hima8_pv/读tif获得.ipynb

168 lines
5.9 KiB
Plaintext
Raw Permalink Normal View History

2022-11-11 15:54:33 +08:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"import os\n",
"import pandas as pd\n",
"import netCDF4 as nc\n",
"import numpy as np\n",
"import datetime as dt\n",
"from osgeo import gdal"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [],
"source": [
"file_path = \"data/2022-07-22/PAR_Minutes_Download/\""
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"target_lon = '120.85'\n",
"target_lat = '29.6'"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [],
"source": [
"par_list = list()\n",
"file_list = [x for x in os.listdir(file_path) if x.endswith('.nc')]\n",
"for file in file_list:\n",
" file_name = f\"{file_path}{file}\"\n",
" date = file.split('_')[1] + ':' + file.split('_')[2]\n",
" nc_data = nc.Dataset(file_name)\n",
" lat = nc_data['latitude'][:] # 纬度\n",
" lon = nc_data['longitude'][:] # 经度\n",
" lat_str = list(map(lambda x: str(round(x, 2)), np.asarray(nc_data['latitude'][:])))\n",
" lon_str = list(map(lambda x: str(round(x, 2)), np.asarray(nc_data['longitude'][:])))\n",
" latMin, latMax, lonMin, lonMax = min(lat), max(lat), min(lon), max(lon)\n",
" # 分辨率\n",
" lat_Res = (latMax - latMin) / (lat.shape[0]-1)\n",
" lon_Res = (lonMax - lonMin) / (lon.shape[0]-1)\n",
" lon_index = lon_str.index(target_lon)\n",
" lat_index = lat_str.index(target_lat)\n",
" par = np.asarray(nc_data['PAR'][:])\n",
" par_list.append([date, par[lat_index][lon_index]])"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"par_df = pd.DataFrame.from_records(par_list, columns=['time', 'par'])"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 20,
"outputs": [],
"source": [
"par_df.time = par_df.time.apply(lambda x: dt.datetime.strptime(x, '%Y%m%d:%H%M') + dt.timedelta(hours=8))"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 21,
"outputs": [
{
"data": {
"text/plain": " time par\ntime \n2022-07-22 08:00:00 20220722:0000 1146.900024\n2022-07-22 08:10:00 20220722:0010 1217.099976\n2022-07-22 08:20:00 20220722:0020 1288.800049\n2022-07-22 08:30:00 20220722:0030 1354.800049\n2022-07-22 08:40:00 20220722:0040 1419.900024\n... ... ...\n2022-07-23 07:10:00 20220722:2310 778.400024\n2022-07-23 07:20:00 20220722:2320 854.799988\n2022-07-23 07:30:00 20220722:2330 928.000000\n2022-07-23 07:40:00 20220722:2340 1011.000000\n2022-07-23 07:50:00 20220722:2350 1081.800049\n\n[141 rows x 2 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>time</th>\n <th>par</th>\n </tr>\n <tr>\n <th>time</th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2022-07-22 08:00:00</th>\n <td>20220722:0000</td>\n <td>1146.900024</td>\n </tr>\n <tr>\n <th>2022-07-22 08:10:00</th>\n <td>20220722:0010</td>\n <td>1217.099976</td>\n </tr>\n <tr>\n <th>2022-07-22 08:20:00</th>\n <td>20220722:0020</td>\n <td>1288.800049</td>\n </tr>\n <tr>\n <th>2022-07-22 08:30:00</th>\n <td>20220722:0030</td>\n <td>1354.800049</td>\n </tr>\n <tr>\n <th>2022-07-22 08:40:00</th>\n <td>20220722:0040</td>\n <td>1419.900024</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>2022-07-23 07:10:00</th>\n <td>20220722:2310</td>\n <td>778.400024</td>\n </tr>\n <tr>\n <th>2022-07-23 07:20:00</th>\n <td>20220722:2320</td>\n <td>854.799988</td>\n </tr>\n <tr>\n <th>2022-07-23 07:30:00</th>\n <td>20220722:2330</td>\n <td>928.000000</td>\n </tr>\n <tr>\n <th>2022-07-23 07:40:00</th>\n <td>20220722:2340</td>\n <td>1011.000000</td>\n </tr>\n <tr>\n <th>2022-07-23 07:50:00</th>\n <td>20220722:2350</td>\n <td>1081.800049</td>\n </tr>\n </tbody>\n</table>\n<p>141 rows × 2 columns</p>\n</div>"
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"par_df"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}