRw5Uv3799fChQvVs2dPTZ8+Xffdd5/uuOMOl3Hhr7/+Wj/88IPmzJkjHx8fSdLx48dlNpuNVTTOnTunS5cuydfXV8nJyTp06JD27t2r//u//9P27dslSeXKlVP37t1dYnE6nfLx8dHnn3+ebZ727t2rTp06ZWqb5seECRO0d+9evfvuuy7b+/btq5MnTxqPO3TooAEDBsjb21tms1lWq1V+fn5G29rhcCglJUXe3t5Gfvr06aNDhw7pySef1OLFi+mrAwAAAIBiQFEFUMS8vLxks9m0adMmhYaG6p577pG/v78k6ZlnnlFkZKTOnDmjwMBAff/993rzzTeNm7suXbqk9957Tw6HQzt27FDTpk11ww03aPXq1frss89cnuf+++93eTx9+nQ99NBDktJnFDly5IgGDRqk5cuXKygoSGlpaWrWrJnefPNNSdLq1atzXfGic+fOevXVV3XfffcZHTcLFy7UnXfeqcaNGysxMVFSekeVzWaTt7e3AgICJEmhoaHaunWrJk2aZAzsPf7440pNTZXZbJbZbJbT6ZTD4TBudhs+fLjL88fHx2vWrFkaNWqUatWqJUk6duyYunfvbnRCZUhLS5PNZtP69esVGhoqSbrtttsyzRY3a9asTLmTJKvVmulGuQxhYWEaMGCA4uPjlZqaqqlTpyo1NVVeXl4uBSKS1K1btwJ1xjmdTj399NMymUyZ8pAdLy+vbGO+WlYFNbVr19aaNWuyPKekTOf19fXVG2+8oaFDh8rLy0v33XdfnmIEAADprqeNKEl33313pnOWL19e48aNM9o3JpPJ+JuvvvpKS5cuVZcuXYyb5Y4dO6b58+erdu3a+sc//qFevXoZA5hS+ooPXl5e8vHxkd1uV2pqqmJiYtS5c2eX13HrrbcaRQ4ZFixYIB8fH/Xq1cvYltFGzPDrr7/qq6++MtqVlStXVrly5YybBO12uywWiwYMGKArV66oSpUqKleunEuMDRo00LBhw/Tqq68qISFBM2bMUIcOHfTqq6+qdevWCg0NNdqaUnrb9fjx45o+fbqRmyNHjsjLy0uJiYny8vLSiRMnlJqaqoCAAF28eFHx8fH6/fff9csvv2jHjh3y9vZWrVq1Mr0HdrtdNWvW1IIFC7J93zdu3KiXX3452/25yamN2KFDB5cbBJ988kk99NBDRoG21Wo12uYZ8aakpMjX19fIxQsvvKBnnnlGzz33nN56661si1sAAEDRKQntxNq1a2vo0KGqVKmS2rdvr0OHDqlnz57y8vKS2Ww2Jn9xOBxKTU3VnDlzMj3vqlWrtHXrVn3yySfy9fU1nmv69OmyWCxG+8zpdBrFuxnFn9u3b9ejjz6a6XVs27bNpcA3Q079eN27d9eGDRu0f/9+tWzZUuvWrTMmo7m6L/HPP/9U9+7dC9SPd/78eT366KPq0qVLngoqpLz34z3++OP66aefXLY98sgjmQonpP/131173ttvv11PPfWU+vTpo6VLl6pmzZp5ihEAAHgmk8lkjLueOXNGhw4d0muvvaZXX31VAwcO1IABAySlr+66bt06ffPNN2rcuLGWL1+uW265xWgrbt68WYsXL9ajjz6qnTt36qOPPtK8efN0xx13uLQnr/bAAw/IarUqNTVVVqtVffr00erVq7V9+3bj78xmsxwOh9599109+uijLgXFTz31lE6cOGE87tWrl1JSUtSlSxd9/fXX8vf3V0JCgu68804tWbJEYWFhWbapzGaz/vzzzxzHL202m9G2LYi1a9fqu+++06pVqzJNsnLy5El16tRJLVu21OzZs3Xx4kW1bNlSf//9t8tx1xa8Xl3g6+XlpZdfflmDBg3StGnTNHbs2ALFCQAAAADIO4oqgCKWVUeO1WrVsWPHZLVa9dprr+nkyZP68ssvVa5cOfn5+Wn37t1q0KCBKleurMWLF2vLli0aOXKkFi1aJJPJpMuXL2vkyJE6f/68hgwZopiYGNWvX1/S/1Z6KFeunPF83t7eeu211zRo0CCdP39eQUFBOnv2rIKCgoxBWW9v7yw7jU6fPq29e/fKarWqSpUqGjp0qLZt26Ybb7xRJpNJX3/9tfz8/FxWR8hYLaN///567rnnJKUXVbz++uvq16+fnnzySdWoUcOYQSQv/vrrLw0YMEARERHq2bOnsb1OnTravXt3ns5htVr1/PPP67777pPNZlPbtm1ltVqNmfasVqvRCZiSkiK73a4///xTTqdTVatW1YkTJ9SnTx/FxMTo6aefNs6b1YoaGa5eMSQ/5s2bp/Pnz+dr5pGM+PNyXOXKlfXJJ59Ikt599139+uuvunDhghISEoxZB81mszGr88WLF3Xs2DEFBwcbn5nGjRvrzTff1ODBg1W/fn1Vr149368TAICy6nraiFL6DHNeXl7q0aOH2rRpo0GDBiktLU3e3t765JNPtHTpUmOFssuXL+vll1/W0KFDVa9ePeP5hg8frv3792vYsGH6+uuvFRsba+zbuXOnevbsqYULF6pJkybZvo6MNkNG+yDDmjVr1LVr10zbr+bn56fQ0NBMbaVLly5p9uzZGjx4sG644QZ9+umnWr9+vZYtW5blgO2AAQPk6+ur2rVrG6/r22+/1Y4dO1yKKq5cuaKFCxdq2LBhRh4lqUePHkYb+sqVK+rYsaNSUlLUp08fLViwQDVq1NCff/6phx56SC+99JJq1arlcgPe1bnYuXNnjoO1V65cua5Z5XJqIx49elQTJkxQ3bp1NXr0aJ09e1aNGjXKdI5rB2u3bt2qSpUqSZL8/f01Z84cPfzww/rggw/Ut2/fAscKAAAKpiS0E1u2bKnnnntOb775ptq1a6cGDRrkuf9Nkn755ReNHTtW48aNU926dY3tvXv3Vu/evXP9+4xJSz755BNVrlxZP/30k0aMGKHU1FQdPXpUVqtVFovFaBs6HA4lJSXpxIkT8vX1VXBwsNauXauZM2fqiy++0Ny5c41zZ1dQkJKSIkn57sdzOp0aOXKkIiIiXPoL8/Ia89qPd9999yk6OlqSNHjwYFmtVp06dUppaWlGf6DZbFZCQoKk9NXVUlJSVK1aNSOXvXr1UkJCgoYNG6alS5cy0zEAAKXQxYsXFRQUJLPZrPj4eD3++ONq0aKF6tevrxUrVuiJJ55QhQoVdOXKFUnpK5rNmDFDN954o/z9/TVkyBAtXrxYTZs2VXJysl566SVFR0frhhtu0DPPPKOUlBT1799fH3zwQZbPn9E2ubpvzGw265NPPjHaHhntH7PZrKVLl2aaDC9j7PLgwYPq0qWLvv32W1ksFvn6+uqFF15QQECA+vTpo1tvvdUYG89KamqqAgMDNXDgwGyPOXnypN544w1jYpf8SE1N1csvv6xZs2ZluWqtt7e3qlSporp166p8+fIym81av369MUng9u3bFRUVpS1btkhKn/wkOTk50+pvJpNJ06ZN03333adHHnnEmHQQAAAAAFA0KKoA3GTevHn6+uuvXW7Ir1Spkp577jk5nU5t3rzZ2P7rr7/qrrvuMjqaMjpUnn/+eYWFhalJkyY6ePCg5syZo1deecVlBtoMISEhWrlypXEDWGxsrNq1a5drnIcOHdI777yj8+fPKyEhQbfeeqtSU1PVokULbd68Wa1bt9Zbb72Vp9fcuHFjffPNNy5LzubV008/rYoVKyomJka//PKLatSooRtvvDFf57BarQoMDFTlypWNgVKTyaR7773XKCTI6DRLS0uT3W5X27ZtdfPNN2v16tXy8/PT0aNH5XA4JKXPYJKamprpeUwmk/z8/PL9GjOcP39e77zzjj7//PMcBzhPnjypkJCQbDv6Dh48aNxceLWMgeeMz56/v78sFosWLFigd99916WoIsPzzz8vu92umTNnunSGNmnSRL1799bMmTNzXekEAADkLq9tRB8fH509e1Z79uzR1KlTZTabjXbD1KlTValSJa1du1ZSettx9uzZxixnGUwmkyZPnqz4+HiX4gen06nJkyeradOmORZUXGvEiBH68ssvJaUPBM6YMcNYdSLDjh07jJUmbrvtNt144416/PHH1bp1a3Xu3FmhoaEaPHiwHnvsMeOmtEWLFrmsTnG1jMHaq2cy9vf3d1kBI6MN7efnpzVr1mQq9Pjvf/8ri8WizZs3a8yYMfr+++9ls9nk5+enyMhIBQQEqG3btrr99ttVp06dbF9/amqqqlWrpn79+mV7zO+//64NGzZkuz8nubURvb29VaNGDdWtW1f+/v4KCAjQzz//bAzWfv7551q6dKmWLFkiKT13SUlJmWZ79vb21syZM9W1a1d17dpVQUFBBYoXAAAUruJsJ0pS37591aNHj3zfYHbu3DkNGTJEDz/8sLp3765NmzapefPmLhPA5CajsKRixYqqXLmyKlSoICm9P/Opp56SxWJxWe0iJSVF8fHx+vDDD9WzZ0+NGzdOFotFR48eNYokkpKSjD69a58ru7ZmXvz3v//ViRMncu0fPXbsWLYTkjidTh06dCjLm+SsVqt8fX2N9z1jhYthw4Zp586dRh4yZnyWpIiICKWmpuqHH35waev1799fW7Zs0cqVK10mrQEAAKXDvffeqzFjxshkMmn+/Pnq1auXFi1apB49eujAgQPat2+fzp8/r6lTp0pKX1VCkqKiovTEE0+oY8eO6ty5s9588035+Pho5syZxjjj5cuX9cILL6hSpUqqVq1apue22Wzq2rWr/vWvf+mZZ54xCg3mzp2bqX9w3759+uyzz4zH48aNMwpvX3rpJZd9TZs2lSRt3rxZ/v7+2rdvny5duqSdO3dq+vTpOnLkiCpUqKBJkyZJSm8XWiwWNWrUSKNHj84xXzfffLMxtpmSkpLtBIRZ2bBhgypXrmzEd61rz2M2m2W32/XWW2+pV69eRhvVx8dHNptNixYt0v3335/lqmwVKlRQx44dtWTJEo0ZMyZP8QEAAAAACoaiCqCY3HvvvZLSbzCT0m9WioiI0OTJk12OW7lypd5++22XbevWrdNTTz3lsu3tt9+WyWTSjBkzZLVaVbNmTSUkJGjEiBF67bXXjGVdY2Nj5efnJ5PJpAoVKig4OFjr1q3TgQMH9Oqrr7qcMzExUT/99JP8/PzkdDp1++2369///rf+/e9/a968eYqNjdXrr78uSZo8ebKOHz9uPF68eLFWrFihFStWSEqfhTejsCAtLU2pqany9vZW+fLltWvXLo0ZMybLm/edTqccDoccDoeaN2+u559/XlL6cq/16tVTUlKShg4dqn/+85+aPXu2EhIS5O3tneUsfna7XTabTQEBAdmu4uDl5aV9+/Zl2jdt2jTt3r1bH330kTFLSsYAdMZgckxMjJYtW5bpnDfccIN++OGHTNvzasWKFbr77rtzXflh9OjRunjxolauXJlp365du9SjRw99/PHH+uc//+myL7uZlZ977jkNGzbMZXtiYqKaNGmi999/X//617+yjOPRRx9VmzZtdO7cOd1www25vTwAAHCV62kjfvbZZ6pRo4ZSU1O1d+9ehYSEKDU11SicdTqdSk1NVcOGDSWl33T3zTffSEq/qczb21uVKlUyVinI8P7772vXrl1q06aNnE6n5s+fr27duuV6c73ValXHjh2Ngdmrffvtt4qMjMxUDBAcHKzp06dr2bJl6tatmwICAnTLLbfoxRdfzPG5JOnChQvq2rWrunTpov79+xs36o0bN86Y1S7Dm2++qTfffNN4/O6776pVq1aSpIEDB+rnn3829tWvX18Wi0W///67UlNTtWfPHiUnJ2vr1q3at2+fjhw5orp16xorsiUnJ8vLy0utW7fOclD5ao0bN9Zdd91l/F1+bi7MrY14bXvWYrHo/PnzWrFihSIjI432so+Pj86fP6/ly5erR48eWbYNb7rpJv3rX//SZ599pj59+uQ5RgAAUHjc1U602WxyOp3y8vJSYGCgPv74Y3366afGzftXtzky+vHS0tI0ZMgQtWvXTjfccIPGjx+v+++/X9u2bdOQIUM0cuRIPfLII8bNalm1P1JTU5WamqoKFSpkuV+SmjVrpn379mXa3qVLF7Vu3VpPP/10pn68jDZQp06ddPjw4Ux/e//992vWrFlZPl9eLF68WL17985xYhSbzaaOHTuqZ8+eGjlyZKb977//vubNm6dNmzZlmiwnq1yYTCYtXrw4U/svo8199Qp01/7dE088oddff52iCgAASpm0tDRdvHhR1atXl81m04gRI3THHXfou+++U3BwsDp16iQvLy998skn2r59uwYOHKjIyEgNHTpUkrRgwYJMxQ8rVqxQ+fLl9fHHH+uxxx7TjBkzsu0n8vb21uDBgxUTE6M1a9Zo7ty5atiwoby9vVW5cuVMfXUZ7rnnHpd21KhRozRixAgdOnRIvXv31pYtW2Q2mxUcHKyIiAidPHlSUvpYrJ+fn+rXr+9SIDx69Ght2LBBvr6++sc//pFrgbDdbtfEiRN15coVffXVV7n27WXYtWuXWrZsmadjpfR22JUrVzRv3jyjmCWD2WzWjBkz1KhRo2z7/Vq1aqXZs2fn+fkAAAAAAAVDUQVQTNavX6/Q0FDdc889uR579YDYpk2bdPjwYT3//PN6/vnn1bx5c/Xp00ezZ89WaGio2rRpo4SEBNlsNgUGBiolJUWvvPKKRo4cKZvNpkceeUTe3t5KTk7WgAED1L59e7344ovG0qgZateuLW9vbz3++OOSpPDwcC1atMjYb7PZ9Pfff2vnzp2SpEGDBql9+/aaN2+eRo4cacyk8d5772njxo2qUKGC5syZI0n64YcfNGDAAONcc+fO1fDhw40ZPwYNGqTu3burbdu2cjqdxsDu1TfoN2/eXJI0cuRI+fn5afr06Tp69Kjat2+faz6XL1+uhg0bymQyKTo6WtHR0ZnyffLkSVWsWDHLAdDsZiXx8fFRu3btjMISSfr888+vayBWSu+Ia926dY7HXLp0Sdu3b9eQIUOy3H/77bfrjjvu0CuvvKKlS5e67DOZTDpx4oTCwsJcjjeZTHI4HDp+/Lhq1KiR53iDg4MVFhamPXv26D//+U+e/w4AABS8jZiQkKAPPvhAiYmJ6tOnjxITEzVixAg98MADstls2rx5s8ssxitXrnSZPbddu3Y6ffq0JGn8+PHq1auXJOm7777T66+/bhRlpqSk6Msvv9SmTZu0YMGCHG8Wy8tMblkdc8MNN6hixYry9fXV3XffrY0bN+rRRx/VkCFDjDZgVsqXL6++fftqxowZWrlypT766CNVq1ZNPj4+uuOOO7IcaDx79qy6devm8jpef/11OZ1O/fDDD4qJidH69etls9lkt9vVrFkzY8bfX3/9VU2aNFHTpk115513Gn/ft29f7d27V76+vgoICMj2JsAMqampio6OVlJSknbv3p1rzjLkpY14NZPJpDNnzmjevHmKjIx02Xf58mXNmDFD7du3z3YVuVatWmnbtm15fj4AAFC43NVOfP311zVv3jxJUrly5bRy5UpVr15dXl5eOnTokCZOnKhJkyapevXqRlFFamqqy2qp7du3l81m0/jx49W2bVv17dtXS5Ys0fjx43N8HX5+ftqxY4fxetq0aeOyP6OddfjwYd1000255uJqPj4+Gjt2rMsKZ6NHj1ZaWlqOMeVm165deumll3I8Ztu2bbpy5Uqm15OhS5cumjNnjubNm5dpwhMpvUjm6hmbw8PDZTKZlJiYqMTExHyt5vuf//xHTz/9dL4LfAEAQMl27tw5OZ1OVatWTSkpKapcubIaN26s5cuX688//9Tjjz+u48ePy8/PT7t371alSpX0/fffG22Pxx57TN27d1dKSoratWun9u3b69lnn5WPj4/Kly+vTp06aeDAgXrttdeM4t9rtW/fXv/85z/1xhtvGGOQGSuMXd3+vFZG4YPdbtf58+eNcW0pffI3Ly8vXbx4UWPGjFGNGjU0ceJE3XnnncYqt1fLmFBw9+7d2RaaXqtDhw7Gyhp5dfLkSbVo0SJff5NR7Ovv76+LFy9m2p5TAUhISIhRUAIAAAAAKDoUVQBu4nA4lJycrLNnz7psv3z5sjED3eXLl/XKK69IkrZs2aJ169bpxx9/VNOmTTVx4kTVrFlTN954o4KDgxUUFCSTyaQdO3bonXfekc1mk4+Pj3Gj1mOPPSYvLy+FhYVpzJgxatOmjRITE43nrVWrlr777jtJ6YOM1678YLPZtG/fPo0ZM0aHDx/WO++8o2rVqumjjz7SLbfcok8//VRHjx5VXFycqlWrptTUVONvmzZtqg0bNsjb21stW7ZUSEiIbrvtNknSb7/9Jrvdrv79+6tKlSqKjY1V/fr1s7wZ7csvv9SqVasUHR2tgIAAlStXTps3b3ZZqSIuLk69e/fWmjVrdMMNN8hms6lChQqS0gdeo6Ojdd9998lms6lt27YymUy6dOmSOnTooBEjRhg3FOaFyWSS3W53yaPNZsvz0rDZOXnypEJCQnI8ZuPGjUpLS9NDDz2U7THPP/+8evfurc2bN7vMlmIymVxmhXn33Xe1Z88eSdLs2bP1+eefa/369TneNHmtkJAQ/fnnn3k+HgAAZC0vbURJmjp1qs6fP6+HH35YEydO1KBBg7Kd9TfD1fuWLFkiq9WqHj16GMvNb9q0ScOHD9dLL72kgwcP6siRIypXrpzefvttdenSRdHR0ZlmrLv2vKtWrdIXX3yR6ZiMGYOvtnr1ar333ntGoewnn3yi0NBQRUdHa/78+Ro8eLAefvhh1axZM8vXYzKZ9Oijj+quu+7S0qVLjZnkLBaLMQtedjIGKVNSUnTp0iV5e3srKSlJTqdTV65cUVpamq5cuaIZM2aoXr166t+/v4YMGaIuXbpkOtfixYslST/99JMOHTqU7XNerUePHrnOlHetvLQRr5XxHP7+/lluz2q1twy07wAAKFmKq53Yt29fPfzww9qzZ4/GjRunWrVqqVatWpKk2NhY3XzzzerWrZtMJpN27dql22+/PctzTpo0SYcPH9bMmTMlSR07djRmIs5oiyxZskTLli3TZ599ptTUVKPAISOeTz75RJUrV9ZPP/2kESNGyGQy6fvvv1f//v21evVql0KO3JhMJqWmprr049nt9uvqx7ty5Yr+/vvvXIsa1q1bp+rVq6tp06ZZ7g8ODlbfvn313nvv6fHHH3eZaMZsNuu+++4zJokZPHiwEXO/fv1UpUoVI8d5kbGS8J9//qmbb745z38HAABKthMnTsjLy0sVK1bUpUuXjCKBn376SaNHj5bdbtfbb78tu92uVatW6bnnntOMGTOM9pyvr698fX313nvvKTk5WSkpKerWrZumTJmiu+++WyNHjpTD4dDo0aONVVizEhISokmTJhmPs5roLTsXL17U/fffLy8vL6MvsVu3brLb7RowYICeeuopSa7FB2lpaTp58qR8fHxc+s1++OEHLV261PgbScbqGf/+978lpa+CO336dN199935Lqrw8vJyaVfmRcbELQVpfyYkJORr3BYAAAAAUDAUVQBuYjabtXnzZq1bt05Wq9UY2PPz81PFihUlSR9++KHRaeTl5SWr1Sqz2Sw/Pz/t3btXUnrBQsagY+/evTV9+nS9++672T6nlL6k/JgxY7KNbd26dbrllltctp05c0bdunXTiBEj1Lp1a8XFxen999+X0+nUli1bVKdOHfn7+2v69OmaO3eu9u/fb/ytn5+fy8oHVw/Ufvrpp+rYsaOqVKmipKQkRUZG6oknntDAgQNdnv+XX37R2LFjVa5cOePmL6vVmulmuYwbxgICAoxiigwOh0OBgYGqXLmyUlJSjO2BgYHq1KmT5s2bp27duhk3FubFxo0b1aRJE5dteV0aNjt56Yhbvny5wsPDc3yupk2bqlmzZpo9e7ZLUYXT6XSZFebqm+x69uyp+fPna9WqVerRo0eeY05ISMhX3gAAQNby0kZcsWKFVq5caawmkcFisRjtrKyWn7+6PXZ1AYLD4dCrr76qDz74QKNGjVLXrl01bdo049iMG7X69u2rm2++2WUwMikpSX5+fpLS2xidOnXS1KlTMz33t99+q8jISNntdmPgs1mzZipXrpzuvPNOvfbaazp//rxCQ0MVGxurkydPas2aNXI4HEbhb3Zq167t0rY1mUz6+eef8zRYe+DAAaOwxG63Ky0tTR06dFBaWpomTJigzp07G+fMYLPZdPz4cZUvX17BwcHG9jVr1mjPnj3q3bu3sW3atGl66KGHjILiQ4cOad68eerZs2eusV2rIIO1Gb8lCjpYS/sOAICSo7jaicHBwQoODtbJkydd2hAOh0MrV65UZGSkUVDxyCOPaOHChZmeb8GCBfr8888luc7Ie22hp4+Pj8xmc6ab2DJuOKtYsaIqV67s0sf373//W7Vr19acOXOyLPjNydSpUzO1VTPaewWR8T5cuXIl25vcEhIS9PXXX6tv3745nuuJJ57QwoUL9d5772nkyJHGdofDIV9fX6Mf7+r22RNPPKHhw4frqaeeMgpfcpNRREw7DwCA0qVBgwZat26dkpOTlZSUZLSfmjVrpooVK+rWW2/VXXfdpY8//lhJSUnq2LGjDh48qJdfflmLFi2S1WrVpUuX9N577+mmm26Sr6+v+vfvr+eff16rVq1SlSpVNHLkSHXp0sVou8XHx2vevHkKDAzUww8/bMQybtw4dezY0SgovfHGG7VgwYIs437wwQeN/w8ODjbGv/v27avvv//e6Bc8e/asVqxYoVOnTunw4cOKj4/XZ599plOnTqlcuXJ6+umn9eSTTxrn8vLy0tmzZzVnzhxj2+nTp/X3339r586dkmQUJuc06Uh2br75ZsXFxeV4TFpamlJSUmS32+V0Oo3ne+utt3ThwgUlJiZqyJAhstlsuT7fgQMHKIgFAAAAgGJAUQVQxDJWbLh2efcxY8ZozJgx6tSpk7p27Sp/f38tWrRIK1euNI55+OGHFRYWpqFDh2Y6b3x8vEJDQ/XFF1/ogw8+0OrVq7Vr1y5j0DEnX331lV588UXZ7XZjJQxJioyMVGJiYqaCCkk6cuSIcWNaYmKi/Pz8FBwcLIvFojlz5mjVqlVasWKF8ZrzMjC3f/9+ff311/ryyy8lSb6+vpo4caKeeeYZNW/eXPXr15eUPvgYGRmp+++/31hRoSCyyk3GjWaPPfaYFi9erM8//1zdunXL8znbtWun119/3Xj8+eefa/bs2QWOUfpfR1x2y+fGxcXp//7v/zRlypRcz9WvXz/169dPP/zwg5o1ayZJLrMXZsjIQ5UqVdS2bVu9++67Wc7EnBWn06mDBw/SmQcAQD5cTxvxrrvu0sSJE/X7778bs/le66uvvnKZMXf16tV6//33szzWbrfrt99+08svv5ztKlh33XWXnnrqKQUFBblsP3funLEtJSVFX375pT777LNsX3dKSopRhHHDDTeobdu2stvtWrp0qdH2OXPmjL799lvjhrfciiok6bnnntPQoUNVp04dSVLDhg1dCkOujvexxx4zHjdo0EC///677Ha7HnzwQZ07d07btm2TzWbTH3/8oU8//VSnTp3ShQsX9Oabb2rWrFk6e/asAgICNGHCBLVv3944l7e3tw4dOuQyWJuQkKC1a9fq22+/lSQlJyfLYrEUqMghtzailP65SklJkcPhcBmsnTx5svbt26djx45p8ODBunz5sqSsVxDJEBcXR/sOAAA3KEntxKstW7ZM5cqVU8eOHSVJt99+u3r37q0XXnhBq1evNgomfv75Z02ZMkVjxoxxmaU4P7Lqu5LS2y5ms1m9e/fWxIkT9dRTT+WrvTJ27Fg9+uijxuOMWZsLytvbW1WrVlVcXJzuvPPOLI9ZtWqVkpKS1KlTpxzPFRAQoJ49e+qjjz5SZGSk0cbOqT+zXbt2qlSpkt59911Nnz49TzEfPXpUJpNJVapUydPxAADAM3h7e6t69erGOOqlS5d08eJF9e3bV1arVZMnT9aOHTs0depUTZo0Sd7e3ho4cKDatWunESNGaNq0aRo/fryqVq2qJk2aKCkpSY8//riOHDmiP/74Qz/88IP++OMPHT58WH/88YeOHj2q1atXq3Hjxkb7UEovJFizZo1CQkKMogovL688F4BK6e3Vn3/+WZI0Z84c7dy5U4888oi+++47hYaGysfHR02aNFH//v0VEhKigICATOew2WyqVKmSBg8ebGzLbqWK7NrNOWnZsqUef/xxjR49Osvnl6RRo0Zp1KhRktKLYb29vfXAAw/IarXK29tbVqtVd9xxh7y9vfXdd9/lGMfy5ctd+iEBAAAAAEWDogqgiP3111+SpP/+978KDAzUAw884LL/9OnTqlq1qi5evJjpbytWrKi77747y/MmJSXppptuUlpamsqVKycpfca6q5c8zUmvXr30xBNP6K+//lLFihUVHx+v//73v5o7d26Wx//xxx9Gh9eVK1fUvHlztWjRQuvWrZOUPpjncDh08OBB/fDDD2rQoEGOz3/ixAkNHjxYoaGhWrx4sc6dO6dz587pwoULcjgcGjNmjD799FNZrVYFBATopZdeUrt27dS9e/c8vb6sOBwOXbp0SadOnTJm/cgYhLzllls0ZswYtW7dOl/ny0pON6flRcuWLTV9+nQNGTLEZVWPDG+++aYCAwN1//3353quFi1a6Oabb9bHH39sFFU4HA7Z7XadOnVKUnqRzNWv5YknntCFCxdktVpdVvTIztatW5WSkqKGDRvm9SUCAFDmXU8bsVq1aurWrZsmTpyY7fl37typ8uXLG48PHTqU7bF+fn5auHBhlu2Oqw0ZMiTTtkOHDhntvpdfftklprZt22ro0KEuN5BlFFRcLTk5WZIUEhIiKX12uKtniEtJSclxxra//vpLX331lVq1amUUVfj6+mY5WHvt7MgZFixYoKNHj8rf319jx45VcnKymjRpoh07dqhatWqyWCx68MEH1blzZ4WEhMjX1zfTOWw2m2655ZZMK1W0b98+00oVTqcz34UVubURJalPnz7G/997770KCgpSx44dlZKSIm9vb5UrV06NGzdWcnKytm/fnu1gbVpamlatWqWxY8fmK0YAAHD9SlI7McOWLVs0ZcoU3X333XrllVd04cIFnTt3Tn/++adOnDihmTNnGiuH/fOf/9S0adN0zz33FLioIqNv7a+//pLVatWFCxck/a8v7v7775fdbs/XarFF1Y/XqlUrLV++PMuiCpvNprlz56p58+aqXr16rud65JFHNG/ePK1atUpPPPGEEXdSUpLRj5eammq8FrPZrBdffFG1a9fOc7zLly9X8+bN89yHDAAAPMvOnTvl5eWlQYMGafLkyXrmmWfUoEED+fv764MPPtBDDz1kTKoSHBysKVOm6OLFi1qzZo3WrVunpUuXGpPhmc1m1axZU08++aRCQkJUr1491a1bVw8++KCmT5+u/v37q1evXi7P/8MPP+jKlSsuE9idOHEiTyvKSumTCo4ZM0aRkZF644031KVLFy1btkypqamaNWuWJGn37t2qWrVqjoUad999t4KDg10KaDPGsjO2BQYGatKkSZlWTcuLhg0bqn79+po1a5bLCroZHA6HJk6cqPvvv18TJkyQw+FQSEiIsdLaTz/9pJ9++kkDBw6UlN5nedNNN2X5XGvXrtXhw4fzPBkeAAAAAKDgKKoAilhcXJwCAwON2b+uvnlq3759On/+vOrVq6dt27bl6XwOh0MOh0NHjx5V7dq1tW/fvnzdkPXxxx+rXbt2atSoke68806NGzdOs2bN0qhRo9S8eXP95z//yfQ3e/bs0fnz59WgQQOlpKQoNTVVfn5+SkpKMo5JS0uT3W7XunXrdOnSJT3++OM5xlGhQgU5nU4FBATo77//Vo0aNXTXXXepatWqcjgcGjJkiH7//XfdfvvtklyXfy0oh8OhKVOmuKzwcPWNZFfPWpwXycnJ+vrrrzN1BN5www3XFWdERIRmzJihhQsXuixVK6XH6+/vr969e2d5M19Wxo0b5zJw63A4dOrUKbVs2dLYVrduXeP/GzVqlOdYbTabXnvtNT3++OMFWh4XAICyqrDaiMuWLdPy5cvlcDhcZjNet26dUXgrpQ9e5uTam/RTU1NznaXNZrNp//79xoCeyWTSCy+8oOHDh6t27doymUzy9vZWUlKSJk2apLFjx2ZZ1HD48GFZrdZsb4pr1aqV6tWrl20cGzZs0D/+8Q+X2dp+/vnnPA/Wbt++Xa+//rr69++vJUuW6LHHHlO3bt3Us2dPo0Bi7dq1qlmzZraDm5LUsWNHNWzYMNNsx1cP1tasWVOTJk2Sw+HI941sObURM55n3rx5uuOOOzRo0CA5HA7VrVvXWJlu5cqVunDhggYOHKjExERVqVIl08ojGebPn69y5crlq+AYAAAUjpLWTpSkoKAg+fn5KTU1VXa7XXXr1lW1atVUuXJl7dixQwsXLtTw4cPl5+cni8WiTp066dKlS/l96YaMttPDDz+c5fagoCCXQta8SE5OVkxMjGJiYly252XSkpw89thj6ty5s3r37p2pT+306dOqWbOm+vbtm6dzVa5cWTNmzFCLFi2MbQ6HQ1999ZW++uorY1t4eLjx//mZsfjIkSNavHix3n333Tz/DQAA8CwbN27Ugw8+qPDwcE2ePFn9+/dXQECAUlJSNH78eDkcDi1ZskQ9e/ZUv3799OyzzyoiIkJr167V4MGD1ahRI6OoQpI6deqkdu3aZVrlKqPA4VorVqxQ48aNjclTpPQ2zieffJLl8ffcc4/x//Hx8erTp4/uv/9+tWnTRm+88YZCQkK0YsWKHAtUP/30U911110uxwwbNsxY5SzDqVOnlJCQYKzm4XQ6lZqaqsuXL+e5vXa18ePHq3v37mrQoEGmVclsNpvKlSunwMBAhYaGysvLK8dzde/eXT///LMSEhJcCmb37dunMWPGaOLEifrHP/6R7xgBAAAAAPnDHbBAEfv555+zvQls8eLFql+/fqaOqF9++UXfffednn76aWPmsZYtW8psNqtZs2b64YcfVLFiRd10003at29fpvOmpaXJ4XDI29vbZfumTZv0+++/q0KFCmrfvr3GjRunLl26qH379rp8+bI+++yzLOP85ptvdPvtt6tChQo6f/68JGUqqjCbzfLy8lL//v319NNPZxo4TUtLMzrM5s+frwkTJmjTpk3ZzrL73//+N8uZjK+H3W7XlClT1KVLF9lsNt133325dmJdLeO9yJjB7qWXXjKWbb3a1YPdBZmF2Gq1KiYmRgMHDtRtt91mLEObse/qopC8yFihIkPGTH7ffPONpPTlbn/88cd8nVNKz8dLL70ku92ufv365fvvAQAoy663jWi1WuVwONSjRw9NnDhRgwYNUmpqqnHsxIkTVblyZePxypUrNWfOHJfz/f3330pMTNSOHTt07733uhRs2mw2l/NlZdu2bbpy5YqaNm0qSZo8ebJ+/fXXTIWWZrNZf/75p3r16qX58+crNDTUZf+nn36qJk2aZFswWqtWrRxnnluxYoVatWrl0va94447NHv27EzHnj171mWmvF9++UWDBg3S4MGDjQHL2267TevWrctxsHbRokW69957deONN0pKz2VUVJR8fHxc2rcJCQnasGGDtm7dKim9bWiz2eTv75+vG+CknNuIUvp75ufnp8DAQN10000KCAjI9lz+/v7q3r27Nm/erFq1arm8J1u3btWbb76p+fPnM4MxAABuUBLaiRcvXtTnn3+uS5cu6eOPP1bv3r31/fffZ9mPV79+fXXv3t2lUON6ZfTBbdq0SaGhofr555/14osvZipezUnGsRl9c1988UWWq1VktF0z+vvy24938803q3///ho2bJgWL17sktvq1avro48+ytf5rm0j2u12de7cWVOnTpUkDR06NNvV13Jy8eJFPfPMM+rQoYPRfgcAAKXL4cOH9eOPP2revHlq0aKFGjdurM6dO2vKlCl69913dccdd6hr166aNGmSwsPD9e9//1svvPCCPv/8c5c2yNUreZUvX95llbOsjslw5MgRbdiwQU899ZSxzW63y2KxuLSRsuPt7a0HH3xQw4YNU1xcnPE81/bRmc1mnTp1yiiIyCgeufp5P/zwQwUFBbm0UR977DG1a9dOjz76qLHNZrMVeOWy2rVra9asWXrmmWf0999/Z1pBtmbNmpLSCzyuZbFYlJCQoF9//dWYcPDtt99WSkqKlixZIil9NYshQ4aof//+mVavAwAAAAAUDYoqgCKUnJys9evXq1+/fjpz5ox++OEHnTt3TmazWd9++60+/fRTzZ8/X1J6B9Dp06e1b98+bdq0SZ9//rmGDRumhIQESdLmzZsVHByslJQU9ezZU0OHDpX0v5UrMs4hSW+++aZOnz7tcvP96dOndeTIEUVFRRkdY15eXqpevbp2796txo0bZzkb8ZUrV/TJJ5+ob9+++vPPP7Vy5UqVK1dOvr6+slgsstvtOnTokLp27aquXbtKSh+kGzRokBo3bqyRI0cqNjZWo0ePVmJioiZPnqwNGzbonnvuUYcOHXTHHXeoUqVKxk1fdrtdycnJunz5sv766y/df//9LjeE5daxldXgaIZ69eqpQoUKktI75jKKCq59z7y9vXXy5MlMg6iJiYmSZAxEe3t7ZypcybBjxw7Fx8frzJkz8vHxyTHmrNx1110aO3asBg0apGnTpuVp1rwLFy7kaYnaSpUq6dZbbzUeDxw40FheNoPdbpfD4TBmK7x20DwtLU3Dhg3T77//ro8++qhArxEAgLKqMNqIUvq/xxn/Rrdt29YYqMvKtTegHTlyRAMHDtRdd90lk8mke++9V+Hh4br99tt18803KyIiQl5eXtq7d68xa1tSUpISEhIUHh6uoKAgffjhh6pfv75CQ0M1YcIErVmzRh988IFuuukm428kKTg4WAsWLNCQIUP0+OOPa/ny5QoODpYkLVmyRMuWLdPChQuN2LJaJeP8+fPav3+/YmNjXYpif/zxR8XGxrqsOGa32+Xt7Z2nwVp/f3/16dNHkZGRWr9+vdHWzGqw9uTJk0pLS9Phw4cVExOjgIAAYxa6wMBALVu2TBUqVHBpH95zzz0aO3asseLD1XkpiJzaiJ07d1alSpUkKcsiXIvFohMnTmj//v0KCgpSWlqapk2bpnr16unVV1+VJK1Zs0bR0dGaMGECN9sBAOAGJaGduHr1ak2ePFm33XabJk6cqAULFmjp0qVq166d0beWcXNaRhvx0qVLSkpKUseOHY3z5OXmtOyO8fX1Vf369Y121Z133pltP56U3lbMqR/P29s72wJeu92uLVu2GCt/FKQ4ZOjQoTp+/Lh69Oih+fPnu8wunJWUlBQlJyfnadXXmjVrGoW8kvTWW29lOsZmsxltvayKQk6fPq0nn3xS1apV05gxY/LwigAAgCeaM2eObrrpJmOytQ8//FB169bV/fffL5vNptdff12DBw/W3XffrcWLF2vUqFH68ssv9c4777jc+G+323MtZs1YwexqMTExstvtmVbdysr333+vtWvXym63G22i6tWra8SIEZL+1867cuVKpolD7r77br3yyitavny5pPRxzx49ekhKnwTm2WefVWBgYKa21sWLF3Xs2DEtWrTIZXtSUpKcTqe2bNmS42vOSsuWLbVgwQKdPXvWZXtUVFSOf3fbbbepZs2a6tWrl7EtODjYKKTNeDx69GhjlWAAAAAAQNGjqAIoQnv37lW5cuXUpUsXJSUl6cUXX1STJk106tQpjRgxQkOGDDFmmP3nP/8pi8Wihx56SN7e3oqOjpaUfoPWpk2bVL58eTmdTj3//PNq2LChOnToICm9oyclJUVS+kxma9eu1b59+zR48GAjjrNnz+r8+fPq27evBg4cqAMHDmj58uVatmyZ2rZtq3Hjxmnp0qVq3769MTNJjRo1dPfdd2vt2rVKTExU165dtWvXLi1ZskQTJkyQJN14440KDw9Xp06dXAZBTSaTqlWrZsyaYbVa5evrq/fff1+VKlVSt27dtHXrVq1Zs0Zz5szRmTNnlJiYmOkGs4yZ7q5mt9uzLP64dOmS3n33XR04cECSsix2WLFiRa7v2bp16/Tiiy9Kkp577jmXfdcWVeTk22+/1bx589SgQQO1atUq1+Oz0r17d91www25Fkq8/PLLWrp0qVJSUvTggw/met4ePXoYnYvZsdvteuihh3To0CFVrFgx02Cw1WpV48aN9dJLL6lixYq5vxgAAGAojDailN5OzChszFh9IWNVsavFxMRo06ZNCgoKMrZNmjRJtWrV0qxZs2QymfTUU09p5cqV+vnnn7VixQqdP39eCQkJxgBmhkqVKmnz5s3atWuXtm7dqqlTpyolJUV//vmnPvroI9WtW1dLlizR1KlTlZycrKpVq0pKvzFuzpw5+uijj4wi12PHjumVV17RuHHjFB4ebjxHamqqbDaby/Pa7XYNGDBA3t7eGj9+vHHc5MmTZTKZ1Lx5c+PY7AZr165dq6+++krS/2Ykrlu3rurWrSspfbD2ypUrWf7t3XffrTfffFNvvPGGpPTVM+677z5J6W3M6dOnKzAwMNPKDomJiYqJidG0adMyba9ataqxklt+ZNdGjImJyfHvmjRponLlyhk3O5pMJlWuXFlPPvmkcUzFihX1xhtvqGXLlvmOCwAAXL+S0E5MTk7Wv//9b73yyiuyWq3q3LmzPvvsM23evFmrV6/W2bNnlZycnOkmur59+7oUVWTsz+qGvN27d+vrr7/Wt99+m2UfXv369bVy5cpc8zVhwgStXLlSXl5emQpCM/rxbDZbtpOiSOmFp2+//bZ+//13PfDAAzmuVpYdk8mkKVOm6IMPPshyJucMTqdT3bt31759++R0OrNdkeRqEydOzPWYP//8Ux06dFBqamqmFWslKSAgQA899JD69u2br1V7AQCA58iYDGXIkCEym826fPmyNmzYoDfffFNS+sQfX3zxhf766y8999xz8vLyktVq1bhx47R7926Xc9lsNmPsOTs2my1T/92IESPk4+OjBg0auByXlTp16uiLL75Qy5Yts+yH+uc//6n9+/dn+bdPPvmkHn/8cWO8+OqJ3/7973/r559/zjH2wta4ceN8/01AQIDWrl2b4zF16tRRnTp1ChoWAAAAAKAATM6CrmcIIE9SUlKMzpyEhAQFBAQoLe3/tXfHwXHW953439LK9i1QK/igCsRAkkJF5ChqfNZNx9D+IIhwY3qMiUKmubs2mUs78ZHOtZHS5ESA4AhC7KQX5+6S6XhyXMi5hFLbOCUkEweSngeGzHguCaOQ2LK33IFJA52BGku1EV7r9weHGoEtW7bk55H29ZrxjPf57n73s89H32e/+93n8+zhPPDAA7n++uun3d/+/fsnfdF5op544olceumlWbt2bb75zW/md37nd/Jv/+2/TXt7+8R9/s//+T/5xje+kb/5m79JU1NTNm/enKampvzsZz+b+JLv8OHDJ3QVtdly9dVX54YbbnjdLyskyZo1a7Jv3778q3/1ryb9xOt0HDx4MN/73vfS0dGRt7zlLScd5wsvvJBKpXJCvxxxqoaHh/M3f/M3ecc73pHf/M3fnLF+//f//t8ZGxtLV1dXzjjjjBnrFwCY+Tniq37xi1/k//v//r/8r//1vyZ+qeH222/P9773vXz605+euFLcwYMHc/jw4fzKr/zKlP2Nj4/n8OHDGR8fT3NzcyqVysTVb3ft2pVLLrnkdYUEzz33XL71rW+ls7Mz/+Jf/Isp+5/O3PbZZ5/NOeecM+n5fvjDH+brX/96Pve5z01su/XWW/Pkk0/mf/7P/znp8Y8//nh+7/d+L9dcc03uuOOOKU+uO5rDhw+nXq+nqalp2o8FADhRRc8TZ8qrz/eXf/mX+Y3f+I1JbWNjY7nqqqvypje9Kf/+3//7vPvd7z6p5/i///f/Zu/evenq6jqli3783d/9Xf75P//np2WO973vfS/79u3LypUrj/uLFtPx0EMP5Vd/9VezbNmy183PAYDGdLzi0qL98rwXAAAAykBRBTSYgwcP5siRIznzzDOnvF/RxRMAAMyMgwcPplqtFh1G4cbHx/Pyyy+X+stkAIDTyTwRAAAAAADgFYoqAAAAAAAAAAAAAACAhtRcdAAAAAAAAAAAAAAAAABFUFQBAAAAAAAAAAAAAAA0JEUVAAAAAAAAAAAAAABAQ2opOoBTceTIkRw+fDjNzc1pamoqOhwAYA4bHx/PkSNH0tLSkuZmdadlZg4IAMwk88C5wRwQAJhJ5oBzh3kgADBTzAEBAJjKnC6qOHz4cIaGhooOAwCYRzo7O7Nw4cKiw2AK5oAAwGwwDyw3c0AAYDaYA568D33oQ7n22mvznve8J8PDwxkYGMhTTz2V9773vfn4xz8+UQAxVduJMA8EAGaaOSAAAEczp4sqXq0a7uzsTKVSmfH+6/V6hoaGZq1/pk9OykdOykleykdOyue1OXn1tquSlJ85YPHsoxNjPx2ffXR89tHx2UfHZx9NzTxwbpjtOWBirJSRnJSPnJSPnJSTvJSPtcCZ9dd//dd55JFHcu2112ZsbCxr1qzJ5Zdfni984Qu5/fbbs3Xr1vT29k7ZdqKsBTYeOSkX+SgX+SgfOSmX4+XDHBAAgKnM6aKKV69iUqlUZvXDyWz3z/TJSfnISTnJS/nISfm8Nid+Qr78zAHLwz46MfbT8dlHx2cfHZ99dHz20dTMA8vtdM0BT9dzMD1yUj5yUj5yUk7yUj7WAk/dP/zDP2TdunV5y1vekiTZsWNHRkZGMjAwkGq1mr6+vqxduza9vb1Ttp0oa4GNS07KRT7KRT7KR07K5Xj5MAcEAOBo5nRRBQAAAAAAAACnx7p169LT05OXXnopSbJr1650dXWlWq0mSdrb21Or1Y7bNl31en0Goj92v7PVP9MnJ+UiH+UiH+UjJ+VyvHzIEwAAU1FUAQAAAAAAAMCUfvCDH+Sxxx7LN7/5zdx+++1JkpGRkSxdunTiPk1NTWlubs7+/funbGttbZ3Wcw8NDc3Miyiof6ZPTspFPspFPspHTspFPgAAOBmKKgAAAAAAAAA4ppdeeimf+tSnctttt+Wss86a2F6pVLJw4cJJ9120aFEOHTo0Zdt0iyo6OztTqVRO/gUcQ71ez9DQ0Kz1z/TJSbnIR7nIR/nISbkcLx+vtgMAwNEoqgAAAAAAAADgmL785S/n7W9/e6644opJ21tbW7Nnz55J20ZHR7NgwYIp26arUqnM6smqs90/0ycn5SIf5SIf5SMn5SIfAACcDEUVAAAAAAAAABzTAw88kBdeeCErVqxIkhw6dCjf/va386Y3vSmHDx+euN++ffsyNjaW1tbWdHZ2ZvPmzUdtAwAAAIAyUVQBAAAAAAAAwDHdc889k4on1q9fn66urlx//fW59tprs23btqxevTobN27MypUrU6lU0t3dnQMHDhy1DQAAAADKRFEFAAAAAAAAAMf0xje+cdLtM844I2effXaWLFmSwcHB9Pf3Z/369anX69m0aVOSpKWl5ZhtAAAAAFAmiioAAAAAAAAAOGGf/exnJ/7f09OT7du3Z2hoKMuXL8+SJUtOqA0AAAAAykJRBQAAAAAAAAAnra2tLW1tbdNuAwAAAIAyaC46AAAAAAAAAAAAAAAAgCIoqgAAAJgl1Wq16BAAAAAAAAAAAIApKKoAgAZRPzJedAinbD68BqCBNDWno6MjlUql6EhOmuMuAADA3DQfPs/Nh9cAwOkzH9435sNrAAAAmKtaig4AADg9Ks1N+eN7f5S9z40UHcpJufhXz8oXf/edRYcBcMIcdwEAACiKz6QANBrvfQAAAJwKRRUA0ED2PjeSJ37+YtFhADQMx10AAACK4jMpAI3Gex8AAAAnq7noAAAAAAAAAAAAAAAAAIqgqAIAAAAAAAAAAAAAAGhIiioAAAAAAAAAAAAAAICGpKgCAAAAAAAAAAAAAABoSIoqAAAAAAAAAAAAAACAhqSoAgAAAAAAAAAAAAAAaEiKKgAAAAAAAAAAAAAAgIakqAIAAAAAAAAAAAAAAGhIiioAAAAAAAAAAAAAAICGpKgCAAAAAAAAAAAAAABoSIoqAAAAAAAAAAAAAACAhqSoAgAAAAAAAAAAAAAAaEiKKgAAOCUPPfRQrrrqqnR0dOSGG25IrVZLkgwODqa9vX3i39VXXz3xmOHh4fT29qa7uzvr1q3L+Ph4UeEDAAAAAAAAAADQwBRVAABw0p566qncdNNN6e/vz44dO3L++efnk5/8ZJLkiSeeyMaNG7Nz587s3Lkz999/f5JkbGwsa9asybJly7Jly5bUarVs3bq1yJcBAAAAAAAAAABAg1JUAQDASavVavnoRz+aVatW5Zxzzsn73//+/OQnP8nhw4czPDycFStWZPHixVm8eHHOOuusJMmOHTsyMjKSgYGBXHjhhenr68vmzZsLfiUAAAAAAAAAAAA0opaiAwAAYO668sorJ91+8sknc9FFF2V4eDjj4+NZvXp1nn322XR3d2dwcDDnn39+du3ala6urlSr1SRJe3t7arXatJ+7Xq/PyGs4Vr+z1f98YB+dmEqlUnQIM2I28+xv6fjso+Ozj47PPpqa/QIAAAAAAADQ2BRVAAAwI8bGxnLXXXflgx/8YPbu3ZtLLrkkN998c84+++zccccdufXWW/OVr3wlIyMjWbp06cTjmpqa0tzcnP3796e1tfWEn29oaGg2XsZp638+sI+OrVqtpqOjo+gwZsTu3btz8ODBWX0Of0vHZx8dn310fPYRAAAAAAAAALyeogoAAGbEhg0bcsYZZ+R973tfFixYkOuuu26i7ZZbbklPT09GRkZSqVSycOHCSY9dtGhRDh06NK2iis7Ozln5JYB6vZ6hoaFZ638+sI8aS3t7+6z17W/p+Oyj47OPjs8+mtqr+wcAAAAAAACAxjTtoooXXnghvb29+drXvjZxheHh4eEMDAzkqaeeynvf+958/OMfT1NT0ym1AQAwdzz66KO59957c99992XBggWva1+8eHGOHDmS5557Lq2trdmzZ8+k9tHR0aM+biqVSmVWTwyd7f7nA/uoMZyOHPtbOj776Pjso+OzjzgZ1gIBAHitF154IU8++WTe/OY3Z8mSJUWHAwAAAACnrHk6d37++eezZs2aPPPMMxPbxsbGsmbNmixbtixbtmxJrVbL1q1bT6kNAIC54+mnn87HPvax3Hbbbbn44ouTJHfeeWe+9a1vTdxnaGgozc3NOe+889LZ2ZnHH398om3fvn0ZGxub1q9UAAAw+6wFAgDwWg8++GDe/e5359Of/nSuvPLKPPjgg0mSwcHBtLe3T/y7+uqrJx4zPDyc3t7edHd3Z926dRkfHy8qfAAAAAA4qmkVVfT19WXVqlWTtu3YsSMjIyMZGBjIhRdemL6+vmzevPmU2gAAmBsOHTqUD3/4w+np6clVV12V0dHRjI6O5tJLL82GDRuyc+fOPPbYYxkcHMz111+farWa7u7uHDhwINu2bUuSbNy4MStXrnTlbACAkrEWCADAL3vxxRczODiYv/iLv8i2bduydu3afP7zn0+SPPHEE9m4cWN27tyZnTt35v7770+iuBYAAACAuaFlOnceHBzMBRdckM985jMT23bt2pWurq5Uq9UkSXt7e2q12im1TVe9Xj+px51ov7PVP9MnJ+UjJ+UkL+VThpzMlxPWZ2ofvjYnxsvJeeSRR1Kr1VKr1XLfffdNbH/44Yfzt3/7t7nxxhtz5plnpqenJ319fUmSlpaWDA4Opr+/P+vXr0+9Xs+mTZuKegkAABxDGdcCZ3Pe7rNB+chJ+chJ+chJOZUhL9YCj95PGXIzl42Ojuamm27Kr//6rydJLr300uzfvz+HDx/O8PBwVqxYkTPPPHPSY365uLZaraavry9r165Nb29vES8BAAAAAI5qWkUVF1xwweu2jYyMZOnSpRO3m5qa0tzcnP379590W2tr67RexNDQ0LTuP12z3T/TJyflIyflJC/lU1ROqtVqOjo6CnnumbZ79+4cPHhwxvozTk5NT09Pdu/efdS2/v7+9Pf3H/Nx27dvz9DQUJYvX54lS5bMZpgAAJyEMq4Fno75u88I5SMn5SMn5SMn5WQt8NRZCyyX8847L9ddd12S5OWXX85dd92Vd7/73RkeHs74+HhWr16dZ599Nt3d3RkcHMz5559f+uJahTblIyflMpfy0QgFhUeOHEm1Ws2RI0dOY0RMZS6NkUZwvHzIEwAAU5lWUcXRVCqVLFy4cNK2RYsW5dChQyfdNt2iis7Ozln5gFyv1zM0NDRr/TN9clI+clJO8lI+cjJz2tvbZ6Sf1+bk1ducPm1tbWlrays6DAAApqHotcDZ/Ezlc1v5yEn5yEn5yEk5ycvMsRZYTrt27crv//7vZ8GCBfn2t7+dv/mbv8kll1ySm2++OWeffXbuuOOO3HrrrfnKV74yZ4pr/T2Uj5yUS9nzMR8KCs89a1HqR8annDtUKpVSv86XD9fzs58+kZdffrnoUE67so+RRiMfAACcjFMuqmhtbc2ePXsmbRsdHc2CBQtOum26KpXKrC5Kz3b/TJ+clI+clJO8lI+cnLqZ3n9yAgAAJ67otcDTMX/3GaF85KR85KR85KSc5OXUWQssp/b29nz1q1/NunXrMjAwkC996UsTv2CRJLfcckt6enoyMjJS+uJaRVDlIyflIh+nz+JqSyrNTfnje3+Uvc+NFB3OtF38q2fli7/7zixbtqzoUE4rY6RcjpcPhbUAAEzllIsqOjs7s3nz5onb+/bty9jYWFpbW0+6DQAAAAAoH2uBAAA0NTWlo6Mjn/3sZ3PllVe+7lcnFi9enCNHjuS5556bM8W1Cm7KR07KRT5On73PjeSJn79YdBgnrVH/ToyRcpEPAABORvOpdtDd3Z0DBw5k27ZtSZKNGzdm5cqVqVQqJ90GAAAAAJSPtUAAgMb12GOPZd26dRO3X53LfelLX8q3vvWtie1DQ0Npbm7Oeeedl87Ozjz++OMTbYprAQAAACijU/6lipaWlgwODqa/vz/r169PvV7Ppk2bTqkNAACAxlCtVosOofTsI6BMrAUCADSut771rfnIRz6SN7/5zfnt3/7tbNiwIZdddlk6OjqyYcOGnHvuuTl8+HAGBwdz/fXXp1qtTiquXb16teJaAAAAAErppIoqdu/ePel2T09Ptm/fnqGhoSxfvjxLliw55TYAAACKc+5Zi1I/Mp5Kc9OsPUelUklHR8es9T/b8Z8WTc2zuo9Oh3mRB2hw1gIBAEiStra2fPGLX8ydd96ZdevW5fLLL8/nPve5LFmyJLVaLTfeeGPOPPPM9PT0pK+vL4niWgAAAADmhlP+pYpXtbW1pa2tbUbbAAAAKMbiaksqzU3543t/lL3PjRQdzrRd/Ktn5Yu/+86iwzhlczkHyfzJA/B61gIBABrTb/3Wb+W3fuu3Xre9v78//f39R32M4loAAAAAym7GiioAAACYf/Y+N5Infv5i0WE0NDkAAABgrlNcCwAAAECZNRcdAAAAAAAAAAAAAAAAQBEUVQAAAAAAAAAAAAAAAA1JUQUAAAAAAAAAAAAAANCQFFUAAAAAAAAAAAAAAAANSVEFAAAAAAAAAAAAAADQkBRVAAAAAAAAAAAAAAAADUlRBQAAAAAAAAAAAAAA0JAUVQAAAAAAAAAAAAAAAA1JUQUAAAAAAAAAAAAAANCQFFUAAAAAAAAAAAAAAAANSVEFAAAAAAAAAAAAAADQkBRVAAAAAAAAAAAAAAAADUlRBQAAAAAAAAAAAAAA0JAUVQAAAAAAAAAAAAAAAA1JUQUAAADzzrlnLUr9yHjRYQAAAAAAAAAAUHItRQcAAAAAM21xtSWV5qb88b0/yt7nRooO56Rc0X5u/vSaS4sOAwAAAAAAAABgXlNUAQAAwLy197mRPPHzF4sO46T82rlnFh0CAAAAAAAAAMC811x0AAAAAAAAAAAAAAAAAEVQVAEAAAAAAAAAAAAAADQkRRUAAAAAAAAAAAAAAEBDUlQBAAAAAAAAAAAAAAA0JEUVAAAAAAAAAAAAAABAQ1JUAQAAAAAAAMAJeeGFF/LDH/4wzz//fNGhAAAAAMCMUFQBAAAAAAAAwHE9+OCDefe7351Pf/rTufLKK/Pggw8mSYaHh9Pb25vu7u6sW7cu4+PjE4+Zqg0AAAAAykBRBQAAAAAAAABTevHFFzM4OJi/+Iu/yLZt27J27dp8/vOfz9jYWNasWZNly5Zly5YtqdVq2bp1a5JM2QYAAAAAZaGoAgAAAAAAAIApjY6O5qabbsqv//qvJ0kuvfTS7N+/Pzt27MjIyEgGBgZy4YUXpq+vL5s3b06SKdsAAAAAoCwUVQAAAAAAAAAwpfPOOy/XXXddkuTll1/OXXfdlXe/+93ZtWtXurq6Uq1WkyTt7e2p1WpJMmUbAAAAAJRFS9EBAAAAAAAAADA37Nq1K7//+7+fBQsW5Nvf/na+/OUvZ+nSpRPtTU1NaW5uzv79+zMyMnLMttbW1hN+znq9PqOv4bX9zlb/TJ+clMtcykelUik6BDI3/lZm0lwaI43gePmQJwAApqKoAgAAAAAAAIAT0t7enq9+9atZt25dBgYG8uY3vzkLFy6cdJ9Fixbl0KFDqVQqx2ybTlHF0NDQjMReVP9Mn5yUS9nzUa1W09HRUXQYJNm9e3cOHjxYdBinXdnHSKORDwAAToaiCgAAAAAAAABOSFNTUzo6OvLZz342V155Zfr6+rJnz55J9xkdHc2CBQvS2tp6zLbp6OzsnJWr0Nfr9QwNDc1a/0yfnJSLfDBd7e3tRYdwWhkj5XK8fLzaDgAAR6OoAgAAAAAAAIApPfbYY9mxY0c+8YlPJMnEyYpvfetbs3nz5on77du3L2NjY2ltbU1nZ+cx26ajUqnM6smqs90/0ycn5SIfnKhG/TsxRspFPgAAOBnNRQcAAAAAAAAAQLm99a1vzV/+5V/mL//yL/N3f/d3+bM/+7NcdtllueKKK3LgwIFs27YtSbJx48asXLkylUol3d3dx2wDAAAAgLJQVAEAwCl56KGHctVVV6WjoyM33HBDarVakmR4eDi9vb3p7u7OunXrMj4+PvGYqdoAAAAAgPJpa2vLF7/4xdx999259tprc/DgwXzuc59LS0tLBgcH86lPfSorV67Md77znfT39yfJlG0AAAAAUBaKKgAAOGlPPfVUbrrppvT392fHjh05//zz88lPfjJjY2NZs2ZNli1bli1btqRWq2Xr1q1JMmUbAAAAAFBev/Vbv5Vvfetb+eEPf5j/8l/+S5YsWZIk6enpyfbt2/PpT3863/72t3PJJZdMPGaqNgAAAAAoA0UVAACctFqtlo9+9KNZtWpVzjnnnLz//e/PT37yk+zYsSMjIyMZGBjIhRdemL6+vmzevDlJpmwDAAAAAOamtra29PT0TBRanGgbAAAAABStpegAAACYu6688spJt5988slcdNFF2bVrV7q6ulKtVpMk7e3tqdVqSTJlGwAAAAAAAAAAAJxOiioAAJgRY2Njueuuu/LBD34wTz/9dJYuXTrR1tTUlObm5uzfvz8jIyPHbGttbT3h56vX6zMa/2v7na3+5wP76MRUKpWiQ4DSmM3jhWPS8dlHU7NfAAAAAAAAABrbjBVVbNu2LRs2bMj+/fvT1dWV22+/PUuXLs3w8HAGBgby1FNP5b3vfW8+/vGPp6mpKUmmbAMAYG7ZsGFDzjjjjLzvfe/Lhg0bsnDhwkntixYtyqFDh1KpVI7ZNp2iiqGhoRmJu6j+5wP76Niq1Wo6OjqKDgNKY/fu3Tl48OCsPodj0vHZR8wka4EAAAAAAADAfDEjRRVPPfVUNmzYkC996Us5++yz89/+23/LwMBA/vt//+9Zs2ZNLr/88nzhC1/I7bffnq1bt6a3tzdjY2PHbAMAYG559NFHc++99+a+++7LggUL0tramj179ky6z+jo6HHbpqOzs3NWfgmgXq9naGho1vqfD+wjYLra29tnrW/HpOOzj6b26v7hxFkLBAAAAAAAAOaTGSmq+OlPf5qurq4sW7YsSfKe97wnf/Inf5IdO3ZkZGQkAwMDqVar6evry9q1a9Pb2ztlGwAAc8fTTz+dj33sY7ntttty8cUXJ3ml4GHz5s0T99m3b1/GxsbS2to6Zdt0VCqVWT0xdLb7nw/sI+BEnY5jhWPS8dlHzBRrgQAAAAAAAMB8MiNFFRdffHF+8IMf5Kc//WkuuOCC3HPPPbnsssuya9eudHV1pVqtJnnlypS1Wi1JpmwDAGBuOHToUD784Q+np6cnV111VUZHR5MkK1asyIEDB7Jt27asXr06GzduzMqVK1OpVNLd3X3MNgAAyq/ItcB6vT5zL+QYfc/mczA9clI+clI+clJOZcjLfFlnmal9+NqcGDMAAAAAwC+bsaKKa665Jtdff32SZOnSpfmrv/qrbNy4MUuXLp24X1NTU5qbm7N///6MjIwcs226VymerYVPC6vlIyflIyflJC/lU4ac+CL16P2UITdz2SOPPJJarZZarZb77rtvYvvDDz+cwcHB9Pf3Z/369anX69m0aVOSpKWl5ZhtAACUX5FrgUNDQzP3Qgp8DqZHTspHTspHTsqpqLxUq9V0dHQU8twzbffu3Tl48OCM9WesAAAAAABHMyNFFT/+8Y/z/e9/P3/1V3+VX/u1X8vGjRvzh3/4h/nN3/zNLFy4cNJ9Fy1alEOHDqVSqRyzbbpFFbO9AGqBtXzkpHzkpJzkpXx8kXrqfJFaLj09Pdm9e/dR25YuXZrt27dnaGgoy5cvz5IlSyY97lhtAACUW5FrgZ2dnbNWMF6v1zM0NDSrz8H0yEn5yEn5yEk5ycvMaW9vn5F+XpuTV28DAAAAACQzVFTxrW99K9dee23e8Y53JEn+5E/+JPfee29aW1uzZ8+eSfcdHR3NggULpmybrtlalLboXT5yUj5yUk7yUj5yMnN8kTq3tLW1pa2tbdptAACUV5FrgZVKZdY/U52O52B65KR85KR85KSc5OXUzfT+kxMAAAAA4GhmpKiiXq/n+eefn7g9Ojqaf/zHf0xLS0sef/zxie379u3L2NhYWltb09nZmc2bNx+1bbpmewHUAmv5yEn5yEk5yUv5yMmp80UqAAAUq+i1QAAAAAAAAICZ1DwTnSxfvjzf/e5389WvfjUPPPBAbrzxxpxzzjn5vd/7vRw4cCDbtm1LkmzcuDErV65MpVJJd3f3MdsAAAAAgHKyFggAAAAAAADMJzPySxWrVq3Kk08+mbvvvjt///d/n0suuST/9b/+1yxYsCCDg4Pp7+/P+vXrU6/Xs2nTpleeuKXlmG0AAAAAQDlZCwQAAAAAAADmkxkpqmhqasof/dEf5Y/+6I9e19bT05Pt27dnaGgoy5cvz5IlS06oDQAAAAAoH2uBAAAAAAAAwHwyI0UVx9PW1pa2trZptwEAAAAAc4u1QAAAAAAAAGAuaS46AAAAAAAAAAAAAAAAgCIoqgAAAAAAAAAAAAAAABqSogoAAAAAAAAAAAAAAKAhKaoAAAAAAAAAAAAAAAAakqIKAAAAAAAAAAAAAACgISmqAAAAAAAAAAAAAAAAGpKiCgAAAAAAAAAAAAAAoCEpqgAAAAAAAAAAAAAAABqSogoAAAAAAAAAAAAAAKAhKaoAAAAAAAAAAAAAAAAakqIKAAAAAAAAAI7roYceylVXXZWOjo7ccMMNqdVqSZLBwcG0t7dP/Lv66qsnHjM8PJze3t50d3dn3bp1GR8fLyp8AAAAADgqRRUAAAAAAAAATOmpp57KTTfdlP7+/uzYsSPnn39+PvnJTyZJnnjiiWzcuDE7d+7Mzp07c//99ydJxsbGsmbNmixbtixbtmxJrVbL1q1bi3wZAAAAAPA6iioAAAAAAAAAmFKtVstHP/rRrFq1Kuecc07e//735yc/+UkOHz6c4eHhrFixIosXL87ixYtz1llnJUl27NiRkZGRDAwM5MILL0xfX182b95c8CsBAAAAgMlaig4AAAAAAAAAgHK78sorJ91+8sknc9FFF2V4eDjj4+NZvXp1nn322XR3d2dwcDDnn39+du3ala6urlSr1SRJe3t7arVaEeEDAAAAwDEpqgAAAAAAAADghI2NjeWuu+7KBz/4wezduzeXXHJJbr755px99tm54447cuutt+YrX/lKRkZGsnTp0onHNTU1pbm5Ofv3709ra+sJP1+9Xp+NlzHR72z1z/TJSbnMpXxUKpWiQyBz429lJs2lMdIIjpcPeQIAYCqKKgAAAAAAAAA4YRs2bMgZZ5yR973vfVmwYEGuu+66ibZbbrklPT09GRkZSaVSycKFCyc9dtGiRTl06NC0iiqGhoZmLPYi+mf65KRcyp6ParWajo6OosMgye7du3Pw4MGiwzjtyj5GGo18AABwMhRVAAAAAAAAAHBCHn300dx777257777smDBgte1L168OEeOHMlzzz2X1tbW7NmzZ1L76OjoUR83lc7Ozlm5Cn29Xs/Q0NCs9c/0yUm5yAfT1d7eXnQIp5UxUi7Hy8er7QAAcDSKKgAAAAAAAAA4rqeffjof+9jHctttt+Xiiy9Oktx5553p6urKqlWrkrxydejm5uacd9556ezszObNmycev2/fvoyNjU3rVyqSpFKpzOrJqrPdP9MnJ+UiH5yoRv07MUbKRT4AADgZiioAAAAAAAAAmNKhQ4fy4Q9/OD09PbnqqqsyOjqaJLn00kuzYcOGnHvuuTl8+HAGBwdz/fXXp1qtpru7OwcOHMi2bduyevXqbNy4MStXrnSiIwAAAACloqgCAAAAAAAAgCk98sgjqdVqqdVque+++ya2P/zww/nbv/3b3HjjjTnzzDPT09OTvr6+JElLS0sGBwfT39+f9evXp16vZ9OmTUW9BAAAAAA4KkUVAAAAAAAAAEypp6cnu3fvPmpbf39/+vv7j/m47du3Z2hoKMuXL8+SJUtmM0wAAAAAmDZFFQAAAAAAAADMmra2trS1tRUdBgAAAAAcVXPRAQAAAAAAAAAAAAAAABRBUQUAAAAAAAAAAAAAANCQFFUAAAAAAAAAAAAAAAANSVEFAAAAAAAAAAAAAADQkBRVAAAAAAAAAAAAAAAADUlRBQAAAAAAAAAAAAAA0JAUVQAAAAAAAAAAAAAAAA1JUQUAAAAAAAAAAAAAANCQFFUAAAAAAAAAAAAAAAANSVEFAAAAAAAAAAAAAADQkBRVAAAAAAAAAAAAAAAADUlRBQAAAAAAAAAAAAAA0JAUVQAAAAAAAAAAAAAAAA1JUQUAAKfshRdeyLve9a7s27dvYtvg4GDa29sn/l199dUTbcPDw+nt7U13d3fWrVuX8fHxIsIGAAAAAAAAAACgwSmqAADglDz//PNZs2ZNnnnmmUnbn3jiiWzcuDE7d+7Mzp07c//99ydJxsbGsmbNmixbtixbtmxJrVbL1q1biwgdAAAAAAAAAACABqeoAgCAU9LX15dVq1ZN2nb48OEMDw9nxYoVWbx4cRYvXpyzzjorSbJjx46MjIxkYGAgF154Yfr6+rJ58+YiQgcAAAAAAAAAAKDBtcxGp5///Oezd+/e/Pmf/3mSZHh4OAMDA3nqqafy3ve+Nx//+MfT1NR03DYAAMpvcHAwF1xwQT7zmc9MbBseHs74+HhWr16dZ599Nt3d3RkcHMz555+fXbt2paurK9VqNUnS3t6eWq027eet1+sz9hqO1u9s9T8f2EcnplKpFB0ClMZsHi8ck47PPpqa/XJqrAMCAAAAAAAAc92MF1UMDw/nnnvuybZt25IkY2NjWbNmTS6//PJ84QtfyO23356tW7emt7d3yjYAAOaGCy644HXb9u7dm0suuSQ333xzzj777Nxxxx259dZb85WvfCUjIyNZunTpxH2bmprS3Nyc/fv3p7W19YSfd2hoaEbiL6r/+cA+OrZqtZqOjo6iw4DS2L17dw4ePDirz+GYdHz2ETPNOiAAAAAAAAAwH8xoUcX4+HhuvfXWfOADH8iFF16YJNmxY0dGRkYyMDCQarWavr6+rF27Nr29vVO2AQAwd1133XW57rrrJm7fcsst6enpycjISCqVShYuXDjp/osWLcqhQ4emVVTR2dk5K78EUK/XMzQ0NGv9zwf2ETBd7e3ts9a3Y9Lx2UdTe3X/MD3WAQEAAAAAAID5YkaLKu67777s2rUrN9xwQ77//e/n8ssvz65du9LV1ZVqtZrklRMparVakkzZBgDA/LF48eIcOXIkzz33XFpbW7Nnz55J7aOjo1mwYMG0+qxUKrN6Yuhs9z8f2EfAiTodxwrHpOOzj5hJ1gEBAAAAAACA+WLGiipGR0ezYcOGXHTRRfnFL36Rb3zjG/nzP//zvPOd78zSpUsn7tfU1JTm5ubs378/IyMjx2ybzlWK6/X6TL2Mo/Y7W/0zfXJSPnJSTvJSPmXIyXw5gW6m9uFrc2K8zKw777wzXV1dWbVqVZJkaGgozc3NOe+889LZ2ZnNmzdP3Hffvn0ZGxub1vwPAIDizMd1wF/u22eD8pCT8pGT8pGTcipDXqwFHr2fMuQGAAAAACifGSuq+O53v5uDBw/m7rvvzhve8IZ8+MMfzr/+1/86W7ZsyXve855J9120aFEOHTqUSqWShQsXHrVtOl+mDg0NzchrKKp/pk9OykdOykleyqeonFSr1XR0dBTy3DNt9+7dOXjw4Iz1Z5zMjre97W3ZsGFDzj333Bw+fDiDg4O5/vrrU61W093dnQMHDmTbtm1ZvXp1Nm7cmJUrV86bL/sBAOa7+bwOeLqeg+mRk/KRk/KRk3KyFnjqrAUCAAAAAKfDjBVV/OIXv8g73vGOvOENb3il45aWtLe355lnnsnzzz8/6b6jo6NZsGBBWltbs2fPnqO2TUdnZ+esnIRXr9czNDQ0a/0zfXJSPnJSTvJSPnIyc9rb22ekn9fm5NXbzIzVq1enVqvlxhtvzJlnnpmenp709fUleWWeODg4mP7+/qxfvz71ej2bNm0qOGIAAE7UfFwHTHxuKyM5KR85KR85KSd5mTnWAgEAAACA02HGiire+MY35qWXXpq07ec//3k+8YlP5O67757Ytm/fvoyNjaW1tTWdnZ3ZvHnzUdumo1KpzOqi9Gz3z/TJSfnISTnJS/nIyamb6f0nJzNn9+7dk2739/env7//qPft6enJ9u3bMzQ0lOXLl2fJkiWnI0QAAGbAfF4HPF3PwfTISfnISfnISTnJy6mzFggAAAAAnA7NM9XRFVdckVqtlq9//ev5xS9+ka997Wv52c9+lssvvzwHDhzItm3bkiQbN27MypUrU6lU0t3dfcw2AADmt7a2tvT09CioAACYY6wDAgA0roceeihXXXVVOjo6csMNN6RWqyVJhoeH09vbm+7u7qxbty7j4+MTj5mqDQAAAADKYMaKKt7whjfkK1/5Sr7xjW/kmmuuyd13350vfOELueiiizI4OJhPfepTWblyZb7zne9MXLG4paXlmG0AAAAAQPlYBwQAaExPPfVUbrrppvT392fHjh05//zz88lPfjJjY2NZs2ZNli1bli1btqRWq2Xr1q1JMmUbAAAAAJRFy0x29hu/8Ru59957X7e9p6cn27dvz9DQUJYvXz7pasRTtQEAAAAA5WMdEACg8dRqtXz0ox/NqlWrkiTvf//78wd/8AfZsWNHRkZGMjAwkGq1mr6+vqxduza9vb1TtgEAAABAWcxoUcVU2tra0tbWNu02AAAAAGDusA4IADA/XXnllZNuP/nkk7nooouya9eudHV1pVqtJkna29tTq9WSZMq26ajX66cY/dT9zlb/TJ+clMtcykelUik6BDI3/lZm0lwaI43gePmQJwAApnLaiioAAAAAAAAAmPvGxsZy11135YMf/GCefvrpLF26dKKtqakpzc3N2b9/f0ZGRo7Z1traesLPNzQ0NKPxn+7+mT45KZey56Naraajo6PoMEiye/fuHDx4sOgwTruyj5FGIx8AAJwMRRUAAAAAAAAAnLANGzbkjDPOyPve975s2LAhCxcunNS+aNGiHDp0KJVK5Zht0ymq6OzsnJWr0Nfr9QwNDc1a/0yfnJSLfDBd7e3tRYdwWhkj5XK8fLzaDgAAR6OoAgAAAAAAAIAT8uijj+bee+/NfffdlwULFqS1tTV79uyZdJ/R0dHjtk1HpVKZ1ZNVZ7t/pk9OykU+OFGN+ndijJSLfAAAcDKaiw4AAAAAAAAAgPJ7+umn87GPfSy33XZbLr744iSv/IrE448/PnGfffv2ZWxsLK2trVO2AQAAAEBZKKoAAAAAAAAAYEqHDh3Khz/84fT09OSqq67K6OhoRkdHs2LFihw4cCDbtm1LkmzcuDErV65MpVJJd3f3MdsAAAAAoCxaig4AAAAAAAAAgHJ75JFHUqvVUqvVct99901sf/jhhzM4OJj+/v6sX78+9Xo9mzZtSpK0tLQcsw0AAAAAykJRBQAAAAAAAABT6unpye7du4/atnTp0mzfvj1DQ0NZvnx5lixZMulxx2oDAAAAgDJQVAEAAAAAAADAKWlra0tbW9u02wAAAACgaM1FBwAAAAAAAAAAAAAAAFAERRUAAAAAAAAAAAAAAEBDUlQBAAAAAAAAAAAAAAA0JEUVAAAAAAAAAAAAAABAQ1JUAQAAAAAAAAAAAAAANCRFFQAAAAAAAAAAAAAAQENSVAEAAAAAAAAAAAAAADQkRRUAAAAAAAAAAAAAAEBDUlQBAAAAAAAAAAAAAAA0JEUVAAAAAAAAAAAAAABAQ1JUAQAAAAAAAAAAAAAANCRFFQAAAAAAAAAAAAAAQENSVAEAAAAAAAAAAAAAADQkRRUAAAAAAAAAAAAAAEBDUlQBAAAAAAAAAAAAAAA0JEUVAAAAAAAAAAAAAABAQ1JUAQAAAAAAAAAAAAAANCRFFQAAAAAAAAAAAAAAQENSVAEAAAAAAAAAAAAAADQkRRUAAAAAAAAAAAAAAEBDUlQBAAAAAAAAAAAAAAA0JEUVAAAAAAAAAAAAAABAQ1JUAQAAAAAAAAAAAAAANCRFFQAAAAAAAAAAAAAAQENSVAEAAAAAAADAcb3wwgt517velX379k1sGxwcTHt7+8S/q6++eqJteHg4vb296e7uzrp16zI+Pl5E2AAAAAAwJUUVAAAAAAAAAEzp+eefz5o1a/LMM89M2v7EE09k48aN2blzZ3bu3Jn7778/STI2NpY1a9Zk2bJl2bJlS2q1WrZu3VpE6AAAAAAwJUUVAAAAAAAAAEypr68vq1atmrTt8OHDGR4ezooVK7J48eIsXrw4Z511VpJkx44dGRkZycDAQC688ML09fVl8+bNRYQOAAAAAFNqKToAAAAAAAAAAMptcHAwF1xwQT7zmc9MbBseHs74+HhWr16dZ599Nt3d3RkcHMz555+fXbt2paurK9VqNUnS3t6eWq12Us9dr9dn5DUcq9/Z6p/pk5NymUv5qFQqRYdA5sbfykyaS2OkERwvH/IEAMBUFFUAAHDKXnjhhfT29uZrX/tali5dmuSVL1QHBgby1FNP5b3vfW8+/vGPp6mp6bhtAAAAAED5XHDBBa/btnfv3lxyySW5+eabc/bZZ+eOO+7Irbfemq985SsZGRmZWCtMkqampjQ3N2f//v1pbW2d1nMPDQ2dcvxF9s/0yUm5lD0f1Wo1HR0dRYdBkt27d+fgwYNFh3HalX2MNBr5AADgZCiqAADglDz//PP5D//hP+SZZ56Z2DY2NpY1a9bk8ssvzxe+8IXcfvvt2bp1a3p7e6dsAwAAAADmjuuuuy7XXXfdxO1bbrklPT09GRkZSaVSycKFCyfdf9GiRTl06NC0iyo6Oztn5Sr09Xo9Q0NDs9Y/0ycn5SIfTFd7e3vRIZxWxki5HC8fr7YDAMDRKKoAAOCU9PX1ZdWqVfnxj388sW3Hjh0ZGRnJwMBAqtVq+vr6snbt2vT29k7ZBgAAAADMXYsXL86RI0fy3HPPpbW1NXv27JnUPjo6mgULFky730qlMqsnq852/0yfnJSLfHCiGvXvxBgpF/kAAOBkzEpRxYc+9KFce+21ec973pPh4eEMDAzkqaeeynvf+958/OMfT1NTU5JM2QYAwNwwODiYCy64IJ/5zGcmtu3atStdXV2pVqtJXrkyUa1WO27bdNTr9RmI/tj9zlb/84F9dGIs2MM/mc3jhWPS8dlHU7NfTp21QACAxnXnnXemq6srq1atSpIMDQ2lubk55513Xjo7O7N58+aJ++7bty9jY2PT/pUKAAAAAJhtM15U8dd//dd55JFHcu2112ZsbCxr1qzJ5Zdfni984Qu5/fbbs3Xr1vT29k7ZBgDA3HHBBRe8btvIyEiWLl06cbupqSnNzc3Zv3//lG3T+UJ1tn+e18//Hp99dGzVajUdHR1FhwGlsXv37hw8eHBWn8Mx6fjsI2aDtUAAgMb2tre9LRs2bMi5556bw4cPZ3BwMNdff32q1Wq6u7tz4MCBbNu2LatXr87GjRuzcuVKF6IAAAAAoHRmtKjiH/7hH7Ju3bq85S1vSZLs2LEjIyMjGRgYSLVaTV9fX9auXZve3t4p2wAAmNsqlUoWLlw4aduiRYty6NChKdumU1TR2dk5K1/A1uv1DA0NzVr/84F9BExXe3v7rPXtmHR89tHUXt0/TJ+1QAAAVq9enVqtlhtvvDFnnnlmenp60tfXlyRpaWnJ4OBg+vv7s379+tTr9WzatKngiAEAAADg9Wa0qGLdunXp6enJSy+9lCTZtWtXurq6Uq1Wk7xyEkWtVjtu23TV6/UZiP7Y/c5W/0yfnJSPnJSTvJRPGXIyX06gm6l9+NqcGC8zq7W1NXv27Jm0bXR