# Parameters nc: 80 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32 # YOLOv5 v6.0 backbone backbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 1]], # 1 [-1,1,space_to_depth,[1]], # 2 -P2/4 [-1, 3, C3, [128]], # 3 [-1, 1, Conv, [256, 3, 1]], # 4 [-1,1,space_to_depth,[1]], # 5 -P3/8 [-1, 6, C3, [256]], # 6 [-1, 1, Conv, [512, 3, 1]], # 7-P4/16 [-1,1,space_to_depth,[1]], # 8 -P4/16 [-1, 9, C3, [512]], # 9 [-1, 1, Conv, [1024, 3, 1]], # 10-P5/32 [-1,1,space_to_depth,[1]], # 11 -P5/32 [-1, 3, C3, [1024]], # 12 [-1, 1, SPPF, [1024, 5]], # 13 ] # YOLOv5 v6.0 head head: [[-1, 1, Conv, [512, 1, 1]], # 14 [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 15 [[-1, 9], 1, Concat, [1]], # 16 cat backbone P4 [-1, 3, C3, [512, False]], # 17 [-1, 1, Conv, [256, 1, 1]], # 18 [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 19 [[-1, 6], 1, Concat, [1]], # 20 cat backbone P3 [-1, 3, C3, [256, False]], # 21 (P3/8-small) [-1, 1, Conv, [256, 3, 1]], # 22 [-1,1,space_to_depth,[1]], # 23 -P2/4 [[-1, 18], 1, Concat, [1]], # 24 cat head P4 [-1, 3, C3, [512, False]], # 25 (P4/16-medium) [-1, 1, Conv, [512, 3, 1]], # 26 [-1,1,space_to_depth,[1]], # 27 -P2/4 [[-1, 14], 1, Concat, [1]], # 28 cat head P5 [-1, 3, C3, [1024, False]], # 29 (P5/32-large) [[21, 25, 29], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]