hima8_pv/nc文件加载出太阳辐照数据.ipynb

205 lines
3.6 KiB
Plaintext
Raw Permalink Normal View History

2022-11-09 10:16:06 +08:00
{
"cells": [
{
"cell_type": "code",
2022-11-11 15:54:33 +08:00
"execution_count": null,
2022-11-09 10:16:06 +08:00
"outputs": [],
"source": [
"import numpy as np\n",
"import netCDF4 as nc"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-11-11 15:54:33 +08:00
"execution_count": null,
2022-11-09 10:16:06 +08:00
"outputs": [],
"source": [
"from osgeo import gdal, osr, ogr"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-11-11 15:54:33 +08:00
"execution_count": null,
"outputs": [],
2022-11-09 10:16:06 +08:00
"source": [
"data = r\"D:\\Datasets\\Himawari\\pub\\L2_PAR\\20221107\\18\\H08_20221107_1800_RFL020_FLDK.02401_02401.nc\"\n",
"nc_data = nc.Dataset(data)\n",
"nc_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-11-11 15:54:33 +08:00
"execution_count": null,
"outputs": [],
2022-11-09 10:16:06 +08:00
"source": [
"list(nc_data.variables.keys())"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-11-11 15:54:33 +08:00
"execution_count": null,
"outputs": [],
2022-11-09 10:16:06 +08:00
"source": [
"nc_data['PAR']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-11-11 15:54:33 +08:00
"execution_count": null,
"outputs": [],
2022-11-09 10:16:06 +08:00
"source": [
"nc_data['latitude']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-11-11 15:54:33 +08:00
"execution_count": null,
"outputs": [],
2022-11-09 10:16:06 +08:00
"source": [
"par = np.asarray(nc_data['PAR'][:])\n",
"par"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-11-11 15:54:33 +08:00
"execution_count": null,
2022-11-09 10:16:06 +08:00
"outputs": [],
"source": [
"import pandas as pd"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-11-11 15:54:33 +08:00
"execution_count": null,
"outputs": [],
2022-11-09 10:16:06 +08:00
"source": [
"lat = list(map(lambda x: round(x, 2), np.asarray(nc_data['latitude'][:])))\n",
"lon = list(map(lambda x: round(x, 2), np.asarray(nc_data['longitude'][:])))\n",
"print(len(lat), len(lon))\n",
"latMin, latMax, lonMin, lonMax = min(lat), max(lat), min(lon), max(lon)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-11-11 15:54:33 +08:00
"execution_count": null,
2022-11-09 10:16:06 +08:00
"outputs": [],
"source": [
"# 分辨率\n",
"lat_Res = (latMax - latMin) / (lat.shape[0]-1)\n",
"lon_Res = (lonMax - lonMin) / (lon.shape[0]-1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-11-11 15:54:33 +08:00
"execution_count": null,
2022-11-09 10:16:06 +08:00
"outputs": [],
"source": [
"cols = [str(x) for x in lat]\n",
"rows = [str(x) for x in lon]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-11-11 15:54:33 +08:00
"execution_count": null,
2022-11-09 10:16:06 +08:00
"outputs": [],
"source": [
"par_df = pd.DataFrame.from_records(par)\n",
"par_df.columns = cols\n",
"par_df.index = rows"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}