0NAsWLJiybToqlcqs/l3Pdv/zgX0EnKjTcaxwTDo++4iZVsRa4GzO2302KB85KR85KR85Kacy5GW+zPusBZbT7t27J93u7+9Pf3//Ue/b09OT7du3Z2hoKMuXL8+SJUtOR4gAAAAAMC0zVlTxgx/8II899li++c1v5vbbb0+SjIyMZOnSpRP3aWpqSnNzc/bv3z9l23SuUJxk1q8m6GqF5SMn5SMn5SQv5VNUTqrVajo6Ogp57pm2e/fuHDx4cMb6M05mR2dnZzZv3jxxe9++fRkbG0tra+uUbQAAzA1FrQWejvm7zwjlIyflIyflIyflZC3w1FkLnB/a2trS1tZWdBgAAAAAcEwzUlTx0ksv5VOf+lRuu+22nHXWWRPbK5VKFi5cOOm+ixYtyqFDh6Zsm+4JdZ2dnbNyxZ16vZ6hoaFZ65/pk5PykZNykpfykZOZ097ePiP9vDYnr95mZnR3d+fAgQPZtm1bVq9enY0bN2blypWpVCpTtgEAUH5FrgXO5mcqn9vKR07KR07KR07KSV5mjrVAAAAAAOB0mJGiii9/+ct5+9vfniuuuGLS9tbW1uzZs2fSttHR0SxYsGDKtumqVCqzuig92/0zfXJSPnJSTvJSPnJy6mZ6/8nJ7Ghpacng4GD6+/uzfv361Ov1bNq06bhtAACUX5Frgadj/u4zQvnISfnISfnISTnJy6mzFggAAAAAnA4zUlTxwAMP5IUXXsiKFSuSJIcOHcq3v/3tvOlNb8rhw4cn7rdv376MjY2ltbU1nZ2d2bx581HbAACYe3bv3j3pdk9PT7Zv356hoaEsX748S5YsOaE2AADKzVogAAAAAAAAMJ/MSFHFPffcM+kL0/Xr16erqyvXX399rr322mzbti2rV6/Oxo0bs3LlylQqlXR3d+fAgQNHbQMAYH5oa2tLW1vbtNsAACgva4EAAAAAAADAfDIjRRVvfOMbJ90+44wzcvbZZ2fJkiUZHBxMf39/1q9fn3q9nk2bNr3yxC0tx2wDAAAAAMrJWiAAAAAAAAAwn8xIUcVrffazn534f09PT7Zv356hoaEsX748S5YsOaE2AAAAAKD8rAUCAAAAAAAAc9msFFW8VltbW9ra2qbdBgAAAADMLdYCAQAAAAAAgLmkuegAAAAAAAAAAAAAAAAAiqCoAgAAAAAAAAAAAAAAaEiKKgAAAIA5rVqtFh0CAAAAAAAAADBHKaoAAAAAZsW5Zy1K/cj4rD5HpVJJR0dHKpXKrPQ/2/EDAAAAAAAAAMVqKToAAAAAYH5aXG1Jpbkpf3zvj7L3uZGiw5m2i3/1rHzxd99ZdBgAAAAAAAAAwCxSVAEAAADMqr3PjeSJn79YdBgAAAAAAAAAAK/TXHQAAAAAAAAAAAAAAAAARVBUAQAAAAAAAAAAAAAANCRFFQAAAAAAAAAAAAAAQENSVAEAAAAAAAAAAAAAADQkRRUAAAAAAAAAAAAAAEBDUlQBAAAAAAAAAACclHPPWpT6kfGiwzhl8+E1AAAAJ6el6AAAAAAAAAAAAIC5aXG1JZXmpvzxvT/K3udGig7npFz8q2fli7/7zqLDAAAACqKoAgAAAAAAAAAAOCV7nxvJEz9/segwAAAApq256AAAAAAAAAAAAAAAAACKoKgCAAAAAAAAAAAAAABoSIoqAAAAAAAAADiuF154Ie9617uyb9++iW3Dw8Pp7e1Nd3d31q1bl/Hx8RNqAwAAAICyUFQBAAAAAAAAwJSef/75rFmzJs8888zEtrGxsaxZsybLli3Lli1bUqvVsnXr1uO2AQAAAECZKKoAAAAAAAAAYEp9fX1ZtWrVpG07duzIyMhIBgYGcuGFF6avry+bN28+bhsAAAAAlImiCgAAAAAAAACmNDg4mA984AOTtu3atStdXV2pVqtJkvb29tRqteO2AQAAAECZtBQdAAAAAAAAAADldsEFF7xu28jISJYuXTpxu6mpKc3Nzdm/f/+Uba2trdN67nq9fvKBn0C/s9U/0ycn5TKX8lGpVIoOgXliOn/vc2mMNILj5UOeAACYiqIKAAAAAAAAAKatUqlk4cKFk7YtWrQohw4dmrJtukUVQ0NDpxxrkf0zfXJSLmXPR7VaTUdHR9FhME/s3r07Bw8enNZjyj5GGo18AABwMhRVAAAAAAAAADBtra2t2bNnz6Rto6OjWbBgwZRt09XZ2TkrV6Gv1+sZGhqatf6ZPjkpF/mgEbW3t5/wfY2RcjlePl5tBwCAo1FUAQAAAAAAAMC0dXZ2ZvPmzRO39+3bl7GxsbS2tk7ZNl2VSmVWT1ad7f6ZPjkpF/mgkZzM37oxUi7yAQDAyWguOgAAAAAAAAAA5p7u7u4cOHAg27ZtS5Js3LgxK1euTKVSmbINAAAAAMrEL1UAAAAAAAAAMG0tLS0ZHBxMf39/1q9fn3q9nk2bNh23DQAAAADKRFEFAAAAAAAAACdk9+7dk2739PRk+/btGRoayvLly7NkyZITagMAAACAslBUAQAAAAAAAMBJa2trS1tb27TbAAAAAKAMmosOAAAAAAAAAAAAAAAAoAiKKgAAAAAAAAAAAAAAgIakqAIAAAAAAAAAgNepVqtFhwAAAACzrqXoAAAAAAAAAAAAKE79yHgqzU2TtlUqlXR0dBQUEQAAAJw+iioAAAAAAAAAABpYpbkpf3zvj7L3uZGiQ5m2K9rPzZ9ec2nRYQAAADCHKaoAAAAAAAAAAGhwe58byRM/f7HoMKbt1849s+gQAAAAmOOaiw4AAAAAAAAAAAAAAACgCIoqAAAAAAAAAAAAAACAhqSoAgAAAAAAAAAAAAAAaEiKKgAAmDWDg4Npb2+f+Hf11VcnSYaHh9Pb25vu7u6sW7cu4+PjBUcKAAAAAAAAAABAI5qxooqHHnooV111VTo6OnLDDTekVqslmfqEOSfTAQDMb0888UQ2btyYnTt3ZufOnbn//vszNjaWNWvWZNmyZdmyZUtqtVq2bt1adKgAAEyDtUAAAAAAAABgvpiRooqnnnoqN910U/r7+7Njx46cf/75+eQnPznlCXNOpgMAmN8OHz6c4eHhrFixIosXL87ixYtz1llnZceOHRkZGcnAwEAuvPDC9PX1ZfPmzUWHCwDACbIWCAAAAAAAAMwnLTPRSa1Wy0c/+tGsWrUqSfL+978/f/AHfzDphLlqtZq+vr6sXbs2vb29U7YBADD3DQ8PZ3x8PKtXr86zzz6b7u7uDA4OZteuXenq6kq1Wk2StLe3T1zZeDrq9fpMhzyp39nqfz6wj05MpVIpOgRghsz1453j9tTsl+mzFggAAAAAAADMJzNSVHHllVdOuv3kk0/moosumvKEuZk6mS5xQl0jkZPykZNykpfyKUNO5svJvTO1D1+bE+Nl5u3duzeXXHJJbr755px99tm54447cuutt+biiy/O0qVLJ+7X1NSU5ubm7N+/P62trSfc/9DQ0GyEfdr6nw/so2OrVqvp6OgoOgxghuzevTsHDx4sOoxT5rjNTClyLXA25+0+G5SPnJSPnJSPnJRTGfJiLfDo/ZQhNwAAAABA+cxIUcUvGxsby1133ZUPfvCDefrpp495wtzIyMiMnEyXOKGuEclJ+chJOclL+RSVk/l0cu9Mn9RonMye6667Ltddd93E7VtuuSU9PT1561vfmoULF06676JFi3Lo0KFpzQM7Oztn5QSBer2eoaGhWet/PrCPgEbT3t5edAinxHF7aq/uH07O6V4LPB258vdQPnJSPnJSPnJSTtYCT521QAAAAADgdJjxoooNGzbkjDPOyPve975s2LDhmCfMVSqVGTmZLnFCXSORk/KRk3KSl/KRk5kzUyc1vjYnTqabfYsXL86RI0dyzjnnZM+ePZPaRkdHs2DBgmn1V6lUZnU8zXb/84F9BDSK+XKsc9xmNpzutcDZ/Ezlc1v5yEn5yEn5yEk5ycvMsRYIAAAAAJwOM1pU8eijj+bee+/NfffdlwULFqS1tfWYJ8xN1TZdTqhrPHJSPnJSTvJSPnJy6mZ6/8nJ7LnzzjvT1dWVVatWJXnlSoDNzc1pb2/P5s2bJ+63b9++jI2NTbuwFgCAYhWxFng65u8+I5SPnJSPnJSPnJSTvJw6a4EAAAAAwOnQPFMdPf300/nYxz6W2267LRdffHGSV64c9/jjj0/c55dPmJuqDQCAue9tb3tbNmzYkJ07d+axxx7L4OBgrr/++lx22WU5cOBAtm3bliTZuHFjVq5c6QttAIA5xFogAAAAAAAAMF/MSFHFoUOH8uEPfzg9PT256qqrMjo6mtHR0axYseKYJ8x1d3c7mQ4AYB5bvXp1rrnmmtx4440ZGBjIZZddlptvvjktLS0ZHBzMpz71qaxcuTLf+c530t/fX3S4AACcIGuBAAAAAAAAwHzSMhOdPPLII6nVaqnVarnvvvsmtj/88MMZHBxMf39/1q9fn3q9nk2bNr3yxP/vZLqjtQEAMD/09/cftWCip6cn27dvz9DQUJYvX54lS5YUEB0AACfDWiAAAAAAAAAwn8xIUUVPT09279591LalS5ce84Q5J9MBADSutra2tLW1FR0GAADTZC0QAAAAAAAAmE9mpKjieKY6Yc7JdAAAAAAwf1gLBAAAAAAAAOaS5qIDAAAAAAAAAAAAAAAAKIKiCgAAAAAAAAAAAAAAoCEpqgAAAAAAAADgpA0ODqa9vX3i39VXX50kGR4eTm9vb7q7u7Nu3bqMj48XHCkAAAAAvJ6iCgAAAAAAAABO2hNPPJGNGzdm586d2blzZ+6///6MjY1lzZo1WbZsWbZs2ZJarZatW7cWHSrMivoRBUMAAAAwl7UUHQAAAAAAAAAAc9Phw4czPDycFStW5Mwzz5zY/tBDD2VkZCQDAwOpVqvp6+vL2rVr09vbW2C0MDsqzU3543t/lL3PjRQdykm5ov3c/Ok1lxYdBgAAABRGUQUAAAAAAAAAJ2V4eDjj4+NZvXp1nn322XR3d2dwcDC7du1KV1dXqtVqkqS9vT21Wq3gaGH27H1uJE/8/MWiwzgpv3bumce/EwAAAMxjiioAAAAAAAAAOCl79+7NJZdckptvvjlnn3127rjjjtx66625+OKLs3Tp0on7NTU1pbm5Ofv3709ra+u0nqNer8902JP6na3+mb65mpNKpVJ0CMAMmc7xZ64es+ar4+VDngAAmIqiCgAAAAAAAABOynXXXZfrrrtu4vYtt9ySnp6evPWtb83ChQsn3XfRokU5dOjQtIsqhoaGZiTWovpn+uZSTqrVajo6OooOA5ghu3fvzsGDB6f1mLl0zGoE8gEAwMlQVAEAAAAAAADAjFi8eHGOHDmSc845J3v27JnUNjo6mgULFky7z87Ozln5JYB6vZ6hoaFZ65/pkxOgaO3t7Sd8X8escjlePl5tBwCAo1FUAQAAAAAAAMBJufPOO9PV1ZVVq1YleeXq0M3NzWlvb8/mzZsn7rdv376MjY1N+1cqkqRSqczqyaqz3T/TJydAUU7m2OOYVS7yAQDAyVBUAQAAAAAAAMBJedvb3pYNGzbk3HPPzeHDhzM4OJjrr78+l112WQ4cOJBt27Zl9erV2bhxY1auXOkkRwDmlWq1WnQIAADADFBUAQAAADDP+XIXAACYLatXr06tVsuNN96YM888Mz09Penr60tLS0sGBwfT39+f9evXp16vZ9OmTUWHCwBHde5Zi1I/Mp5Kc9MJP6ZSqaSjo2MWo5qe6cYPAAD8E0UVAAAAAPNZU3OpvtydLl8GAwBA+fX396e/v/9123t6erJ9+/YMDQ1l+fLlWbJkSQHRAcDxLa62pNLclD++90fZ+9xI0eFM28W/ela++LvvLDoMAACYsxRVAAAAAMxjvgwGAACK1NbWlra2tqLDAIATsve5kTzx8xeLDgMAADjNFFUAAAAAzHO+DAYAAAAAAACAo2suOgAAAAAAAAAAAAAAAIAiKKoAAAAAAAAAAAAAAAAakqIKAAAAAAAAAACAOercsxalfmS86DBO2Xx4DQAAzE0tRQcAAAAAAAAAAADAyVlcbUmluSl/fO+Psve5kaLDOSkX/+pZ+eLvvrPoMAAAaFCKKgAAAAAAAAAAAOa4vc+N5Imfv1h0GAAAMOc0Fx0AAADA0fiJZwAAAAAAAAAAYLb5pQoAAKCU5vLPVF/Rfm7+9JpLiw4DAAAAAOacarVadAgAAABAg1FUAQAAlNZc/ZnqXzv3zKJDAAAAAIA5oX5kPJXmpiRJpVJJR0dHwREBAAAAjUZRBQAAAAAAAABQiLn8i7WJX60FAACA+UBRBQAAAAAAAABQmLn6i7WJX60FAACA+aC56AAAAAAAAAAAAAAAAACKoKgCAAAAAAAAAAAAAABoSIoqAAAAAAAAAAAAAACAhqSoAgAAAAAAAAAAAAAAaEiKKgAAAAAAAAAAAAAAgIakqAIAAAAAAAAAAAAAAGhIiioAAAAAAAAAAAAAAICGpKgCAAAAAAAAAAAAAABoSIoqAAAAAAAAAAAAAACAhqSoAgAAAAAAAAAAAAAAaEiKKgAAAAAAAAAAAAAAgIakqAIAAAAAAAAAAAAAAGhIiioAAAAAAAAAAAAAAICGVHhRxfDwcHp7e9Pd3Z1169ZlfHy86JAAADgNzAMBABqPOSAAQGMq8zxwwYIFRYcAAAAAQMEKLaoYGxvLmjVrsmzZsmzZsiW1Wi1bt24tMiQAAE6Dss8DfZEKADDzyj4HBABgdpR9Hvi2jmWpVCpFh3FK6kfKU6QCAAAAMBe1FPnkO3bsyMjISAYGBlKtVtPX15e1a9emt7e3yLAAAJhlZZ8HzpcvUivNTUWHAQAwoexzQAAAZkfZ54ELWir543t/lL3PjRQdykm5ov3c/Ok1l87Z1/Bq/AAAAABFKrSoYteuXenq6kq1Wk2StLe3p1arnfDjX/1Z2LGxsVk56a1er6dSqeTll19OvV6f8f6ZviNHjuSf/bN/JiclIiflJC/lU4acVCqVvO2NZ2bRHD1P/K3nnpl6vT5j++/Vfl6dR7x6u0w/Oz+fnco8cLbngEeOHMmCBQvypYeH8/P9B2e8/9Ph/NZq1lzxaxkbm53jzek6ps3l49ab/3k19Xp9zsafzP3XMNfjT7yGMlh+4Rsy9vLheVGkNldzMNNzwKMxDzx9yjwHTKwFllEZPkszmZyUj5yUUxnyMpc/UyfWAuebMs8Djxw5kiRZ0Dw+Z8dLpWk89Xp9zr6GV+Ofy8esub7+kcz91zDX40/m/muY6/Enc/81zPX4k1OfA752znesdnNAAACOpmm8wJniZz/72bz00kv51Kc+NbHtN3/zN/Od73wnra2tx3382NhYhoaGZjNEAKDBdHZ2ZuHChUWHMe+dyjzQHBAAmA3mgbPPHBAAKBtzwNPDPBAAKBNzQAAAjqbQX6qoVCqvm6QuWrQohw4dOqGiipaWlnR2dqa5uTlNTXP/qpEAQHHGx8dz5MiRtLQUOj1qGKcyDzQHBABmknng6WMOCACUhTng6WUeCACUgTkgAABTKXSW2Nramj179kzaNjo6mgULFpzQ45ubm1UOAwDMQacyDzQHBACYm8wBAQAak3kgAAAAAGXXXOSTd3Z25vHHH5+4vW/fvoyNjZ3Qr1QAADB3mQcCADQec0AAgMZkHggAAABA2RVaVNHd3Z0DBw5k27ZtSZKNGzdm5cqVqVQqRYYFAMAsMw8EAGg85oAAAI3JPBAAAACAsmsaHx8fLzKAhx56KP39/TnzzDNTr9ezadOmXHLJJUWGBADAaWAeCADQeMwBAQAak3kgAAAAAGVWeFFFkjz77LMZGhrK8uXLs2TJkqLDAQDgNDEPBABoPOaAAACNyTwQAAAAgLIqRVEFAAAAAAAAAAAAAADA6dZcdAAAAAAAAAAAAAAAAABFUFQBAABAIV544YX88Ic/zPPPP190KAAAAAAAAAAANChFFcwZg4ODaW9vn/h39dVXFx0SlMYLL7yQd73rXdm3b9/ENmMGJnvooYdy1VVXpaOjIzfccENqtVoSYwVOxtHed/gnxzreMNmDDz6Yd7/73fn0pz+dK6+8Mg8++GDRIZXWhz70oWzdurXoMErHe/j0fP7zn8+aNWuKDgPghDnOw7FZC4SpWQcEAAAAAKZLUcUxDA8Pp7e3N93d3Vm3bl3Gx8eLDqnhPfHEE9m4cWN27tyZnTt35v777y86pIZ1tC/tjJniPP/881mzZk2eeeaZSduNmeIc60s746Q4Tz31VG666ab09/dnx44dOf/88/PJT34yibHCZMbp8R3rfYdXTHW84Z+8+OKLGRwczF/8xV9k27ZtWbt2bT7/+c8XHVYp/fVf/3UeeeSRosMoJe/hJ254eDj33HNPbrrppqJDgdIyDywfx/lysA5YPtYCy8daYLlYB2Q6jNPT72SOmfJ0+vzyhT3kpFivvTiGfBRn27ZtueKKK/LOd74zH/zgByc+G8nJ6TPdz6VyAwDAyVJUcRRjY2NZs2ZNli1bli1btqRWq7kqaMEOHz6c4eHhrFixIosXL87ixYtz1llnFR1WQzral3bGTLH6+vqyatWqSduMmeIc60s746RYtVotH/3oR7Nq1aqcc845ef/735+f/OQnxgqTGKcn5mjvO/yTYx1vmGx0dDQ33XRTfv3Xfz1Jcumll2b//v0FR1U+//AP/5B169blLW95S9GhlI738BM3Pj6eW2+9NR/4wAdy4YUXFh0OlJJ5YPk4zpeDdcByshZYLtYCy8c6ICfKOD39TuaYKU+nzy9f2ENOivXai2PIR3GeeuqpbNiwIV/60pfy4IMP5vzzz8/AwICcnEbT/VwqNwAAnApFFUexY8eOjIyMZGBgIBdeeGH6+vqyefPmosNqaMPDwxkfH8/q1avzjne8Ix/60Ify85//vOiwGtLRvrQzZoo1ODiYD3zgA5O2GTPFOdaXdsZJsa688sq8//3vn7j95JNP5qKLLjJWmMQ4PTFHe9/hnxzreMNk5513Xq677rokycsvv5y77ror7373uwuOqnzWrVuXnp6e/MZv/EbRoZSO9/ATd99992XXrl1ZunRpvv/97+fll18uOiQoHfPA8nGcLwfrgOVkLbBcrAWWj3VATpRxevqdzDFTnk6P117YQ06Kc7SLY8hHcX7605+mq6sry5Yty/nnn5/3vOc9efLJJ+XkNJru51K5AQDgVCiqOIpdu3alq6sr1Wo1SdLe3j7x06MUY+/evbnkkkvyZ3/2Z3nwwQezYMGC3HrrrUWH1ZCO9qWdMVOsCy644HXbjJniHOtLO+OkPMbGxnLXXXfl3/ybf2OsMIlxemKO9r7D0f3y8Yaj27VrVy677LI8+uijE1de4xU/+MEP8thjj+VP//RPiw6llLyHn5jR0dFs2LAhF110UX7xi1/kf/yP/5F/9+/+XV566aWiQ4NSMQ8sH8f5crAOWE7WAsvFWmC5WQdkKsbp6Xcyx0x5Oj1ee2EPOSnO0S6OIR/Fufjii/ODH/wgP/3pT3PgwIHcc889ueyyy+TkNJru51K5AQDgVCiqOIqRkZEsXbp04nZTU1Oam5uzf//+AqNqbNddd13uu+++vOMd78gFF1yQW265JY8++mhGRkaKDq3hHO1LO2OmfIyZcvjlL+2Mk/LYsGFDzjjjjLzvfe8zVpjEOGWm/fLxhqNrb2/PV7/61Vx88cUZGBgoOpzSeOmll/KpT30qt912W84666yiwykl7+En5rvf/W4OHjyYu+++Ox/5yEdy11135cUXX8y2bduKDg1KxTywfBzny8E64NxhzJSDtcDysQ7IVIzTYp3oMVOeZt/RLuwhJ8U41sUx5KM4F198ca655ppcf/31WbFiRR5//PF84hOfkJPTaLqfS+UGAIBToajiKCqVShYuXDhp26JFi3Lo0KGCIuK1Fi9enCNHjuS5554rOhRizMwFxkwxfvlLO+OkHB599NHce++9+bM/+7MsWLDgde3GSmMzTplJxzve8IqmpqZ0dHTks5/9bB5++GFfXvw/X/7yl/P2t789V1xxRdGhzBnew4/uF7/4Rd7xjnfkDW94Q5KkpaUl7e3t2bdvX7GBQcmYB5af43x5GC9zgzFTDGuB5WIdkOMxTot1osdMeZpdx7qwh5wU41gXx9iyZYt8FOTHP/5xvv/97+ev/uqv8sMf/jC/8zu/kz/8wz80Rgp2svtfbgAAOB5FFUfR2tqa559/ftK20dFRJ0MV6M4778y3vvWtidtDQ0Npbm7OeeedV2BUvMqYKR9jpniv/dLOOCne008/nY997GO57bbbcvHFFycxVpjMOGWmHO14w2SPPfZY1q1bN3G7UqkkSZqbfURNkgceeCDf+973smLFiqxYsSLf/OY3s3bt2tx2221Fh1Ya3sNPzBvf+Ma89NJLk7b9/Oc/z/nnn19QRFBO5oHl4zhfXsZLORkzxbMWWC7WATkRxmlxpnPMlKfZdawLe8hJMY51cYyXXnpJPgryrW99K9dee23e8Y535Mwzz8yf/MmfZN++fcZIwU52/8sNAADH01J0AGXU2dmZzZs3T9zet29fxsbG0traWmBUje1tb3tbNmzYkHPPPTeHDx/O4OBgrr/++lSr1aJDI8ZMGRkzxTral3bGSbEOHTqUD3/4w+np6clVV12V0dHRJMmll15qrDDBOGUmHOt4c8YZZ6Spqang6MrjrW99az7ykY/kzW9+c377t387GzZsyGWXXZZf+ZVfKTq0Urjnnnty+PDhidvr169PV1dXrr/++gKjKhfz3RNzxRVX5Pbbb8/Xv/71XHnlldm+fXt+9rOf5T//5/9cdGhQKuaB5eM4X17GSzkZM8WyFlgu1gE5UcZpMaZ7zJSn2fXAAw/khRdeyIoVK5K8cgz99re/nTe96U2T1qbk5PQ41sUxPvGJT+Tuu++e2CYfp0+9Xp90Ev7o6Gj+8R//MS0tLXn88ccntsvJ6XWy7xtyAwDA8bgM6FF0d3fnwIED2bZtW5Jk48aNWbly5cTVUzn9Vq9enWuuuSY33nhjBgYGctlll+Xmm28uOiz+H2OmfIyZ4hztS7vR0dGsWLHCOCnQI488klqtlvvuuy/Lly+f+Nfd3W2sMMH7GTPhWMebZ555pujQSqWtrS1f/OIXc/fdd+faa6/NwYMH87nPfa7osErjjW98Y5YuXTrx74wzzsjZZ5+dJUuWFB1aaZjvnpg3vOEN+cpXvpJvfOMbueaaa3L33XfnC1/4QpYuXVp0aFAq5oHl4zhfXsZLORkzxbEWWD7WATlR3tNOv5M5ZsrT7LrnnnvywAMPZNu2bdm2bVve9a535T/+x/+YTZs2yUkBrrjiitRqtXz961/PL37xi3zta1/Lz372s1x++eXyUZDly5fnu9/9br761a/mgQceyI033phzzjknv/d7vycnBZpqH59sGwAAJEnT+Pj4eNFBlNFDDz2U/v7+nHnmmanX69m0aVMuueSSosOC0mhvb8/DDz88cTKOMQOveOihh/KRj3zkddsffvjh7Nq1yziBkvN+BgDQmMwD4disA8KxWQuEuc172ul1ssdMeTp9/tN/+k/5l//yX+Y973nPlPtdTmbPj3/843z2s5/Nz372s5xzzjkZGBhIT0+PfBRkfHw8X/rSl7Jly5b8/d//fS655JIMDg7m7W9/u5ycZtP5XCo3AACcLEUVU3j22WczNDSU5cuXuyIonABjBo7POIHyM04BABqTeSCcOOMFToyxAuVnnJbHVLmQp2LISbnIR/nISbFOdv/LDQAAx6KoAgAAAAAAAAAAAAAAaEjNRQcAAAAAAAAAAAAAAABQBEUVAAAAAAAAAAAAAABAQ1JUAQAAAAAAAAAAAAAANCRFFQAAAAAAAAAAAAAAQENSVAEAAAAAAAAAAAAAADQkRRUAAAAAAAAAAAAAAEBDUlQBAAAAAAAAAAAAAAA0JEUVAAAAAAAAAAAAAABAQ1JUAQAAAAAAAAAAAAAANKT/H/IgZD1Cz84/AAAAAElFTkSuQmCC\n"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure(figsize=(40, 40))\n",
"for index, col in enumerate(daily_data.columns):\n",
" if col != 'days':\n",
" # u = x_data[col].mean()\n",
" # std = x_data[col].std()\n",
" try:\n",
" plt.subplot(9,5,index+1)\n",
" plt.title(col)\n",
" plt.hist(daily_data[col])\n",
" except:\n",
" print(col)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 34,
"outputs": [],
"source": [
"use_cols = ['days']\n",
"for col in daily_data.columns:\n",
" if col != 'days':\n",
" if daily_data[col].value_counts().shape[0] > 1 and daily_data[col].isna().sum() / daily_data.shape[0] <= 0.01:\n",
" use_cols.append(col)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 35,
"outputs": [
{
"data": {
"text/plain": "['days',\n '发电量(千瓦时)',\n '供热量(吉焦)',\n '机组运行时间(小时)',\n '硫分(%',\n '脱硫剂使用量(吨)',\n '脱硫设施运行时间(小时)',\n '脱硝还原剂消耗量(吨)',\n '脱硝运行时间(小时)',\n '燃料消耗量(吨)']"
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"use_cols"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 36,
"outputs": [
{
"data": {
"text/plain": "(1108, 10)"
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tmp_data = daily_data[use_cols].copy()\n",
"tmp_data.shape"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 37,
"outputs": [],
"source": [
"train_data = tmp_data.merge(final_hourly_data, on='days', how='left')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 38,
"outputs": [
{
"data": {
"text/plain": "(1108, 164)"
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_data.shape"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 39,
"outputs": [
{
"data": {
"text/plain": "24.0 1103\n21.0 2\n0.0 1\n15.5 1\n19.0 1\nName: 机组运行时间(小时), dtype: int64"
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_data['机组运行时间(小时)'].value_counts()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 40,
"outputs": [
{
"data": {
"text/plain": "(1087, 164)"
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"valid_data = train_data[~((train_data['机组运行时间(小时)']==0)|(train_data['燃料消耗量(吨)']<=200)|(train_data.flow==0)|(train_data.flow.isna()))].copy()\n",
"valid_data.shape"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 41,
"outputs": [],
"source": [
"import datetime as dt"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 42,
"outputs": [],
"source": [
"def cal_timedelta(x):\n",
" date = dt.datetime.strptime(x, '%Y-%m-%d')\n",
" date = dt.date(date.year, date.month, date.day)\n",
" start_date = dt.date(date.year, 1, 1)\n",
" time_delta = (date - start_date).days\n",
" return time_delta"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 43,
"outputs": [
{
"data": {
"text/plain": " days 发电量(千瓦时) 供热量(吉焦) 机组运行时间(小时) 硫分(% 脱硫剂使用量(吨) \\\n0 2018-10-01 156796.00 6536.83 24.0 0.51 5.06 \n1 2018-10-02 133984.00 2484.64 24.0 0.51 5.04 \n2 2018-10-03 134023.00 3020.83 24.0 0.51 5.04 \n3 2018-10-04 124765.00 5599.23 24.0 0.51 5.03 \n4 2018-10-05 134414.00 4702.65 24.0 0.51 5.06 \n... ... ... ... ... ... ... \n1103 2022-01-22 52.24 12472.00 24.0 0.59 8.46 \n1104 2022-01-23 51.36 12051.00 24.0 0.59 8.46 \n1105 2022-01-24 51.12 11276.00 24.0 0.59 8.43 \n1106 2022-01-25 49.32 11007.00 24.0 0.59 8.43 \n1107 2022-01-26 29.64 8132.00 24.0 0.59 8.44 \n\n 脱硫设施运行时间(小时) 脱硝还原剂消耗量(吨) 脱硝运行时间(小时) 燃料消耗量(吨) ... cSO2 \\\n0 24.0 2.98 24.0 323 ... 1.810937e+07 \n1 24.0 2.97 24.0 218 ... 1.337057e+07 \n2 24.0 2.95 24.0 212 ... 2.404455e+07 \n3 24.0 2.98 24.0 223 ... 8.668474e+06 \n4 24.0 3.01 24.0 243 ... 1.579668e+06 \n... ... ... ... ... ... ... \n1103 24.0 4.56 24.0 822 ... 3.028139e+06 \n1104 24.0 4.58 24.0 790 ... 3.412421e+06 \n1105 24.0 4.57 24.0 751 ... 4.146250e+06 \n1106 24.0 4.56 24.0 672 ... 3.971702e+06 \n1107 24.0 4.57 24.0 484 ... 5.050733e+06 \n\n cO2 csmoke flow rNOx rO2 \\\n0 3.745944e+07 5.495410e+05 162345.192917 24.417792 9.900000 \n1 2.832146e+07 3.078217e+05 140175.330833 18.705945 9.400000 \n2 3.174159e+07 4.348207e+05 154686.184167 20.891791 8.550000 \n3 2.511504e+07 1.946970e+06 120345.545833 18.457892 10.202083 \n4 4.106346e+07 5.390776e+06 162533.103542 22.017321 11.497917 \n... ... ... ... ... ... \n1103 4.149625e+07 5.438282e+06 218349.604167 2.174717 7.921417 \n1104 4.422277e+07 5.194162e+06 210121.608333 5.565075 8.756333 \n1105 4.655727e+07 5.133802e+06 211378.329167 10.326585 9.110167 \n1106 7.959093e+07 5.497492e+06 240801.208333 4.874698 13.636042 \n1107 9.866431e+07 5.879454e+06 263197.579167 1.481812 15.621583 \n\n temp rSO2 rsmoke day_of_year \n0 51.250000 4.705029 0.182338 273 \n1 50.679167 3.675542 0.166718 274 \n2 52.808333 6.440365 0.117143 275 \n3 48.854167 2.364306 0.761071 276 \n4 45.783333 0.339330 1.858999 277 \n... ... ... ... ... \n1103 55.441542 0.576979 1.037822 21 \n1104 54.574333 0.678481 1.030052 22 \n1105 53.031042 0.818827 1.012412 23 \n1106 42.908458 0.698443 0.953106 24 \n1107 36.412917 0.801224 0.930781 25 \n\n[1087 rows x 165 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>days</th>\n <th>发电量(千瓦时)</th>\n <th>供热量(吉焦)</th>\n <th>机组运行时间(小时)</th>\n <th>硫分(%</th>\n <th>脱硫剂使用量(吨)</th>\n <th>脱硫设施运行时间(小时)</th>\n <th>脱硝还原剂消耗量(吨)</th>\n <th>脱硝运行时间(小时)</th>\n <th>燃料消耗量(吨)</th>\n <th>...</th>\n <th>cSO2</th>\n <th>cO2</th>\n <th>csmoke</th>\n <th>flow</th>\n <th>rNOx</th>\n <th>rO2</th>\n <th>temp</th>\n <th>rSO2</th>\n <th>rsmoke</th>\n <th>day_of_year</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2018-10-01</td>\n <td>156796.00</td>\n <td>6536.83</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>5.06</td>\n <td>24.0</td>\n <td>2.98</td>\n <td>24.0</td>\n <td>323</td>\n <td>...</td>\n <td>1.810937e+07</td>\n <td>3.745944e+07</td>\n <td>5.495410e+05</td>\n <td>162345.192917</td>\n <td>24.417792</td>\n <td>9.900000</td>\n <td>51.250000</td>\n <td>4.705029</td>\n <td>0.182338</td>\n <td>273</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2018-10-02</td>\n <td>133984.00</td>\n <td>2484.64</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>5.04</td>\n <td>24.0</td>\n <td>2.97</td>\n <td>24.0</td>\n <td>218</td>\n <td>...</td>\n <td>1.337057e+07</td>\n <td>2.832146e+07</td>\n <td>3.078217e+05</td>\n <td>140175.330833</td>\n <td>18.705945</td>\n <td>9.400000</td>\n <td>50.679167</td>\n <td>3.675542</td>\n <td>0.166718</td>\n <td>274</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2018-10-03</td>\n <td>134023.00</td>\n <td>3020.83</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>5.04</td>\n <td>24.0</td>\n <td>2.95</td>\n <td>24.0</td>\n <td>212</td>\n <td>...</td>\n <td>2.404455e+07</td>\n <td>3.174159e+07</td>\n <td>4.348207e+05</td>\n <td>154686.184167</td>\n <td>20.891791</td>\n <td>8.550000</td>\n <td>52.808333</td>\n <td>6.440365</td>\n <td>0.117143</td>\n <td>275</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2018-10-04</td>\n <td>124765.00</td>\n <td>5599.23</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>5.03</td>\n <td>24.0</td>\n <td>2.98</td>\n <td>24.0</td>\n <td>223</td>\n <td>...</td>\n <td>8.668474e+06</td>\n <td>2.511504e+07</td>\n <td>1.946970e+06</td>\n <td>120345.545833</td>\n <td>18.457892</td>\n <td>10.202083</td>\n <td>48.854167</td>\n <td>2.364306</td>\n <td>0.761071</td>\n <td>276</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2018-10-05</td>\n <td>134414.00</td>\n <td>4702.65</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>5.06</td>\n <td>24.0</td>\n <td>3.01</td>\n <td>24.0</td>\n <td>243</td>\n <td>...</td>\n <td>1.579668e+06</td>\n <td>4.106346e+07</td>\n <td>5.390776e+06</td>\n <td>162533.103542</td>\n <td>22.017321</td>\n <td>11.497917</td>\n <td>45.783333</td>\n <td>0.339330</td>\n <td>1.858999</td>\n <td>277</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>1103</th>\n <td>2022-01-22</td>\n <td>52.24</td>\n <td>12472.00</td>\n <td>24.0</td>\n <td>0.59</td>\n <td>8.46</td>\n <td>24.0</td>\n <td>4.56</td>\n <td>24.0</td>\n <td>822</td>\n <td>...</td>\n <td>3.028139e+06</td>\n <td>4.149625e+07</td>\n <td>5.438282e+06</td>\n <td>218349.604167</td>\n <td>2.174717</td>\n <td>7.921417</td>\n <td>55.441542</td>\n <td>0.576979</td>\n <td>1.037822</td>\n <td>21</td>\n </tr>\n <tr>\n <th>1104</th>\n <td>2022-01-23</td>\n <td>51.36</td>\n <td>12051.00</td>\n <td>24.0</td>\n <td>0.59</td>\n <td>8.46</td>\n <td>24.0</td>\n <td>4.58</td>\n <td>24.0</td>\n <td>790</td>\n <td>...</td>\n <td>3.412421e+06</td>\n <td>4.422277e+07</td>\n <td>5.194162e+06</td>\n <td>210121.608333</td>\n <td>5.565075</td>\n <td>8.756333</td>\n <td>54.574333</td>\n <td>0.678481</td>\n <td>1.030052</td>\n <td>22</td>\n </tr>\n <tr>\n <th>1105</th>\n <td>2022-01-24</td>\n <td>51.12</td>\n <td>11276.00</td>\n <td>24.0</td>\n <td>0.59</td>\n <td>8.43</td>\n <td>24.0</td>\n <td>4.57</td>\n <td>24.0</td>\n <td>751</td>\n <td>...</td>\n <td>4.146250e+06</td>\n <td>4.655727e+07</td>\n <td>5.133802e+06</td>\n <td>211378.329167</td>\n <td>10.326585</td>\n <td>9.110167</td>\n <td>53.031042</td>\n <td>0.818827</td>\n <td>1.012412</td>\n <td>23</td>\n </tr>\n <tr>\n <th>1106</th>\n <td>2022-01-25</td>\n <td>49.32</td>\n <td>11007.00</td>\n <td>24.0</td>\n <td>0.59</td>\n <td>8.43</td>\n <td>24.0</td>\n <td>4.56</td>\n <td>24.0</td>\n <td>672</td>\n <td>...</td>\n <td>3.971702e+06</td>\n <td>7.959093e+07</td>\n <td>5.497492e+06</td>\n <td>240801.208333</td>\n <td>4.874698</td>\n <td>13.636042</td>\n <td>42.908458</td>\n <td>0.698443</td>\n <td>0.953106</td>\n <td>24</td>\n </tr>\n <tr>\n <th>1107</th>\n <td>2022-01-26</td>\n <td>29.64</td>\n <td>8132.00</td>\n <td>24.0</td>\n <td>0.59</td>\n <td>8.44</td>\n <td>24.0</td>\n <td>4.57</td>\n <td>24.0</td>\n <td>484</td>\n <td>...</td>\n <td>5.050733e+06</td>\n <td>9.866431e+07</td>\n <td>5.879454e+06</td>\n <td>263197.579167</td>\n <td>1.481812</td>\n <td>15.621583</td>\n <td>36.412917</td>\n <td>0.801224</td>\n <td>0.930781</td>\n <td>25</td>\n </tr>\n </tbody>\n</table>\n<p>1087 rows × 165 columns</p>\n</div>"
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"valid_data['day_of_year'] = valid_data.days.apply(cal_timedelta)\n",
"valid_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 44,
"outputs": [],
"source": [
"valid_data.to_csv(\n",
" './train_data.csv', encoding='utf-8-sig', index=False\n",
")"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}